

Cite this: *J. Mater. Chem. A*, 2019, 7, 2423

DOI: 10.1039/c9ta90017a

www.rsc.org/MaterialsA

Correction: an organic cathode with high capacities for fast-charge potassium-ion batteries

Mi Tang, Yanchao Wu, Yuan Chen, Cheng Jiang, Shaolong Zhu, Shuming Zhuo and Chengliang Wang*

Correction for 'An organic cathode with high capacities for fast-charge potassium-ion batteries' by Mi Tang et al., *J. Mater. Chem. A*, 2019, 7, 486–492.

In Fig. 2c of the published article, the electrolyte was incorrectly labelled as NaPF_6 rather than KPF_6 . The corrected version of Fig. 2 is shown below.

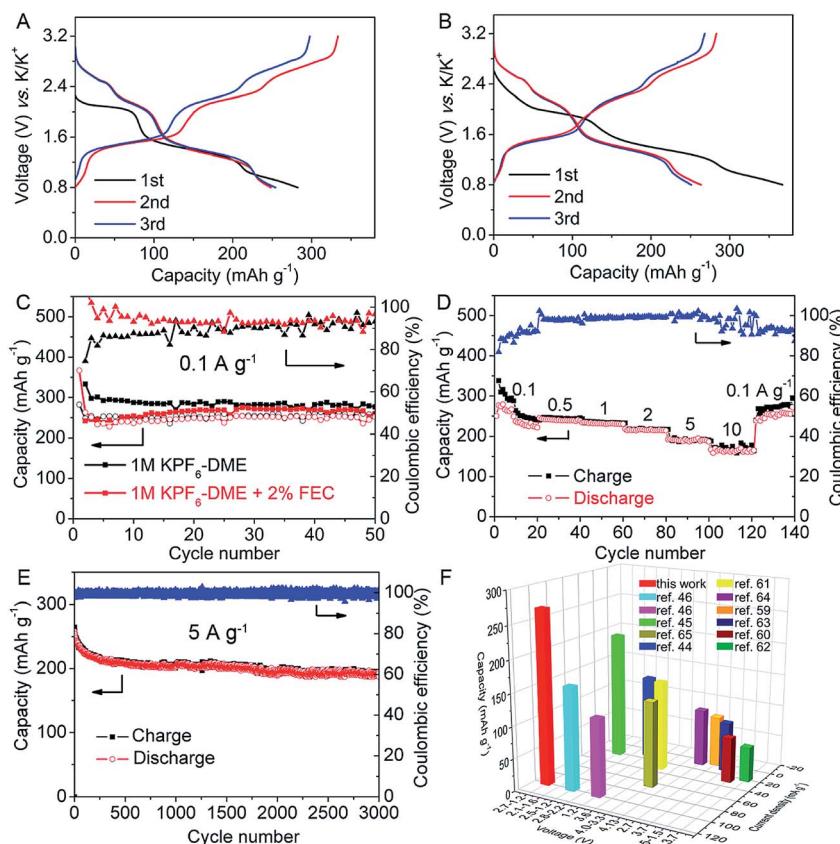


Fig. 2 Electrochemical performance of PPTS as an active cathode material in PIBs. (A and B) Representative charge and discharge profiles at a current density of 0.1 A g^{-1} by using 1 M KPF_6 in DME as the electrolyte (A) without the addition of FEC and (B) with the addition of 2% FEC. (C) Cycling capability and corresponding coulombic efficiency (CE) of PPTS electrodes in the two electrolytes at a current density of 0.1 A g^{-1} . (D) Rate cyclability of PPTS electrodes in PIBs. (E) Long-term cyclability of PPTS at a current density of 5 A g^{-1} . (F) Comparison of the discharge capacity of PPTS with the reported cathodes in PIBs.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.