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Molecules capable of reversible storage of solar energy have recently

attracted increasing interest, and are often referred to as molecular

solar thermal energy storage (MOST) systems. Azobenzene derivatives

have great potential as an active MOST candidate. However, an

operating lab scale experiment including solar energy capture/storage

and release has still not been demonstrated. In the present work,

a liquid azobenzene derivative is tested comprehensively for this

purpose. The system features several attractive properties, such as

a long energy storage half-life (40 h) at room temperature, as well as

an excellent robustness demonstrated by optically charging and dis-

charging the molecule over 203 cycles without any sign of degrada-

tion (total operation time of 23 h). Successful measurements of solar

energy storage under simulated sunlight in a microfluidic chip device

have been achieved. The identification of two heterogeneous catalyst

systems during testing enabled the construction of a fixed bed flow

reactor demonstrating catalyzed back-conversion from cis to trans

azobenzene at room temperature under flow conditions. The working

mechanism of the more suitable catalytic candidate was rationalized

by detailed density functional theory (DFT) calculations. Thus, this

work provides detailed insights into the azobenzene based MOST

candidate and identifies where the system has to be improved for

future solar energy storage applications.
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Introduction

The development of sustainable energy has been attracting
increasing attention, due to the pressing environmental and
social challenges linked to high dependency on fossil fuels in
our modern society.1 As the most abundant energy source for
Earth, the Sun can provide the energy needed for mankind for
an entire year in only six hours.2 Various ways to take advantage
of solar energy have been studied and developed over the last
few decades, including photovoltaics,3 articial photosyn-
thesis,4 and solar thermal heating.5 In order to store sunlight for
future use, molecular solar thermal storage techniques
(MOST,6,7 also known as solar thermal fuels, STF8) focus on
harvesting solar energy and storing it in photoswitchable
materials. A parent molecule can be isomerized by solar irra-
diation to a metastable high energy photoisomer for a long
storage period. When the energy is required, it can be thermally
or catalytically back-converted to the parent state. Ideally, the
stored energy should be released on demand as heat, thus
operating as a closed-cycle system.

In order to realize the MOST concept, several features con-
cerning the charge and discharge process need to be consid-
ered.7,9,10 (1) Since more than 50% of sunlight is distributed from
300 nm to 800 nm, the parent molecules should be able to absorb
broadly in this spectral region. (2) The quantum yield of the
photoisomerisation reaction should be as close to unity as
possible. (3) The storage half-life at room temperature should be
long enough to fulll application-relevant storage times, such as
daily, monthly, yearly or even longer storage requirements. (4) The
energy of the metastable photoisomer should be signicantly
higher than the ground state of the parent isomer. (5) The system
should ideally be able to operate over an innite number of
charging and heat releasing cycles. (6) Using a heterogeneous
catalyst, the photoisomer should easily release the stored energy as
heat. (7) For energy collection, storage, and bulk heating applica-
tions, MOSTmaterials need to be pumped between solar collector,
storage reservoir and heat extraction devices. As a consequence,
the MOST system should be a liquid or highly soluble solid.
This journal is © The Royal Society of Chemistry 2019
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The MOST concept has been represented by many potential
candidates, including norbornadiene/quadricyclane deriva-
tives,7,9–14 dihydroazulene/vinylheptafulvene couples,15–21 diful-
valenediruthenium complexes,6 anthracene dimers,22 Dewar
isomers23 and azobenzene derivatives.8,24–43 The last systems
have been in the spotlight recently due to the broad absorption
spectrum, high robustness, daily storage half-life, tunable
energy density (J mol�1) of photoswitches, and the low synthetic
cost.40–42 AZO1 (see Fig. 1a) possesses many of the needed
features described above; however it has not been tested in a full
MOST operating cycle including energy capture, storage and
release. Here, for the rst time, we investigate the performance
of AZO1 by studying its function through multiple energy
storage and release cycles. In order to do so, we have identied
and tested a heterogeneous catalyst system for the energy
release step and constructed a ow system consisting of a solar
collector and a xed-bed catalytic converter. Furthermore, the
functioning mechanism of the catalytic conversion is further
proposed and rationalized using PCM-B3LYP-D3BJ/6-
31G(d)+SDD(Cu) calculations.
Results and discussion

To characterize the physical properties of AZO1, it was rst
studied in toluene in terms of its absorptivity, half-life of energy
storage and quantum yields of the photoisomerization reaction.
Comparing these results with available data of AZO1 in meth-
anol,43 the maximum in the absorption spectrum was observed
to be slightly red shied, indicating a low solvent polarity effect
compared to, for instance, a DHA-MOST system18 (ca. 5 nm,
Fig. 1 (a) Structure of AZO1 in the trans and cis state. (b) Absorption
spectra of AZO1-trans (in blue) and its corresponding photoisomer
AZO1-cis (in red). The sample (ca. 2 mg in 100 mL toluene) was
converted with a 340 nm LED lamp. (c) Eyring plot of AZO1-cis. The
half-life at 25 �C was determined as 36.3 h in toluene solution. (d)
Optical cycling test of AZO1 in toluene. The figure shows 203 cycles in
total. The absorbance was recorded at 350 nm. The charge and
discharge processes were archived with a 340 nm LED (�60mW) over
100 s and a 455 nm LED (�1020 mW) over 300 s, alternatively.

This journal is © The Royal Society of Chemistry 2019
3Max@350 nm ¼ 2.6 � 104 M�1 cm�1, see Fig. 1b). Concerning the
storage lifetime, a half-life from cis to trans state of 36.3 h in
toluene can be extracted from the Eyring plot. The activation
enthalpy was calculated as DH‡

therm ¼ 93.7 kJ mol�1, together
with an activation entropy DS‡therm ¼ �31.7 J mol�1 K�1 (S2,
ESI†). The quantum yield of the trans to cis photoisomerisation
reaction was determined to be 21% at 340 nm, using a literature
procedure44 (S3, ESI†). In addition, it was observed that the
AZO1-cis state can photoisomerise back to the trans form. The
corresponding quantum yield of the cis to trans photo-
isomerisation was determined to be 23% at 455 nm, slightly
higher than the reverse process. Due to this photo-induced two-
way switch effect for AZO1, full conversion via full spectrum
solar light can likely not be achieved and a band pass lter was
used in the device conversion experiments.

Good cyclability is one of the most important criteria of
MOST systems. To investigate the robustness of AZO1, a solu-
tion of ca. 10�5 M in toluene was prepared without degassing.
Two controllable LED light sources were turned on and off
alternatingly (340 nm with 100 s irradiation time and 455 nm
with 300 s irradiation time) to charge and discharge the mole-
cules back and forth. Aer 203 complete cycles (with a total
operation time of 22.6 h), no signicant signs of degradation
were observed, thus demonstrating high robustness of AZO1,
even in the presence of oxygen (see Fig. 1c).

To further demonstrate the functionality of the AZO1 system
in a real device, a continuous ow system was built. For this lab-
scale conversion test under an AM1.5 solar simulator, diluted
solutions of AZO1 were used to collect data by UV-vis spectros-
copy. Two concentrations of AZO1 solutions were pumped
individually through a microuidic chip,20,21 with varying resi-
dence time (33.9 mm3 inner volume with a channel depth of 100
mm, see Fig. 2a). Since AZO1-cis can be back-converted by visible
light, an optical UV transmitting band pass lter (<400 nm) was
inserted in between the solar simulator and the microuidic
chip. The UV-Vis spectra of the AZO1 solution before and aer
pumping into the microuidic chip were recorded. Eqn (1) was
used to calculate the cis-to-trans conversion percentage (S4,
ESI†):

Conversion % ¼

A@350 nm

A
iso@306 nm

3
iso@306 nm

� 3
isomer@350 nm

3
parent@350 nm

� 3
isomer@350 nm

(1)

where A@350 nm is the actual absorbance at 350 nm; Aiso@306 nm

and 3iso@306 nm correspond to the absorbance and absorptivity
of the solution at its isosbestic point at 306 nm, respectively;
and 3parent@350 nm and 3isomer@350 nm are the absorptivity of the
AZO1-trans and AZO1-cis isomers at 350 nm, respectively. A
maximum conversion of around 80% from the AZO1 trans to cis
state was obtained from a solution of 2 � 10�4 M. This is likely
due to the photo-stationary state of azobenzene trans-to-cis
photoisomerization (see Fig. 2b). Concerning the energy storage
efficiency, 0.88% of the solar energy could theoretically be
stored in a neat sample (S5, ESI†). The highest efficiency that
can be expected for a 5 � 10�4 M solution is 0.02%, and for a 2
� 10�4 M solution is 0.01%. With a band pass lter (SCHOTT,
J. Mater. Chem. A, 2019, 7, 15042–15047 | 15043
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Fig. 2 (a) Experimental setup of AZO1 in a microfluidic chip device.
Gray boxes 1 and 2 contain a flow UV-vis detection device connected
to a portable spectrophotometer, 3, corresponding to a total volume
of 33.9 mm3 quartz chip, with a 100 mm optical path length. (b)
Experimental data of the two concentrations used: 2 � 10�4 M in
green and 5 � 10�4 M in red. Conversion percentage of AZO1-trans
with different residence times in the microfluidic chip. (c) Measured
energy storage efficiency of the AZO1 compound in toluene.
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UG11) and a solar simulator, the actual measurements showed
that the maximum energy storage efficiency was ca. 0.009% for
the 5 � 10�4 M solution, and 0.005% for the 2 � 10�4 M solu-
tion (see Fig. 2c, S6, ESI†). These experimental results were close
to reach the theoretical predictions, but are still limited overall
by the concentrations used and the photo-stationary state
between the two species.

Aer solar capture/storage, energy release is the second
fundamental process for the MOST concept. To estimate the
adiabatic heat release as a function of concentration, a modied
equation from a previous study11 was used (eqn (2)):

DT ¼ c MwDHstorage

c2Mw
2

rAZO1

Cp_AZO1 þ 1� cMw

rAZO1

rsolventCp_solvent

(2)

where c is the concentration of AZO1, Mw represents its
molecular weight; DHstorage corresponds to the DSC measured
energy storage capacity of AZO1-cis which equals to 167.5 J g�1;
rAZO1 is the volumetric mass density of AZO1 supposed to be
1.09 g mL�1; Cp_AZO1 is the specic heat capacity of AZO1 in J
g�1 K�1, assumed similar to that of unsubstituted azobenzene;45

and rsolvent and Cp_solvent address the volumetric mass density
in g L�1 and the specic heat capacity in J g�1 K�1 of the solvent,
respectively (which are equal to 867 g L�1 and 1.7 J g�1 K�1). In
this approach, the volume load factor of the solvent and
15044 | J. Mater. Chem. A, 2019, 7, 15042–15047
photoisomer was considered, i.e. when the concentration

approaches neat conditions,
�
1� cMw

rAZO1

�
rsolventCp_solvent

approaches zero. This correction is reasonable for all MOST
heat release estimations with close to neat conditions. In the
case of AZO1, the theoretical maximum temperature difference
was calculated as ca. 226 �C for a fully charged neat sample (see
S7, ESI†).

Concerning related catalysts, several candidates, including
mineral acids like perchloric acid, Cu(II) salts (CuCl2,Cu(OAc)2),
gold nanoparticles which involve a redox mechanism, as well as
electrocatalytic methods have been reported to induce the back-
conversion of azobenzene derivatives.46–48 However, for a closed
cycle system which can be operated in devices, a heterogeneous
catalyst that can be xed in a reaction centre is required. Based
on this fact, a heterogeneous catalyst or an insoluble homoge-
neous catalyst needs to be developed. For AZO1, two potential
catalysts, cobalt(II) phthalocyanine physisorbed on the surface
of activated carbon (CoPc@C) and [Cu(CH3CN)4]PF6 fulll the
described physical properties and thus, they were tested indi-
vidually. Both showed a positive effect on reducing the back-
conversion half-life at room temperature. [Cu(CH3CN)4]PF6
has a very low solubility in toluene, being active for various
MOST systems, including norbornadiene/quadricyclane deriv-
atives11 and dihydroazulene/vinylheptafulvene couples.20,49 For
the AZO1-cis compound, a back-conversion reaction rate of up
to 30 s�1 was calculated at room temperature of 25 �C (up to 6�
106 times higher than a reaction rate of 5� 10�6 s�1 without the
catalyst at 25 �C; see Fig. 3a, S7, ESI†). CoPc@C was produced
following a reported procedure; however it had a risk of leach-
ing from its solid support.11 Therefore, the [Cu(CH3CN)4]PF6
salt was chosen to be incorporated into the catalytic device for
further testing. With this result in mind, a small-sized reaction
centre was built. 5 mg of Cu(I) salt was inserted into a Teon
tube which has a 1 mm inner diameter (see Fig. 3b). 5 � 10�4 M
79% AZO1-cis solution from the microuidic chip experiments
was then owed through the catalytic bed with a speed of 1 mL
h�1. As result, 48% of AZO1-cis was successfully back-converted
to the corresponding trans state. Thus, the described contin-
uous uidic chip experiments can achieve the requirements for
the complete application of the MOST concept including
photon capture/storage and energy release processes.

To further understand the mechanism of back-conversion
with [Cu(CH3CN)4]PF6, a detailed study within the framework
of the density functional theory (DFT) was performed. A
simplied AZO1 system was used replacing the ethylhexyl
moiety with a methyl group at the PCM-B3LYP-D3BJ/6-
31G(d)+SDD(Cu) level of theory (S8, ESI†). Among the different
coordination options, the CH3CN ligands could be displaced by
the new ligand (the cis isomer of the azobenzene moiety, in this
case). Four different coordination possibilities were considered
to ensure a good modelling of the experimental conditions. In
all cases, the formation of the new complex is slightly ender-
gonic (1–5 kcal mol�1). As the azobenzene derivative is not
symmetric, two sets of coordination alternatives arise. Coordi-
nation through the nitrogen atom directly linked to the
This journal is © The Royal Society of Chemistry 2019
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Fig. 3 (a) Kinetics study of AZO1-cis in the presence of [Cu(CH3CN)4]
PF6 in toluene at 25 �C. Black dots represent the experimental data, red
curve corresponds to the exponential fitting. The reaction constant
was calculated as 30.0 s�1 (b) Conceptual device demonstration of
catalytic back-conversion of AZO1-cis. Around 5 mg of Cu(I) salt were
loaded in to the reaction centre. A 5 � 10�4 M 79% AZO1-cis solution
was flown through the Cu(I) reactor with a speed of 1 mL h�1. 69% of
the AZO1-trans was obtained after the reaction centre, i.e. 48% of the
AZO1-cis can be successfully back-converted to AZO1-trans state.

Fig. 4 (a) Reaction paths for cis–trans isomerization. Coordination
through the nitrogen atom directly linked to the phenyl ring (path b, in
red) and to the methoxyphenyl nitrogen atom (path a, in blue). Solid
lines are the S0–T1–S0 pathway (MECP1(a,b)-1(a,b)T-MECP2(a,b)).
Dotted black lines are the singlet reaction path (TS1a–TS1b). Free
energies referred to cis-AZO + Cu(CH3CN)4

+. (b) Relaxed scan along
CNNC rotation and MECPs.
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unsubstituted phenyl ring (path b, S8, ESI† and Fig. 4a) is
favored (by ca. 2.3 kcal mol�1) as compared to the methox-
yphenyl linked nitrogen atom (path a). Isomerization of azo-
benzenes is very dependent on substitution and reaction
conditions.50 In this case, different pathways were considered
and rotation and inversion mechanisms of the isomerization
were explicitly evaluated. As in the not catalyzed thermal reac-
tion,47 the inversion transition states (TS1a–TS1b) were found to
be preferred.

A relaxed scan along the rotation coordinate (CNNC dihe-
dral) (see Fig. 4b) reveals a possible S0–T1–S0 mechanism
accessible by coordination of the nitrogen atom of AZO1-cis to
copper, which reveals a MLCT (metal-to-ligand charge transfer).
In turn, this implies the participation of a p* orbital of the
azobenzene allowing rotation along the N]Nwith participation
of the T1 state. At relative high torsion angles, the triplet state
becomes less energetic and this path yields a barrier of around
20 kcal mol�1. This alternative mechanism allows for the
bypassing of themore energetic inversion TS in the ground state
(30 kcal mol�1) and it should be available at room temperature.

Thus, copper coordination yields a decrease in the isomeri-
zation barrier of ca. 6 kcal mol�1 (computed barrier decreases
from 25.4 kcal mol�1 for free azobenzene to 19.4 kcal mol�1).
This relatively small decrease in the energy barrier is enough to
allow the isomerization process to occur in a few minutes
instead of some days, thus accelerating the isomerization by 4
orders of magnitude, resulting in good agreement with experi-
ments (energy difference of 8 kcal mol�1, from 23.5 kcal mol�1

for the free AZO1 to 15.6 kcal mol�1 for the copper activated
This journal is © The Royal Society of Chemistry 2019
reaction). Overall, while [Cu(CH3CN)4]PF6 is useful to increase
the reaction rate notably, there is still great potential for
improvement in the design of the energy release step. This
could be done, for instance, favoring the MLCT or stabilizing
the MECP between singlet and triplet states to increase the
efficiency of the crossing. In both cases, this could lead to
a decrease in the energy barrier and a subsequent acceleration
of the back-conversion.

Conclusions

An AZO1-MOST charging/discharging cycle has been success-
fully demonstrated, including the study of the photophysical
properties and back-conversion of the photoisomer. The AZO1
system features strong absorption (3Max@350 nm ¼ 2.6 �
104 M�1 cm�1) and long thermal half-life (36.3 h). The optical
cyclability test for a diluted solution shows no signicant
degradation in the presence of oxygen, allowing the use of AZO1
in toluene in application. For MOST application purposes, the
conversion quantum yield at 340 nm was determined to be 21%
J. Mater. Chem. A, 2019, 7, 15042–15047 | 15045

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9ta04905c


Journal of Materials Chemistry A Communication

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Ju

ne
 2

01
9.

 D
ow

nl
oa

de
d 

on
 1

/2
0/

20
26

 5
:2

2:
59

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
which is similar to the quantum yield of back-conversion of
23% at 455 nm. This implies that even diluted samples cannot
be fully converted under sunlight. The estimated maximum
energy storage efficiency for AZO1 in the neat state was calcu-
lated to be 0.88%. To experimentally demonstrate the func-
tionality of this liquid azobenzene for MOST applications,
conversion experiments were performed at different concen-
trations of AZO1 in a continuous microuidic chip system. The
measured maximum energy storage efficiency for a 5 � 10�4 M
solution can reach close to 0.009%, close to reach the theoret-
ical prediction of 0.02% at such a concentration. This, unfor-
tunately, showed a strong photo-stationary effect between AZO-
cis and AZO-trans, therefore highlights the need to further
develop the azobenzene system by altering the optical proper-
ties.51–53 Further improvement to increase quantum yields and
diminish the absorption of photoisomer, as well as differentiate
the spectral difference between cis and trans states, would be
certainly required. To estimate the theoretical heat release
temperature difference, a corrected formula was introduced to
account for the change from the diluted solution to the neat
sample. A maximum temperature increase of 226 �C can be
theoretically achieved by using eqn (2) with a correction term for
a neat MOST sample. Furthermore, two new catalysts have been
identied to allow the back-conversion of AZO1-cis and a reac-
tion centre based on a Cu(I) salt has been prepared as a proof of
concept for the energy release process. With a concentration of
5 � 10�4 M and a ow speed of 1 mL h�1, 48% of the cis state
isomer was successfully converted back to the trans state.
However, the reaction rate was still too low to be used for
macroscopic heat release purposes. Finally, a detailed theoret-
ical study of the mechanism has been proposed to further
understand the discharge process using a Cu(I) salt. This could
help in the future design of new azobenzene derivatives and the
corresponding catalysts. In addition, results shown here could
be extended to the control of azobenzene derivatives for
different applications.
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