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mobility in anatase TiO2: the role
of frustrated coordination†

Kit McColl and Furio Corà*

Anatase TiO2 is a candidate high-power electrode material in Li-ion and Na-ion batteries and has been

explored as a Mg battery cathode material, although Mg capacity in undoped anatase is limited. Here we

use hybrid-exchange density functional theory calculations to investigate the underlying factors affecting

Mg intercalation and mobility in anatase. We find that at the dilute limit, Mg ions have 5-fold coordinated

insertion sites, and activation barriers for migration are a surprisingly low 537 meV. As the concentration

of Mg inserted into the structure is increased, a cooperative distortion of the lattice occurs, contracting

the c lattice parameter. The distortion results in stable orderings of Mg ions in sites which are 6-fold

coordinated, but also results in migration barriers that exceed 1500 meV in Mg0.5TiO2 due to a collective

relaxation of the host lattice. The total increase in barrier is predominantly a result of the stabilisation of

the insertion sites, as opposed to a destabilisation of the activated sites along the migration pathway. The

insertion sites in the dilute limit can be described as frustrated, and it is this unfavourable insertion

geometry under dilute conditions that allows the Mg ions to migrate with low activation barriers. The

limited performance for Mg2+ storage can therefore be attributed to the loss of frustrated coordination

at high Mg concentration, which restricts Mg mobility and therefore capacity. Strategies to enhance the

capacity of Mg in anatase should therefore aim to inhibit the c lattice parameter contraction or

otherwise destabilise stable orderings of Mg in Mg0.5TiO2 to retain the frustrated coordination of Mg ions

at high Mg concentrations.
1 Introduction

Magnesium batteries are an alternative to those using lithium-
ion chemistry and are attractive for portable applications,
potentially offering comparative or improved specic capacities
to current Li-ion technology, and signicant advances in volu-
metric capacity.1–3 Lithium metal anodes grow dendrites upon
cycling, which ultimately lead to battery short circuiting.4 To
avoid this issue, graphite is used as an intercalation host at the
anode for Li-ion batteries, but this limits the anode volumetric
capacity to �800 mA h cm�3. Magnesium metal anodes plate
more uniformly upon cycling,5 and thus the intercalation host
can be avoided at the anode end, enabling a volumetric capacity
of 3833 mA h cm�3 for Mg metal.

Mg is heavier and less electropositive than Li, but these
decits are compensated by its divalency and the reduced
weight of a battery design that avoids the anode intercalation
host, meaning specic capacities of Mg battery systems can
approach or exceed those of Li-ion batteries using a graphite
anode.2 Magnesium is also inherently safer than lithium in
London, London, UK. E-mail: f.cora@ucl.
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a battery system, and is far more abundant and cheaper than
lithium, making it a more scalable technology for future energy
storage solutions. Issues nding Mg battery electrolytes
compatible with both electrodes remain,3 however a key
bottleneck in the development of Mg batteries is the search for
a suitable cathode material.2 Intercalation of divalent ions
presents a number of challenges compared to monovalent ions.
Multivalent cathode materials are more prone to conversion
reactions, and this is a particular issue for Mg due to the high
thermodynamic stability of MgO.2 Divalent Mg ions also expe-
rience a stronger electrostatic interaction with the anionic
framework of the cathode host than Li ions, so despite their
similar size, Mg ions typically experience signicantly higher
activation barriers for movement, leading to poor kinetics.6

Suitable cathode materials are therefore limited.
The pioneering work of Aurbach rst demonstrated that Mg

battery chemistry was possible, yet the Chevrel phase Mo6S8
cathode used offered a limited voltage.7 Since this work,
extensive experimental and computational work has investi-
gated materials that may be suitable for Mg intercalation
cathodes, oenmotivated by their known performance as Li-ion
intercalation hosts.2 One of the materials that has been the
subject of numerous studies as Li intercalation host is TiO2.8–10

Despite not offering high operating voltages, the anatase11 and
TiO2 (B)12 polymorphs of titania show good rate performance for
This journal is © The Royal Society of Chemistry 2019
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Li intercalation, making them attractive for high power appli-
cations. Anatase TiO2 has also been explored as a possible
cathodematerial for Na-ion batteries.13 As aMg-battery cathode,
intercalation to Mg0.5TiO2 provides a high theoretical capacity
of 294.5 mA h g�1. Furthermore, anatase TiO2 displays excellent
stability, and the low toxicity and high abundance of titanium
make TiO2 an attractive sustainable battery material.

Comparatively, there has been little research on TiO2 poly-
morphs as a Mg battery material. Early work by Sheha achieved
only limited capacities using an anatase cathode and a Mg
anode.14 Su et al. used a LiBH4/Mg (BH4)2/tetraglyme electrolyte
and a Mg metal anode to achieve a reversible low rate (0.2C)
capacity of 145 mA h g�1, and 85mA h g�1 at rates of 2C, with an
anatase cathode demonstrating co-intercalation of Mg and Li.15

A similar hybrid Li+/Mg2+ electrochemical setup by the same
group achieved pseudocapacitive storage of 115 mA h g�1 at 2C
using a TiO2 (B) cathode.16 Meng et al. demonstrated a revers-
ible capacity of 35 mA h g�1 in TiO2 (B) nanoakes via a double-
layer capacitive process in a Mg only arrangement. In contrast,
a Li+/Mg2+ hybrid arrangement provided a capacity of
114 mA h g�1 at 1 A g�1, but predominantly via Li intercalation
and surface pseudocapacitive charge storage, rather than Mg-
intercalation.17 Zhang et al. found that in a Mg only battery
design, electrochemical insertion of Mg was only possible up to
a stoichiometry of Mg0.1TiO2 in commercially available anatase
particles (<20 nm), giving a reversible capacity of 40 mA h g�1

aer 50 cycles.18 Koketsu et al. reported that F� and OH�

incorporation into anatase nanoparticles (�5 nm) could
enhance voltage, rate performance and capacity for Mg2+

insertion (�165 mA h g�1 at a rate of 20 mA g�1), and also allow
the reversible insertion of Al3+ ions.19 The anatase was deter-
mined to have a high concentration (�22%) of Ti4+ vacancies to
charge balance substitution of F� into O2� sites, and these sites
were identied as the origin of the improved capacity, whilst
also offering a vacancy-mediated diffusion mechanism, and
increased insertion energies.20 Li-insertion rates into this Ti-
decient system were also shown to be enhanced in a sepa-
rate work by the same group.21 Recently, Sheng et al. demon-
strated that V-doped anatase nanoparticles (�10 nm) could
sustain a capacity of 121.9 mA h g�1 at 20 mA g�1. The intro-
duction of V was predicted by calculations to provide enhanced
voltages compared to undoped TiO2. However the charge
storage was predominantly of a faradaic pseudocapacitive type,
rather than a diffusion-controlled intercalation mechanism.22

The enhanced capacity reported by Koketsu et al. suggests
that there may be doping strategies that can make anatase
a viable Mg battery cathode material. Conveniently, doped
anatase has been studied as a Li-ion battery electrode material
in previous experimental literature, and with improvements
and changes in performance noted for a range of dopants
including Ni,23 Nb,24,25 Sn,26 Fe,27 and Mo,28 providing an indi-
cation of routes to explore. However for doping strategies to be
rationally designed, the origin of the limited performance for
undoped anatase should be fully understood.

Here we employ hybrid density functional theory calcula-
tions to address this problem. We investigate the insertion
geometry of Mg, voltage and ion mobility at dilute
This journal is © The Royal Society of Chemistry 2019
concentrations. We then assess how these properties change as
further Mg is added to the structure. Finally, we discuss doping
strategies that may be suitable to enhance the limited experi-
mentally observed capacity.

2 Computational methods

First-principles calculations were performed using the periodic
density functional theory (DFT) code CRYSTAL17.29,30 Electronic
exchange and correlation were approximated using the hybrid-
exchange functional B3LYP, which is known to give accurate
estimates of the band structure of metal oxide systems with
highly correlated electrons,31 and is efficiently implemented in
the CRYSTAL code. Furthermore, hybrid functionals have been
shown to give improved accuracy over semilocal DFT for the
calculation of migration barriers for Mg ions in metal oxides.32

All-electron atom-centered Gaussian basis sets were used for all
atoms, available from the CRYSTAL online database
(www.crystal.unito.it), indicated by the following labels online:
Ti (Ti_86-411(d31)G_darco), O (O_8-411d1_cora_2005), Mg
(Mg_8-511d1G_valenzano_2006). The Coulomb and exchange
series were truncated with thresholds of 10�7, 10�7, 10�7, 10�7

and 10�14. Reciprocal space was sampled using a Pack–Mon-
khorst net,33 with a shrinking factor of IS ¼ 8 along each peri-
odic direction. The self-consistent eld (SCF) procedure was
performed up to a convergence threshold of DE ¼ 10�8 Hartree
per unit cell. Full geometry optimisations (lattice parameters
and atomic positions) were performed using the default
convergence criteria in CRYSTAL17. Grimme's semi-empirical
D3 scheme34–36 to account for the effects of dispersion was
used to give an improved structural description of anatase
(Table S1†). The average insertion energy per Mg (Eins) was
determined with reference to metallic Mg according to:
[E(MgxTiO2) � E(TiO2) � xE(Mg(s))][x]

�1. The intercalation
voltage (V) was calculated according to: �[Eins][2e]

�1, where e is
the electronic charge. The calculation of metallic Mg is unsuited
for hybrid functionals. To evaluate the energy of metallic Mg, we
calculated the energy of a single Mg2+ ion, and added the
experimentally determined energy of sublimation and the rst
and second ionisation energies: E(Mg(s)) ¼ E(Mg2+) + Esub(Mg(s))
+ Ei(1)(Mg) + Ei(2)(Mg). Activation barriers for ion migration were
determined by performing a set of constrained geometry opti-
misations, with full details of these described in the ESI.† All
calculations presented in the main text are spin-polarised, with
a ferromagnetic ordering of Ti3+ ions where applicable. A
discussion of this approximation, its validity and additional
calculations to support these results are included in the ESI.†

3 Results
3.1 Structure of anatase TiO2

Anatase TiO2 adopts a tetragonal crystal structure, space group
I41/amd, (no. 141) with crystallographic unit cell lattice param-
eters a¼ b¼ 3.7845 Å, c¼ 9.5143 Å. The structure is reproduced
to an excellent degree of accuracy by the B3LYP-D3 calculations,
with lattice parameters of a ¼ b ¼ 3.7663 Å, c ¼ 9.5733 Å and an
error on the unit cell volume of �0.3% relative to experiment.
J. Mater. Chem. A, 2019, 7, 3704–3713 | 3705
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Fig. 2 Mg insertion geometry under dilute conditions. (a) Unstable
geometry of Mg at the centre of the octahedral insertion site. (b) Stable
geometry found by displacement from the centre of the site. Ti atoms
are blue, Mg gold and O red.
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Anatase consists of distorted TiO6 octahedra, in which opposite
equatorial Ti–O bonds are displaced off their plane in the same
�z direction (Fig. 1). Each TiO6 octahedron shares two pairs of
edges in the [103] and [013] planes, and four corners with
neighbouring octahedra in the x and y directions. This frame-
work results in interstitial sites that have an octahedral envi-
ronment of O-ions surrounding them (Fig. 2a). These
octahedral interstitial sites are linked by tunnels in the x and y
directions, and by percolating pathways in the z direction.

3.2 Mg2+ insertion at dilute concentrations

To understand the behaviour of Mg in anatase at the dilute
limit, we initially investigated the introduction of a single Mg
ion into an approximately cubic 32 cation unit cell of anatase

TiO2, generated by a ð2 ffiffiffi

2
p � 2

ffiffiffi

2
p � 1Þ expansion of the crys-

tallographic cell. This construction leaves a distance of �10 Å
between each Mg ion, and corresponds to a concentration of
�Mg0.03TiO2. Insertion of Mg2+ takes place preferentially into
the octahedral hole sites,37 similar to Li and Na ions. We nd
that the Mg ion is displaced away from the symmetric centre of

the site, by 0.5 Å in the (�)z direction. This displacement is
consistent with previous investigations of Mg in anatase,37 and
similar observations for Li and Na ions in anatase.38–43

The local geometry of the Mg ion is indicated in Fig. 2. Mg–O
bond distances for Mg located in the geometric centre of the
octahedral hole are 1.90 Å in the xy plane and 2.75 Å in the z
direction. The displacement from the centre of the octahedral
hole site results in a 5-fold distorted square pyramidal coordi-
nation, with Mg–O distances of 2.055 Å to the peak of the
pyramid, and four further bonds of 1.959 Å and 1.953 Å to ions
we label O(a), and 1.939 Å and 1.935 Å to O(b). TheMg–O distance
across the octahedral centre is 3.18 Å.

The calculated intercalation energy for a single Mg ion is
�1.13 eV. This is in reasonable agreement with Koketsu et al.
who nd a value of �1.02 eV using GGA + U.19 Legrain et al. nd
the insertion energy to be �1.74 eV using GGA, which however
misrepresents electronic localisation on reduced Ti3+.37

The insertion of an Mg2+ ion introduces two electrons for
charge balance, which localise on two separate Ti ions
(Fig. S2†), reducing them formally to Ti3+, according to the
following equation (in Kröger–Vink notation):

MgðsÞ þ 2Ti�Ti/Mg
��

i þ 2Ti0Ti (1)

The Ti–O bond lengths of these reduced Ti ions are modied
(Table S2†) by a combination of electrostatic distortion due to
Fig. 1 Structure of anatase TiO2. Ti atoms are blue and O red.

3706 | J. Mater. Chem. A, 2019, 7, 3704–3713
the insertion of the positively charged Mg ion, and the electrons
localised on each Ti3+. The electronic density of states of TiO2

and Mg0.03TiO2 are indicated in Fig. S1 and S3.† The two Ti ions
reduced upon insertion of Mg result in a split double defect
state �0.8 eV below the conduction band edge.

Upon insertion of Mg to form Mg0.03TiO2, the lattice
parameters of anatase change with an expansion of the a and
b parameters by +1.4% and +0.4% respectively (where the
a direction is along the Mg–O(a) bonds). The c parameter
contracts by �0.8%.
3.3 Dening Mg2+ mobility pathways in the dilute limit

The anatase structure has tunnels extending in the x and y
directions, connecting octahedral insertion sites. Ions can
migrate along these tunnels, hopping from site to site in a zig-
zag fashion, with a jump distance of 2.36 Å between each site.
The line drawn between adjacent sites follows the shared edge
of two octahedral TiO6 units, when the structure is viewed
normal to the direction of motion (Fig. 3A). We denote these
jumps as pathway 1. Under dilute conditions, ions migrating
using this pathway can achieve only 1D mobility.

Tunnels extending in the x and y direction intersect at the
octahedral insertion sites. However since Mg ions in these sites
are displaced from the centre, this means that under dilute
conditions they only occupy a single tunnel extending in one
direction (x or y) at any moment. To move between tunnels, Mg
ions must jump across the centre of the insertion site (Fig. 3B)
which we denote as pathway 2. The hop distance for pathway 2
is 1.01 Å, which corresponds to twice the distance that the Mg
ions relax away from the centre of the site (Fig. 2). Moving
between tunnels allow ions to migrate on a 2D [001] plane.
Using an alternating combination of pathways 1 & 2, Mg ions
This journal is © The Royal Society of Chemistry 2019
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Fig. 3 Migration pathways and routes to net 2D and 3D mobility in
anatase under the conditions of dilute Mg insertion concentration. (a)
Pathway 1. (b) Pathway 2. (c) Illustration of how 1D, 2D and 3Dmobility
is achieved using a combination of pathways 1 and 2.

Paper Journal of Materials Chemistry A

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
Ja

nu
ar

y 
20

19
. D

ow
nl

oa
de

d 
on

 9
/2

1/
20

24
 1

2:
14

:0
9 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
can achieve mobility in the z direction, and thus 3D mobility is
possible. As we shall discuss later, structural changes reduce the
length of pathway 2 to zero at high Mg2+ concentrations, and 3D
mobility can be achieved directly by hops between octahedral
insertion sites, along what is effectively only pathway 1. The
activation barrier for pathway 2 (221 meV) is lower than for
pathway 1 (537 meV) under dilute Mg conditions, it is therefore
not rate limiting and for these reasons we will not discuss
pathway 2 further.
3.4 Mg2+ activation barriers at dilute concentrations

The migration energy prole along pathway 1 is indicated in
Fig. 4, as a function of path length (2.36 Å). The prole shows
a local maximum at 38% path length, which constitutes the
activated site, followed by a slight decrease that appears as
a plateau region. At 50% path length there is a metastable
intermediate site. The second half of the migration prole is
symmetric to the rst half. The activation barrier for the site at
38% path length is 537 meV, and the energy of the metastable
site at 50% path length is 506 meV.

In the metastable intermediate site the Mg ion is 6-fold
coordinated, in a distorted octahedral environment (Fig. S5†).
In the activated site the Mg ion has a similar coordination
(Fig. S6†), but with a non-linear O–Mg–O axial bond angle of
170�, and a closer proximity to the two O(a) ions it was initially
coordinated to. The difference between the geometry of the two
sites is relatively small however, resulting in the small energy
difference (31 meV). If viewed normal to the direction of
migration, the pathway the Mg ion takes in the structure is
This journal is © The Royal Society of Chemistry 2019
sinusoidal, rather than linear, and thus does not strictly follow
the line of the shared octahedral edge. Initially the Mg ion
moves towards the O-ion at the end of the Mg–O pyramid, in the
c direction, compressing the Mg–O bond to 1.914 Å (from 2.054
Å), but retaining a ve-fold coordination with a bond of 2.06 Å to
the O(b) ion along the b axis opposite to the direction of motion.
Crossing the activation barrier, the Mg ion moves in the
b direction, breaking the bond to the more distant O(b) ion, but
forming new bonds with two O(a) ions to achieve a 6-fold coor-
dination. In the plateau region, the Mg ion has 6-fold coordi-
nation, and the second half of the pathway is a reection of the
rst. The change in coordination number along the pathways at
the dilute limit is therefore 5 / 6 / 5.

The barrier of 537 meV is relatively low for Mg-ion mobility
in a cathode material, and is similar to that of Li mobility in
anatase (500 meV) under dilute conditions.44 Generally activa-
tion barriers predicted for the migration of multivalent ions are
signicantly higher than for Li migration, due to the stronger
electrostatic interactions between the multivalent ion and the
anionic framework of the cathode.2 The barrier of 537 meV
corresponds to a diffusivity (D) of �4.5 � 10�12 cm2 s�1,
assuming an Arrhenius-like activated process, D¼ va2 exp(�Em/
kT), where v is the jump frequency (z1012 s�1), a is the jump
distance (2.36 Å for anatase) and Em is the activation barrier.6

We note that such an assumption neglects any contribution
from Coulombic interactions between Mg ions and electrons
localised upon Ti3+ ions (small polarons), which are known to
contribute to limited diffusion for Li-ion cathode materials45

and may affect the mobility of Mg ions.46,47 For comparison with
anatase, the Mg diffusion barriers in the a and d polymorphs of
V2O5, which is considered one of the most promising oxides for
Mg ion battery cathodes2 are �1100 and �600 meV respec-
tively.48,49 Similarly low barriers to that of anatase, of �600–800
meV have been identied in spinel-structured oxides.50 Inter-
estingly, the migration barrier we nd in anatase TiO2 is similar
in magnitude to the lowest barrier found for Mg mobility in
layered a-MoO3 (580meV). This migration pathway in a-MoO3 is
not between the layers, but rather an intra-layer pathway that
takes a similar route along the line of shared octahedral edges,
between 5-coordinated stable sites.51 It has been estimated by
Rong et al. that for adequate battery operation, migration
barriers for ion mobility must be below �525 meV for micron-
sized particles, and �650 meV for nanoparticles.6 The barrier
for Mg diffusion in anatase under dilute conditions falls below
this limit for nano-size particles.
3.5 Mg insertion at higher concentrations

Despite the comparatively low activation barrier amongst Mg-
ion oxide cathode materials, and thus relatively high Mg diffu-
sivity that may be expected at a dilute concentration of Mg,
experimental evidence indicates that insertion of Mg into
undoped anatase is limited.19,52 The limitation could be of
a thermodynamic origin, whereby additional insertion of Mg
beyond Mg0.03TiO2 becomes thermodynamically unfavourable.
We have therefore investigated the energetics of insertion of
additional Mg into the structure. Geometry optimisations were
J. Mater. Chem. A, 2019, 7, 3704–3713 | 3707
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Fig. 4 Local geometry and energetics of the Mg ion along themigration profile under a dilute concentration of Mg. (a) Geometry of theMg ion in
the stable insertion site. (b) Energetics of the Mg ion along the migration pathway, indicating the geometry in the stable and metastable sites. (c)
Geometry of theMg ion in themetastable site at 50% path length. Amore detailed description of the local geometry of theMg ion in the activated
and metastable sites is provided in the ESI.†
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performed on all symmetry inequivalent congurations of Mg
in a (2 � 1 � 1) unit cell of MgxTiO2 between 0 < x < 0.5,
generated using the CRYSTAL code,53 and the insertion energies
per Mg calculated. We nd that the addition of Mg remains
energetically favourable (Fig. 5) up to Mg0.5TiO2. In fact as the
concentration of Mg is increased in the structure, its interca-
lation energy becomes increasingly favourable. This will be
discussed in greater detail later.

Since the thermodynamics allow additional Mg insertion, the
limited capacity observed experimentally may therefore have
a kinetic origin. In the anatase LixTiO2 system, insertion of Li leads
to a stable ordering at Li0.5TiO2 and a tetragonal to orthorhombic
distortion with increasing Li content.54 The orthorhombic distor-
tion yields signicantly reduced Li mobility,44 and insertion of Li
into bulk anatase particles is oen limited to Li0.5TiO2–Li0.6TiO2,
with phase segregation into Li-rich and Li-poor regions.38,39,44 We
therefore continue our investigation, considering whether similar
structural changes occur in the MgxTiO2 system.
3.6 Phase segregation

Fig. 6 reports the formation energies of the Mg congurations
considered in the (2 � 1 � 1) cell, calculated according to:
Fig. 5 Insertion energies per Mg for each of the symmetry inequiva-
lent configurations of MgxTiO2 (0 < x < 0.5) in a (2� 1� 1) unit cell. The
energy of the Mg0.03TiO2 cell is also included. The dotted line links the
ground state configurations at each composition and is extrapolated
to Mg0TiO2.

3708 | J. Mater. Chem. A, 2019, 7, 3704–3713
E(MgxTiO2) � xE(Mg0.5TiO2) � (0.5 � x)E(TiO2), where
E(Mg0.5TiO2) is the ground state conguration for x ¼ 0.5. The
formation energies of all congurations with 0 < x < 0.5 are
positive, indicating that intercalation of Mg proceeds via phase-
segregation, forming TiO2 and Mg0.5TiO2, rather than a solid-
solution process. The average voltage prole for Mg intercala-
tion, due to the phase-segregation behaviour, occurs as a single
plateau at 1.0 V as the concentration of Mg varies, in reasonable
agreement with the charge/discharge curve reported
experimentally.52

3.7 Structural changes upon Mg insertion

Fig. S4–S6† show the evolution of the anatase lattice parameters
for the MgxTiO2 structures as x varies in the (2 � 1 � 1) cells. As
the concentration of Mg increases, the a lattice parameter
increases from �3.7 Å to �4.2 Å. Of the structures, the most
stable are those with the greatest value of a. The b lattice
parameter also increases from �3.7 Å to �4.0 Å, but the lowest
energy structures are those with the smallest value of b. This
indicates that the structure is most stable with a high a/b ratio,
i.e. when it undergoes a tetragonal to orthorhombic distortion.
This can be conrmed by plotting the energy of each structure
Fig. 6 Calculated formation energies of MgxTiO2 structures. The
dotted line links the ground state configurations for TiO2 and
Mg0.5TiO2.

This journal is © The Royal Society of Chemistry 2019
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against its a/b ratio at each composition (0.25 < x < 0.5) (Fig. S7–
S9†). The trends show that the most stable structures have the
highest a/b ratio (i.e. have the greatest orthorhombic distor-
tion). MgxTiO2 therefore undergoes a similar structural distor-
tion to the LixTiO2 system. The distortion from TiO2 to
Mg0.5TiO2 is illustrated in Fig. 7. The structure experiences
a signicant c parameter contraction (>9%) with increasing x in
MgxTiO2. We now aim to understand how these structural
distortions affect the mobility of Mg ions.
Fig. 8 Coordination of Mg ions in the lowest energy configuration of
Mg0.5TiO2 illustrated in Fig. S13b.† Mg–O bond lengths are indicated
by arrows pointing to the bonds.
3.8 Mg2+ ordering in Mg0.5TiO2

The theoretical maximum capacity of Mg in TiO2 is 0.5 Mg ions
per formula unit (Mg0.5TiO2, with all the Ti ions reduced to
Ti3+). There are 10 symmetry unique Mg ordering congura-
tions in the (2 � 1 � 1) cell. These structures are indicated in
Fig. S13,† along with their calculated energies, relative to the
most stable conguration. The three lowest energy congura-
tions are indicated in Fig. S13a–c.† These are all structures that
contain the maximum number of Mg–Mg pairs in sites sharing
octahedral edges on the xz plane, an ordering that is also pre-
dicted to be stable in Li0.5TiO2.54
3.9 Mg2+ coordination in Mg0.5TiO2

Fig. 8 indicates the local geometry of Mg ions in the lowest
energy ordering of Mg0.5TiO2 (Fig. S13b†). Each Mg ion is 6-fold
octahedrally coordinated, with two ‘axial’ bonds of�2.15–2.26 Å
along the c axis, and two shorter (�2.00 Å) and two longer
(�2.04 Å) equatorial bonds. This contrasts with the 5-fold
coordination for Mg ions in Mg0.03TiO2 (Fig. 2). The change
from 5 to 6 fold coordination is due to the structural distortion
that occurs as the concentration of Mg is increased.

As noted earlier, not only does the structure undergo an
orthorhombic distortion, but there is also a signicant
contraction in the c lattice parameter by �10.7% (Table S3†) as
the Ti3+ ions adopt a more regular octahedral coordination. It is
this c axis contraction that allows the Mg ions to coordinate to
both O-ions along the c axis of the octahedral hole in Mg0.5TiO2.
This coordination is not possible in Mg0.03TiO2, where the
distances from the centre of the octahedral interstitial site to
the O-ions along the c axis are too long for efficient contact for
ions the size of Mg2+ and Li+. Under those conditions, the Mg2+
Fig. 7 Structural changes between TiO2 and Mg0.5TiO2, illustrated
with a (2 � 2 � 1) unit cell. The Mg0.5TiO2 ordering shown is the most
stable calculated (Fig. S13b†).

This journal is © The Royal Society of Chemistry 2019
ion relaxes towards one O-ion and is thus 5-fold coordinated
(Fig. 2). A cooperative effect at higher concentrations of Mg in
the structure is required to contract the lattice along the c axis
enough for each inserted Mg ion to be able to achieve 6-fold
coordination.

As it has been noted earlier, and indicated in Fig. 5, the
energy gained upon insertion of each Mg ion increases as the
concentration of Mg is increased. We can therefore conclude
that the 6-fold coordination of the Mg ions is more favourable
than the 5-fold coordination at the dilute limit, and it is the
structural distortion upon increasing Mg concentration that
stabilises further the inserted Mg ions. Specically it is the
contraction of the c parameter that allows the more stable 6-fold
coordination to be achieved for each Mg ion.
3.10 Mg2+ mobility in Mg0.5TiO2

To understandmobility of Mg in the fully intercalated structure,
we chose the lowest energy ordering (Fig. S13b†) as our initial
structure, and considered a 32 Ti-cation ordered cell of
Mg0.5TiO2, equivalent to the ð2 ffiffiffi

2
p � 2

ffiffiffi

2
p � 1Þ expansion of the

unit cell used for the dilute limit insertion and mobility calcu-
lations. As the maximum capacity of Mg0.5TiO2 requires only
half the insertion sites to be lled, there are vacant sites into
which Mg ions can move. From our starting geometry, there are
therefore 3 possible symmetry inequivalent pathways that Mg
ions can follow, two in the xz direction, and one in the yz
direction, indicated in Fig. S14.†

Fig. 9 indicates the activation barriers for each of these
pathways, compared with the barrier for mobility at the dilute
limit. The barriers in Mg0.5TiO2 are 2120, 1710 and 1639 meV,
for pathways (i), (ii) and (iii) respectively, the lowest of which
corresponds to �17 orders of magnitude reduction in Mg
diffusivity at room temperature, compared to Mg0.03TiO2 (537
meV), if Arrhenius-like behaviour is assumed. These signi-
cantly increased barriers are likely to be the origin of the low Mg
capacities observed experimentally. We note that ions moving
along pathway (i) hop to sites that are similar in energy to the
initial Mg position (+51 meV), whereas Mg ions moving along
pathways (ii) and (iii) reach sites that are 660 and 880 meV
higher in energy respectively than their starting positions. This
mean that Mg ions moving from less favourable sites to the
J. Mater. Chem. A, 2019, 7, 3704–3713 | 3709
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Fig. 9 Activation barriers for Mg moving along three possible
symmetry inequivalent pathways in Mg0.5TiO2. The y axes are plotted
indicating the activation barrier with respect to the most stable Mg site
in Mg0.5TiO2 (left), and the insertion energy per Mg ion (right). Path-
ways (i)–(iii) are defined in Fig. S14 of the ESI.† Also plotted for refer-
ence (against insertion energy) is the barrier for Mg moving along
pathway 1 under dilute conditions (Mg0.03TiO2), smoothed for clarity.
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stable sites will have lower barriers to overcome (�980 meV and
�650 meV for the reverse of pathways (ii) and (iii) respectively).
This behaviour will tend to favour the formation of stable Mg-
rich ordered regions, whereby Mg ions will be pinned to
stable lattice congurations and it will be difficult for Mg ions to
be extracted from these regions. These observations comple-
ment the results of the formation energy calculations (Fig. 6a),
which indicates a preference for phase segregation into TiO2

and Mg0.5TiO2 regions.
3.11 Origin of the increased barriers in Mg0.5TiO2

The migration barrier in a material is dened by the difference
in energy for the migrating ion in its stable and activated sites.
Generally for Li and Mg ion cathode materials, activation
barriers are higher in the full (i.e. fully discharged) lattice limit
by 10's to a few 100's of meV over the empty (fully charged)
lattice limit.6,46,48,55–57 The increases are usually attributed to
a relative destabilisation of the activated sites in the full lattice
limit due to structural distortions caused by intercalant incor-
poration. In anatase TiO2, the migration barrier increases for
Mg (as also identied for Li by Belak et al.44) from the empty to
the full lattice limit by over 1 eV.

As indicated in Fig. 5, Mg ions become more stabilised (i.e.
their insertion energies become more negative) as the concen-
tration of Mg in the structure is increased, and this can be
attributed to a more favourable 6 fold coordination for the Mg
ions in Mg0.5TiO2. As the Mg ions become more stabilised, the
energy difference between the insertion sites and the activated
sites increases, and so does the activation barrier.

It is instructive to consider the energetics of the Mg ions
relative to metallic Mg to provide a consistent scale of their
stability (Fig. 9, right hand y axis). In this energy frame, the
transition state energy in the Mg0.03TiO2 and Mg0.5TiO2 phases
is similar. The change in activation barrier (�1100 meV)
3710 | J. Mater. Chem. A, 2019, 7, 3704–3713
between pathway 1 in Mg0.03TiO2 and pathways (ii) and (iii) in
Mg0.5TiO2 is due mainly to the Mg stabilisation in Mg0.5TiO2 as
measured by the increased insertion energy per ion (�900 meV)
between these two concentrations. The energy of the activated
site varies by only �250 meV. Thus, for pathways (ii) and (iii) it
is the stabilisation of the insertion sites, rather than the
destabilisation of the activated sites at high Mg concentrations
that make the most substantial contribution to the increase in
activation barriers.

We also note that pathways (ii) and (iii) connect intercalation
sites of non-equal energy in Mg0.5TiO2, i.e. stable 6-coordinated
sites and less stable 5-fold coordinated sites.

The existence of stabilised and destabilised sites adjacent to
each other suggests that the distortions that result in stabili-
sation of certain sites are fairly localised. This result indicates
that if cooperative distortions of the anatase lattice that yield 6-
fold coordinated sites can be prevented, migration barriers for
Mg ions in the Mg0.5TiO2 lattice could be reduced signicantly.
This would result in higher Mg mobility at high Mg concen-
tration in anatase and allow for greater capacity.

Whilst the stabilisation of Li insertion sites has not been
explicitly addressed as the origin for the substantial increases in
activation barriers for Li moving in LixTiO2 at high Li concen-
trations,44 the displacement of Li ions from the centre of the
octahedral insertion site, structural distortions and increase in
insertion energy per Li between 0 < x < 0.5 follow the same
trends as we describe here for Mg,41,54 and we therefore suggest
the behaviour is equivalent. It follows from this that strategies
to improve Mg capacity in anatase may also be applicable for
improving Li storage capacity.
3.12 Discussion: the role of frustration

The results presented above indicate that under dilute
concentrations of Mg in anatase, the insertion sites for Mg are
effectively ‘frustrated’. The interstitial site is not a regular
octahedron, instead it is tetragonally extended along the c
direction and is too large for Mg ions to nd a favourable
coordination. They therefore achieve a frustrated 5-fold coor-
dination, and diffusion of Mg ions between frustrated sites
leads to lower activation barriers. This ceases to be the case at
higher concentrations of Mg as contraction of the c parameter
reduces the tetragonal extension along the c direction.

The use of structures in which Mg ions have ‘frustrated’ or
‘non-ideal’ coordination has been proposed as a design prin-
ciple for achieving high Mg ion mobility.6 Frustrated coordi-
nation has to date predominantly been identied as a property
of metastable polymorphs,47 such as Mn2O4 spinel.50 A further
example is the metastable tunnel bronze z-V2O5 phase, which
has been demonstrated as a viable Mg ion cathode material,58

and is predicted by DFT calculations to have low activation
barriers (620–860 meV) for Mg mobility.46 In fact it has been
suggested that insertion of multivalent ions into frustrated
coordination sites ‘almost certainly’ requires a structure that is
thermodynamically metastable.6 Whilst metastable phases like
the V2O5 tunnel bronzes may be favourable for high ion
mobility, if they are signicantly higher in energy than the
This journal is © The Royal Society of Chemistry 2019
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ground state polymorphs (a-V2O5), they may be prone to phase
transitions under repeated electrochemical cycling, or conver-
sion reactions.2

The identication of frustrated coordination for Mg ions in
anatase, and the indication of similar effect for Li-ions, thus
indicates that frustration is not a property unique to materials
that would generally be classed as metastable phases. Rutile is
the ground state polymorph of TiO2 under ambient conditions,
but the energy difference between anatase and rutile is
small.59,60 Anatase TiO2 has high thermal and chemical stability,
does not readily undergo transformation to rutile, and is not
generally considered ‘metastable’ in the same way as, for
example, chemically de-intercalated tunnel bronze structures.47

Anatase TiO2 therefore provides a stable structure in which
frustrated coordination of Mg (and Li-ions) occurs under dilute
conditions and this leads to low migration barriers for the ions.
The limitation of the anatase structure is therefore not its
stability under cycling, but the loss of frustrated coordination at
high Mg (or Li) concentrations.

Strategies to increase the electrochemical performance of
anatase as a Mg (or Li) ion cathode material should therefore
aim to retain the frustrated coordination of the Mg (Li) ions, by
inhibiting the c parameter contraction that results in stable Mg
(Li) orderings.

One route to achieve this effect could be via isovalent
substitution of larger ions than Ti4+ (i.e. Zr4+, r ¼ 0.72 Å or Hf4+,
r ¼ 0.71 Å), which would expand the anatase lattice parame-
ters.61,62 Incorporation of Nb5+ (r ¼ 0.64 Å) is also known to
cause expansion of the anatase lattice,63 and improvements
have been demonstrated for Li ion storage in Nb-doped
anatase.24,64

The isovalent substitution of V4+ (r ¼ 0.58 Å) for Ti4+ by
Sheng et al. was not found to improve intercalation capacity for
Mg in anatase, but instead offered improved pseudocapacitive
storage.22 In light of the current discussion, we speculate that
the smaller size of V4+ compared to Ti4+ does not cause lattice
expansion, and is unlikely to inhibit the distortions discussed
above.

An alternative strategy is the creation of Ti4+ vacancies that
can provide insertion sites for Mg.19,20 By providing vacancies
into which Mg can intercalate, the cation decient structure
may be resistant against the structural distortions (i.e. c
parameter contraction) that we have identied as stabilising Mg
and thus limiting mobility and capacity. The distortion arises
from Mg2+ lling the interstitial sites, whereas insertion into Ti
vacancy sites is not expected to create the same distortion. The
authors report the creation of Ti vacancies, achieved by an
anionic doping strategy, substituting F� and OH� into oxide ion
sites. An alternative method proposed to create Ti vacancies in
anatase is doping with Mo6+.28,65 Higher-valent cation doping is
a general strategy to induce structural cation vacancies,66 and
may be effective in anatase.

It is worth nothing however that the chemistry taking place
during heterovalent substitutions (Nb5+, Mo6+ into Ti4+ sites) is
not always well understood, with a complex interplay of charge
compensating defects occurring in the lattice, with possible
This journal is © The Royal Society of Chemistry 2019
clustering of vacancies in various combinations which are oen
challenging to probe experimentally or represent in models.

A rule of thumb to judge the effectiveness of doped anatase
phases towards Mg intercalation is to quantify the c/a ratio, with
high values expected to yield better resistance to loss of
structure.
4 Conclusions

We have conducted a systematic investigation of the behaviour
of Mg in anatase TiO2 using hybrid-exchange density functional
theory. The results indicate that under dilute conditions
(�Mg0.03TiO2), Mg ions adopt a frustrated 5-fold coordination,
by displacement away from the centre of the octahedral inser-
tion sites. Under these conditions, the migration barrier for
mobility of Mg ions is relatively low. As more Mg is added, the
structure is distorted from tetragonal to orthorhombic, and the
c lattice parameter contracts by up to �10%. This causes a loss
of the frustrated coordination and an increased stabilisation of
the order of �1000 meV per Mg ion. The stabilisation is due to
a more favourable 6-fold coordination, and the barriers for Mg
ions to move out of these stabilised sites are substantially
increased, by >1000 meV. The increased barriers due to stabi-
lised Mg ions are likely to constitute the origin of the limited
capacity for Mg in anatase. Results from previous theoretical
investigations suggests that the increased activation barriers for
Li in anatase occur via a similar mechanism.41,44,54 Strategies to
enhance Mg storage capacity should aim to inhibit the struc-
tural distortions that occur on Mg insertion, or otherwise
destabilise Mg insertion sites at high Mg concentrations, to
retain the frustrated coordination and facilitate high Mg
mobility. Doping strategies that may achieve these aims are
discussed, and expansion of the anatase lattice parameters with
large dopant ions, or the creation of cation vacancies in the
structure are promising routes.
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