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Droplet leaping governs microstructured surface
wetting†

Susumu Yada,a Shervin Bagheri, *a Jonas Hansson,b Minh Do-Quang,a

Fredrik Lundell,a Wouter van der Wijngaartb and Gustav Ambergac

Microstructured surfaces that control the direction of liquid transport are not only ubiquitous in nature,

but they are also central to technological processes such as fog/water harvesting, oil–water separation,

and surface lubrication. However, a fundamental understanding of the initial wetting dynamics of liquids

spreading on such surfaces is lacking. Here, we show that three regimes govern microstructured surface

wetting on short time scales: spread, stick, and contact line leaping. The latter involves establishing a

new contact line downstream of the wetting front as the liquid leaps over specific sections of the solid

surface. Experimental and numerical investigations reveal how different regimes emerge in different flow

directions during wetting of periodic asymmetrically microstructured surfaces. These insights improve

our understanding of rapid wetting in droplet impact, splashing, and wetting of vibrating surfaces and

may contribute to advances in designing structured surfaces for the mentioned applications.

1 Introduction

Natural surfaces with texture provide organisms the ability to
control liquid transport in fascinating ways. For example, lotus
leaves have hierarchically structured surfaces that ease droplet
removal.1,2 The ‘‘pitcher plant’’ Nepenthes alata has wettable
asymmetric microridges on their peristomes that make the sur-
face slippery and aid in catching insects efficiently.3,4 Ryegrass
leaves have inclined protrusions which help them to shed water
unidirectionally.5 Cacti in deserts gather water through thorns
with surface structures that collect fog effectively.6

Understanding how liquids act on non-smooth surfaces has
also become increasingly important in technological processes,
such as printing, coating, adhesion, mixing, and sorting.7 In
particular, natural surfaces have inspired the fabrication of
micro- and nanoscopic topographies where asymmetric struc-
tures are introduced to enable capillary-driven directional liquid
transport.8–10 Chu et al.8 first demonstrated that droplets can
spread unidirectionally on arrays of asymmetric nanorods. Various
applications of asymmetric-structured surfaces have been reported
since, including mixing in microreactors,11 oil–water separation,12

and transport in microfluidic channels.13

The spreading of a liquid droplet over a textured surface has thus
far been analyzed in the slow late spreading regime (E100 ms to few
seconds).8,11,14–16 The details and mechanisms of such spreading
have been described in terms of contact-line pinning,3,16 Laplace
pressure,11,16,17 and gradients in surface energy.18,19 Also, numerical
simulations have provided valuable insights into the spreading
mechanisms in the late regime.20,21 However, the rapid wetting that
precedes this late spreading is not well understood. Rapid wetting is
crucial for droplet impact on solid surfaces,22,23 or in situations
where time scales are imposed externally, such as wetting phenom-
ena in the presence of vibrations.24

Here, we theoretically, experimentally and numerically
investigate rapid wetting on microstructures. We consider the
dynamics of the leading contact line on slanted ridges in a two
dimensional plane. We elucidate how the contact line follows
the microstructures and explain and predict the effect of the
geometry on the spreading speed.

We hypothesize that three wetting regimes determine the
contact line velocity and that wetting can be understood from
the succession of these regimes as the contact line travels over the
surface (Fig. 1). The first regime, called spread, is the movement of
the contact line on a homogeneous surface with a velocity deter-
mined by surface chemistry and liquid–gas properties.25,26 The
second regime, called stick, refers to the pinning of the contact line
on surface corners, resulting in a temporarily stationary contact
line.27 Both spread and stick regimes are well understood15,27,28 in
contrast to the third phenomenon we observed and that we call
leap. Contact line leaping involves the establishment of a new
contact line downstream of the wetting front when the liquid leaps
over specific sections of the solid surface, trapping gas between the
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solid and the liquid. As the surface wets, the wetting regimes can
follow each other in any order, as illustrated in Fig. 1.

2 Experiments and methods
2.1 Experimental set-up

Spontaneous droplet spreading is recorded using a high-speed
camera (DANTEK dynamics Speedsense M) at a frame rate of
52 044 per second. A water droplet develops from a needle with
an outer diameter of 0.31 mm (Hamilton, gauge 30, point style 3)
and starts to spread spontaneously immediately after it touches a
substrate. Water is pumped by a syringe pump (Cetoni, neMESYS
1000N) at a flow rate 0.04 ml s�1. The flow rate is so small that a
static state is assumed before the droplet touches the surface. The
initial radius of the droplet R0 is determined by the distance between
the needle and the surface and fixed to 0.4 mm. The scope is
composed of 128� 128 pixels, which leads to a spatial resolution of
E8 mm. As seen in Fig. 3(c), owing to the limited spatial resolution,
the observed droplet has a finite spreading radius even before it
actually touches the substrate. In order to estimate the initial time t0

in which the droplet starts to spread, a power-law curve r = C(t� t0)g

is fitted to the time history of the observed spreading radius where
C, g, and t0 are scalar parameters. The initial time is then deter-
mined by shifting the original spreading time by t0.

2.2 Sample preparation

The microstructured surfaces are made from Ostemer 220 (Mercene
Labs, Stockholm, Sweden), a UV-curing Off-Stoichiometry-Thiol–Ene
(OSTE) resin, with excellent lithographic patterning, previously used
to create complex slanted structures.29 The samples are manufac-
tured as follows. First, a flat Ostemer layer is manufactured on a
smooth plastic film. Second, slanted Ostemer ridges are patterned
on the base layer by exposing slanted UV light through a patterned
photomask. After rinsing the surfaces in an Acetone bath to remove
uncured OSTE, surface modification is performed to hydrophilize
the surface (equilibrium contact angle ye E 501 on a flat substrate)
in order to achieve partial wetting. The surface structures are
characterized by scanning electron microscopy as shown in Fig. S1
(ESI†). The inclination of the ridges b is 601 for all the structures.

The samples used in this work are labeled as (W, P) where W and P
are the width and pitch of the ridge in micrometers, respectively
(see the inset in Fig. 3(a) for definition), and listed in Table 1.

2.3 Navier–Stokes–Cahn–Hilliard equations

The Navier–Stokes equations combined with the phase-field
approach (the Cahn–Hilliard equation) are solved to simulate the
droplet wetting on a comparable geometry to the experiments. The
incompressible Navier–Stokes equations are given by

rðCÞDu

Dt
¼ � 1

Re
rpþ 1

Re
rmðCÞ ruþrTu

� �
� CrfðCÞ
Ca � Cn �Re;

(1)

r�u = 0. (2)

The non-dimensional numbers characterizing the system are
the capillary number Ca = mU/s, the Reynolds number Re = rUL/m,
and the Cahn number Cn = e/L. Here, r and m are the density and
viscosity of the liquid phase, s is the surface tension of the
liquid, and e is the width of the liquid–gas interface. Moreover,
U and L are the characteristic velocity and length of the system,
respectively. The scalar C is the phase field variable, where C = 1
represents the liquid phase and C = �1 the vapor phase. The
effect of gravity is negligible since the Bond number Bo = rgL2/s
is small (E0.03 for L = 0.4 mm).

The Cahn–Hilliard equation is given by

DC

Dt
¼ 1

Pe
r2fðCÞ; (3)

where f is the chemical potential of the system defined as
f = C0(C) � Cnr2C. The Peclet number is defined as Pe = UL/D
where D is the mass diffusivity. Here, C(C) = (C + 1)2(C� 1)2/4 is
the double well function, where the minimum represents the
stable phases for gases (C = �1) and liquids (C = 1). The
boundary condition for C on a solid surface is given by30,31

�emf
@C

@t
¼ esrC � n� s cos yeð Þg0ðCÞ; (4)

where ye is the equilibrium contact angle and g(C) = 0.5 + 0.75C �
0.25C3 is a polynomial which rapidly shifts from 0 (vapor phase
C = �1) to 1 (liquid phase C = 1). The line friction parameter mf is
associated with molecular-origin energy dissipation at the moving
contact line.

Fig. 1 Spreading regimes during wetting of microstructured surfaces. Cross
section of a hypothetical structured surface (grey) as a liquid front moves
from left to right. The dashed blue lines mark the instantaneous position of
the liquid–air interface and the blue arrows indicate the movement direction
of the interface. The surface that is wetted by the liquid is marked in red. The
contact line spreads on flat and downward-sloping sections, whereas it may
stick and/or leap at sections with corners.

Table 1 Geometry and passage times for different surface structures
investigated experimentally. The sample shown in bold font is also inves-
tigated numerically. The numerical values given for width (W), pitch (P) and
height (H) are in micrometers. The last two columns show the passage
time ratio with and against inclination estimated from the experiments

Label W P H Sagainst Swith

(10, 15) 10 15 14 1.39 � 0.10 1.21 � 0.06
(10, 20) 10 20 14 1.61 � 0.15 1.30 � 0.11
(10, 30) 10 30 14 3.07 � 0.50 4.66 � 0.71
(15, 23) 15 23 14 1.30 � 0.12 1.13 � 0.07
(15, 30) 15 30 14 1.43 � 0.11 4.12 � 0.58
(15, 45) 15 45 14 3.11 � 0.67 6.3 � 1.4
(20, 30) 20 30 15 1.99 � 0.33 5.19 � 0.84
(20, 40) 20 40 17 3.77 � 0.44 5.5 � 1.7
(20, 60) 20 60 17 1.80 � 0.36 5.06 � 0.62
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2.3.1 Numerical simulations and parameters. The Navier–
Stokes–Cahn–Hilliard equations are solved using in-house software
called FemLego.30 The numerical simulations are performed in
axi-symmetric geometry. We assume symmetry along the center of
the droplet. The physical properties are chosen to be comparable to
the experiments. The characteristic density r and viscosity m are set
to the values of pure water 992 kg m�3 and 0.997 Pa s, respectively,
and the length scale L is set to 0.4 mm to match with the initial
radius of the droplet in the experiments, which leads to Re = 29 200.
The surface tension s is fixed to 0.073 N m�1, which gives a
capillary speed s/m = 73 m s�1 employed as the characteristic
velocity U, and leads to Ca = 1. The mass diffusivity D in the Peclet
number is set to 5.7 � 10�6 m2 s�1, which leads to Pe = 5120. The
interface thickness e is set to 2 mm, and results in Cn = 5 � 10�3.
The interface is thicker than the actual physical interface but it is
sufficiently thin compared to the structures in order not to influ-
ence the simulated results. The choices of the Peclet number and
the Cahn number do not influence the results for sufficiently thin
interface and small mass diffusivity.32 The line friction parameter
mf is obtained by fitting25,31 the simulated spreading radius with the
experiments on a smooth substrate and found to be mf = 0.10 Pa s
(see Fig. S2, ESI†).

3 Wetting mechanism
3.1 Wetting regimes

For wetting of structured surfaces, the combination of spread,
stick and leap that ultimately determines the contact-line speed
depends on the relation between the globally observed apparent
dynamic contact angle yg, and the corner angle of the surface,
a (Fig. 2). The former angle is the apparent angle between the
solid and the liquid–gas interface measured from the wetted side
in the vicinity of the contact line. The corner angle defines the

local corner of the surface structure that is approached by a
moving contact line (see the insets in Fig. 2). For the rapid wetting
considered here, the contact line movement is driven by Young’s
force per unit length of a contact line FY B s(cos ye � cos yg).
During spontaneous spreading, we have ye o yg o p.

Three different spreading mechanisms can be distinguished
(Fig. 2): (i) a spread-and-leap behavior of the contact line when
yg 4 a; (ii) a stick-and-leap behavior of the contact line when
yg o a � p + ye, and; (iii) continuous spreading driven by FY for
intermediate corner angles a � p + ye o yg o a. For spread-and-
leap, the moving contact line leaps from the valley to the nearest
ridge, leaving behind some dry surface. For stick-and-leap, the
contact line is held pinned33 at the corner while the liquid–air
interface above the pinning site bulges due to inertial forces. If
there exists a rise of the surface sufficiently nearby, the interface
eventually makes contact with the next rise in the texture, resulting
in a leap that leaves dry the entire valley between the pinning
position and the new contact line. For intermediate angles, where
no leaping occurs and the liquid wets the dry solid, the contact line
speed varies with the slope of the surface. In particular, a reduced
speed is expected in downward-sloping sections of the surface,
compared to flat sections, due to a reduced Young’s force FY.

3.2 Experimental and numerical observations

We experimentally investigated wetting of asymmetric ridges by
depositing a water drop of radius 0.4 mm on the surfaces and
recording the first 1.2 ms of wetting using a high-speed video
camera (Fig. 3(a)). We also numerically simulated spreading
of droplets on axisymmetric textured surfaces with the same
height, pitch and angle as in our experiments using a phase-
field approach.30,34

Fig. 3(c) shows a time sequence of a water drop spreading
on a surface with W = 20 mm, P = 60 mm, and H = 17 mm.

Fig. 2 The different combinations of spread, stick and leap depend on the globally observed apparent dynamic contact angle (yg) and the corner angle (a).
A liquid front moving due to Young’s force ascends from a valley when a o p and descends from a rise when a 4 p. As a increases from acute to obtuse
and then to reflex, a liquid front with yg may proceed by spread-and-leap, spread only and stick-leap, respectively.
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The experiments reveal the asymmetric evolution of the droplet
spreading on the structure; the contact line travels faster
against the inclination (passing five ridges in 0.5 ms) than with

the inclination (passing two ridges in 0.5 ms). Our numerical
simulations reproduce the experimental droplet shapes and the
apparent contact line velocity with respect to the spreading

Fig. 3 Liquid spreading on asymmetric periodically microstructured surfaces. (a) Schematic illustration of droplet spreading experiments. (c) Video
frames of a water droplet at different points in time after contact with the microstructured surface. The spreading distance and droplet shape become
increasingly asymmetric. The drop travels faster in the left direction (against the inclination) compared to the right direction (with the inclination). (b and d)
Instantaneous numerical snapshots of the interface (white) between the gas (blue) and the liquid (red) in the two different directions. The points A1–A5
and W1–W4 mark different fixed positions on the surface. (e and f) The measured and simulated contact line velocity along the asymmetric
microstructure in the two directions. The points A1–A5 and W1–W4 in (b, d) and (e, f) mark the same fixed positions.
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radius (see Fig. S3 and Movie S1, ESI†). This agreement between
the experiment and the numerical model allows us to rely on
the simulations for understanding the detailed contact line
movement across the textured surface.

The difference between the wetting dynamics in the two
directions results from the difference in the wetting regimes.
Fig. 3(b) shows a time sequence of the liquid–gas interface as
the droplet travels against the direction of inclination over one
ridge. Fig. 3(e) shows how the corresponding contact line velocity
varies during the same time interval. Note that our optical resolu-
tion leads to experimental errors in the order of 0.1 m s�1. The
fluctuations of the simulated velocities in Fig. 3(e and f) arise from
post-processing.

We observe a fast spread on ridge tips (A1 - A2), slower
spread while descending into the valley (A2 - A3), and finally
an increase in speed with a spread-and-leap to the next ridge
(A3 - A4 - A5). During the process of moving from A1 to A5,
the simulation-predicted apparent dynamic contact angle is in
the range of yg = 1401 to yg = 1201 (Fig. S4, ESI†), whereas the
corner angles encountered by the moving contact line have
the values a = 1801 (A1), 2401 (A2), 1201 (A3), and 601 (A4–A5). The
velocity between A3–A4 is lower than that between A1–A2, since
the contact line must be accelerated to reach spreading velocity
on a flat surface. Thus, our numerical observations conform with
the kinematic map in Fig. 2, explaining the mechanisms behind
the peaks and troughs of the contact line speed.

Fig. 3(d) shows spreading in the direction with the inclination
over one periodic structure. The corresponding contact line speed
(Fig. 3(f)) has a distinct slow–fast–slow spreading velocity going
from point W1 to point W4. This velocity profile corresponds to
the stick-and-leap (W1 - W2) at the corner W1, followed by fast
spread on the flat top of the ridge (W2 - W3) and then again
followed by the stick-and-leap (W3 - W4). As the liquid front
moves from W1 to W3, the apparent dynamic contact angle varies
from yg = 1601 to yg = 1301 (Fig. S4, ESI†). The stick-and-leap
follows from yg o a � p + ye = 1701 at the corners W1 and W3.

Further insight into the contact-line speed can be obtained
by characterizing the driving and resisting forces during initial
wetting. The Young’s force driving the contact line can be
balanced by an inertial force FI B rUflat

2R or a contact line
friction force Ff B mf Uflat, where Uflat is a characteristic contact
line speed on a smooth surface. The contact line friction is
related to non-hydrodynamic energy dissipation at the contact
line, connected to molecular scale processes represented by the
line friction parameter, mf.

30,35 The viscous resistance asso-
ciated with bulk liquid viscosity (m) can be neglected in the
early stages of wetting since mf c m.26

The Ohnesorge number based on the line friction parameter,
Ohf ¼ mf=

ffiffiffiffiffiffiffiffiffiffiffi
srR0

p
, expresses the relative importance of line fric-

tion and fluid inertia. For a water droplet of radius R0 = 0.4 mm,
Ohf E 0.6, where we computed the contact line friction to
mf = 0.10 Pa s by combining experiments and numerical simula-
tions (see Section 2 and Fig. S2, ESI† for details). Since Ohf is of
order one, both inertia and contact line friction may be involved
in resisting the spreading. However, they play very different roles
during spread-and-leap compared to stick-and-leap. As we will

show in the following, in the former regime line friction dom-
inates, whereas, in the latter, inertial forces determine the contact-
line speed.

4 Influence of the pitch on spreading
speed
4.1 Passage time ratio

Fig. 4(a) shows the experimental spreading radius evolution in
the direction against the inclination for surfaces with different
widths (W) and pitches (P). We observe that the spread on
structured surfaces is always slower compared to that on a
smooth surface (solid line). To characterize the spread-and-leap
regime quantitatively, we define the passage time ratio,

S ¼ Ts

Tflat
: (5)

where Ts and Tflat correspond to the liquid front travel time over
the distance P on structured surfaces and smooth surfaces,
respectively. The large values of S thus indicate slow spreading
on structured surfaces compared to smooth surfaces. Fig. 4(b)
shows that passage time S increases nearly by a factor three when
the pitch is increased from 15 mm to 30 mm for W = 10 mm. A
similar increase in S is also observed for W = 15 mm. However, for
wider structures W = 20 mm (Fig. 4(b)), the same rapid increase is
observed when the pitch is increased from 30 mm to 40 mm, but the
passage time reduces for a very large pitch (60 mm). Fig. 4(c) shows
how the experimental spreading radius evolves in the direction
with the inclination for surfaces with a different pitch. Compared
to the smooth surface, we observe a slow spreading, which rapidly
decreases with the pitch. From the corresponding passage times
S (symbols in Fig. 4(d)), S increases monotonically for small P and
saturates to S B 6 for a large P. We note that the travel time can be
a factor five higher compared to a smooth surface, and thus also
significantly larger compared to the spread-and-leap regime con-
sidered in the previous section (cf. Fig. 4(b and d)).

4.2 Model and scaling analysis

4.2.1 A model for the spread-and-leap regime. In order to
understand and to predict the observed wetting behaviour, we
build simple models based on estimates of the relevant forces.

The non-monotonic behavior in Fig. 4(b) for W = 20 mm can
be explained by characterizing leaping over the microstructures
in more detail. For a smooth flat surface, the passage time over
a distance P can be estimated as Tflat B P/Uflat, where Uflat is
the average contact-line velocity. For a surface with ridges,
the wetted distance Ws per period can be estimated as
Ws E 2r1H + r2P + (1 � r2)W. Here, r1 and r2 represent the
wetted portions of the vertical walls of the ridge and the valley
between the ridges, respectively (see Fig. 5(a)). The time it takes
for the contact line to move a distance P is Ts B Ws/Us, where Us

is the pitch-averaged contact-line velocity. By inserting the
scaling estimates for Ts and Tflat in eqn (5), we obtain,

S � Uflat

Us
2r1

H

P
þ r2 þ 1� r2ð ÞW

P

� �
: (6)

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
N

ov
em

be
r 

20
19

. D
ow

nl
oa

de
d 

on
 7

/2
8/

20
25

 9
:3

7:
26

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9sm01854a


This journal is©The Royal Society of Chemistry 2019 Soft Matter, 2019, 15, 9528--9536 | 9533

For a very large pitch (rightmost frame in Fig. 5(a)), nearly all the
structured surface is wetted (r1 E 1 and r2 E 1); we have very
small leaping and S B 1 + 2H/P E 1. For a very small pitch
(leftmost frame in Fig. 5(a)) the entire valleys between ridges
remain dry (r1 E 0 and r2 E 0); we have maximum leaping and
S B W/P E 1. For intermediate values of the pitch P, where r1 E 1/2
and r2 E 1/2, a maximum value of the travel-time ratio S exists.

To be more quantitative, we consider the local contact
line velocity based on phase field theory. As discussed in
Section 3.1, the spreading in the direction against the inclina-
tion is in spread-and-leap regime. In this regime, we assume
that Young’s force is driving the contact line and the line
friction is the resistive force. Assuming that wetting resistance
for spread-and-leap is dominated by line friction, we can
develop a theoretical model of the contact-line velocity based
on the Navier–Stokes–Cahn–Hilliard equations,36,37

Ucl;i ¼
s
mf

3

2
ffiffiffi
2
p cos ye � cos yl;i

sin yl;i
: (7)

The wetted part of the ridged surface is divided into i = 1,. . .,N
smooth sections. Here, yl,i in eqn (7) is the local dynamic contact

angle formed between the liquid interface and the ith section of
the structured surface. We assume that eqn (7) is a valid model of
the liquid front at any surface point.36,37 Considering the local
dynamic contact angle and velocity, we sum up the time to pass
sections i = 1,. . .,N

Ts ¼
XN
i¼1

Li=Ucl;i ¼
X
i

2
ffiffiffi
2
p

mf
3s

Li sin yl;i
cos ye � cos yl;i

; (8)

and

S ¼ Ts=Tflat ¼
X
i

Li sin yl;i
cos yeq � cos yl;i

� �
cos yeq � cos yg

L sin yg
; (9)

where yl,i, Ucl,i and Li are the local dynamic contact angle, the
contact line velocity, and the length of section i respectively, and yg

is the global apparent dynamic contact angle. The above effective
spreading model is similar to that used by Lee et al.37 Compared to
the sawtooth geometries analyzed by Lee et al.,37 the geometry
studied here is more complicated as it includes backward facing
sections and sharper angles. The present model accounts for
the backward facing part of the structure. The droplet interface
is assumed to be linear with a constant angle yg, and the surface

Fig. 4 (a) The spreading radius versus time during wetting for microstructures of widths W = 10 mm (blue), W = 15 mm (red) and W = 20 mm (green) at
three different pitches in the direction against the inclination. The solid line represents the spreading radius of the smooth surface. The spreading radii are
averaged over 5 experimental realizations. (b) The passage time ratio S in the direction against the inclination as a function of surface pitch. The symbols
are estimated from the wetting experiments shown in (a). (c) The spreading radius in the direction with the inclination for width W = 10 mm (blue),
W = 15 mm (red) and W = 20 mm (green) at three different pitches. (d) The passage time ratio S in the direction with the inclination as a function of surface
pitch. The symbols are estimated from the wetting experiments shown in (c). Error bars in (b) and (d) indicate standard deviations.
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after the leap point is assumed to be not wetted. The wetted area is
colored red in Fig. 5(a).

Fig. 5(b) shows the dependence of S on the pitch obtained
from the model for three different local dynamic contact angles.
We observe that the model captures the trend of the resistance
due to surface texture relatively well, confirming that line-friction
is the dominating physical resistance for the spreading. The
spread-and-leap model explains the – perhaps counter-intuitive –
fast spreading for small pitch. Without taking into account the
leaping, a spreading model where all solid is wetted will over-
estimate S significantly (Fig. 5(b)). The model also predicts the
pitch that gives the maximum S, Ppeak. For W = 10 mm, Ppeak is
32 mm, for W = 15 mm, Ppeak is 39 mm and for W = 20 mm (obtained
assuming yg = 1351) Ppeak is 43 mm. The estimate of Ppeak explains
why the non-monotonic behaviour is observed only for W =
20 mm. For W = 10 mm and 15 mm, each P is below Ppeak. However
for W = 20 mm, Ppeak is close to the intermediate pitch 40 mm, and
therefore the non-monotonic behavior is observed. The existence
of the peak for surfaces W = 10 mm and W = 15 mm can be
confirmed from two observations: (i) S 4 1 for small values of
the pitch (Fig. 4(b)) and (ii) S - 1 with increasing pitch (since an
extremely large pitch is approximately a smooth surface, S E 1).

4.3 Scaling analysis for the stick-and-leap regime

The spreading in the direction with the inclination is in the
stick-and-leap regime. The contact line travels on the tip of
the ridges and is pinned on the corner intermittently, and the
interface bulges by the liquid inertia until it makes a new contact
with the next structure. To understand the role of pinning, we
perform a simple scaling analysis. In the direction with the
inclination, Young’s force is balanced both by inertia and line
friction. Here, Young’s force accelerates the spreading motion
when the contact line is pulled over the structure (W2 - W3 in
Fig. 3(f)) and then adds to the droplet inertia. When the contact
line reaches the acute corner at W3, it is momentarily pinned
there. The contact line remains pinned until the inertia in the
droplet brings the local dynamic contact angle out of equili-
brium such that the droplet interface can make contact with the
solid in the forward direction. Here, we note that the change of
dynamic contact angle is driven by the inertial force, since the
contact line is pinned at the corner and other forces are required
to move the interface outwards. Therefore, we assume that the
interface is driven by the inertia of the droplet and do not take
the influence of the dynamic contact angle into consideration.

Assuming the work done by Young’s force at the contact line
(F B 2pR0s) is distributed as kinetic energy over a whole droplet
during the spreading on the top of the ridge, we have

2pR0sW �
4

3
prR0

3U2; (10)

and

U �
ffiffiffi
3
p

R0

ffiffiffiffiffiffiffiffi
sW
r

s
; (11)

where R0 is the initial radius of the droplet, W is the width of the
ridge, L is the space between the ridges, and U is a characteristic

Fig. 5 (a) Sketches illustrating wetting situation in the direction against
the inclination for small (left, r1 E r2 E 0), intermediate (center, r1 E 1/2,
r2 E 0) and large (right, r1 E 1/2, r2 E 1) pitch. The wetted sections are
colored red. (b) The passage time ratio S in the direction against the
inclination based on eqn (9) for W = 10 mm as a function of surface pitch.
The blue lines correspond to S obtain from the theoretical model for
different apparent dynamic contact angles (yg = 1251, 1351, and 1451). The
black line corresponds to passage times S that would exist without
leaping, i.e. assuming that the structured surface is wetted everywhere.
Without leaping, spreading becomes very slow for a small pitch, which
contradicts the experimental observations where leaping will significantly
increase the spreading speed. (c) Sketches illustrating the wetting situa-
tion in the direction with the inclination for small (left) and large (right)
pitches. (d) The passage time ratio S in the direction with the inclination
based on eqn (13) for surface ridges of different widths as a function of
surface pitch.
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velocity for inertia. The prefactor
ffiffiffi
3
p

in eqn (11) can be neglected
for simplicity.

Based on this physical insight as depicted in Fig. 5(c), we can
model the passage time for stick-and-leap as

Ts �
mfW
s
þ ðP�WÞR0ffiffiffiffiffiffiffiffiffiffiffiffiffi

sW=r
p : (12)

Here, the first term quantifies the balance between Young’s
force and line friction, i.e., the travel time for the interface to
move over the top of the ridge of width W. The second term
quantifies the pinning time, i.e., the time needed for inertia to
push the interface to the next ridge, leaping the distance P �W.
Recalling that Tflat B P/Uflat E Pmf/s, we can formulate the
passage time S as

S ¼W

P
þ 1

Ohf

ffiffiffiffiffiffi
R0

W

r
ðP�WÞ

P
: (13)

We observe that the second term dominates when inertia is
much larger than the line friction (Ohf { 1). For P c W, S in

eqn (13) saturates to the constant value 1=Ohf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R0=W

p
. In our

scaling analysis, we have assumed that this saturation value is
reached when the liquid–gas interface remains pinned at the
acute corner infinitely long.

Fig. 5(d) presents S obtained from eqn (13) for different ridge
widths. We observe that the scaling estimates for stick-and-slip
correctly capture the trend of increasing passage time with
increasing pitch. The scaling analysis shows that inertia plays
a central role in the stick-and-leap regime, in contrast to spread-
and-leap in the direction against inclination. The surface energy
is converted to the kinetic energy of the droplet (Binertia) while
the contact line spreads on the top of the ridge, and inertia
drives the liquid front to reach the next rise of the surface during
the stick-and-leap at the corners (W2 in Fig. 3(f)).

We note that the advancement of the contact line is primar-
ily determined by the line friction and the geometrical details of
the structure when moving against the inclination, but that it is
inertial when moving with the inclination.

5 Conclusions

We have presented a comprehensive study of rapid wetting on
complex asymmetric microstructures. We identified three wet-
ting regimes, denoted as spread, stick, and leap. By coordinated
simulations and experiments we can follow the passage of the
contact line over the microstructure in detail and formulate a
model and scaling estimates that explain how the geometrical
features determine the macroscopic wetting speed. We showed
that when wetting proceeds against the inclination of the ridges, a
spread-and-leap behavior underpins the wetting and the driving
Young’s force is primarily balanced by the contact line friction. In
contrast, when the spreading direction is with the inclination, a
stick-and-leap behavior is observed, and it is the liquid inertia
that limits the wetting speed. Our experiments and theory show
that the leaping phenomenon plays a central role in increasing the
spreading speed compared to a surface textured without leaping.

We believe that this newly identified spreading mechanism forms
the foundation to design surface structures for controlling wetting
in realistic unsteady environments.
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