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A simulation study of aggregation mediated by
production of cohesive molecules†

Gavin Melaugh,* Davide Marenduzzo, Alexander Morozov and Rosalind J. Allen

Mechanical interactions between biological cells can be mediated by secreted products. Here, we

investigate how such a scenario could affect the cells’ collective behaviour. We show that if the

concentration field of secreted products around a cell can be considered to be in steady state, this

scenario can be mapped onto an effective attractive interaction that depends on the local cell density.

Using a field-theory approach, this density-dependent attraction gives rise to a cubic term in the

Landau–Ginzburg free energy density. In continuum field simulations this can lead to ‘‘nucleation-like’’

appearance of homogeneous clusters in the spinodal phase separation regime. Implementing the

density-dependent cohesive attraction in Brownian dynamics simulations of a particle-based model

gives rise to similar ‘‘spinodal nucleation’’ phase separation behaviour.

Introduction

Living cells can secrete a plethora of molecules that allow them
to interact with nearby cells. Secreted molecules can act as
signals affecting gene expression (as in quorum sensing1,2) or
motility (as in chemotaxis3). They can also, directly or indirectly,
affect mechanical interactions between cells. For example,
secreted proteins and polysaccharides influence cell–cell
cohesion and cell clustering4 in processes ranging from morpho-
genesis in human tissue5 to fruiting body formation in spore-
forming bacteria.6 In the assembly of bacterial biofilms on
surfaces, polymer production plays an important role in mediating
cohesive interactions.7,8 Many bacteria also form aggregates
in liquid suspension,9–11 with significant industrial12,13 and
clinical14–16 implications. For the bacterium Pseudomonas
aeruginosa, the secretion of DNA9 and polysaccharides17 have
been found to be important for aggregate formation.

A system of living cells that actively secrete a cohesion-
influencing chemical agent (be it a polymer or signal molecule)
is clearly out of equilibrium. Yet, even for out-of-equilibrium
living organisms, useful mappings can often be made to key
concepts in soft matter and statistical physics.18–27 Importantly,
the case we investigate here, in which the cohesion-inducing agent
is actively produced, is quite different to ‘‘passive’’ scenarios in
which a cohesion-inducing agent (e.g., a polymer) is added to a
system of cells or colloidal particles.24,28–32 In the latter cases,

the polymer concentration is conserved; in the case that we
consider here, the cohesive agent is constantly produced and
degraded, and hence is not conserved.

In this paper, we investigate the collective behaviour of a system
of aggregating particles secreting a cohesion-inducing agent.
We follow previous studies in active matter physics,19,21–24,26 by
considering aggregation as a phase separation process, albeit here
our focus is on cell–cell cohesion and not activity arising from
cellular motility. First, we formulate a mathematical model that
shows that a system of particles producing a cohesion-inducing
agent under steady-state conditions can be coarse-grained via an
effective attractive interaction that depends on the local particle
density. Taking a field-theory approach, this density dependence
gives rise to a cubic term in the Landau–Ginzburg free energy that
alters the thermodynamic landscape in comparison to that of a
standard, density-independent model. Computer simulations of
the Cahn–Hilliard equation also show different dynamics during
early-stage phase separation for the density-dependent versus
density-independent systems. Specifically, for the density-dependent
system we observe ‘‘nucleation-like’’ appearance of homogeneous
particle clusters in the spinodal decomposition regime. Similar
emergent behaviour arises when the density-dependent cohesion
is implemented in particle-based Brownian Dynamics simulations.

Mathematical model

To motivate the use of an effective attractive interaction to
model systems of particles secreting a cohesion-inducing agent,
we first study a simple diffusion problem. We consider the
secretion of a cohesion-inducing chemical agent by a spherical
source particle of radius d such as that depicted in Fig. 1. We
assume that the cohesion-inducing agent has diffusion constant D
and degrades at rate kd. The time evolution of its concentration
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field, c(r0,t), at radial distance r0 4 d from the centre of the source
particle is given by the following reaction–diffusion equation in
spherical coordinates

@c r0; tð Þ
@t

¼ �kdcþDr2c: (1)

We solve this equation in the steady-state by requiring that its
solution is finite at infinity, and that it satisfies the following
boundary condition

�Dqr0c|r0=d = w, (2)

where w is the flux of the cohesion-inducing agent through the
surface of the particle. The solution is then given by

cðr0Þ ¼ wd2

D

1

1þ d
ffiffiffiffiffiffiffiffiffiffiffi
kd=D

p exp �
ffiffiffiffiffiffiffiffiffiffiffi
kd=D

p
r0 � dð Þ

� �
r0

: (3)

Consider now a collection of N such sources located at
positions (r1, r2,. . .rN) in a volume V. The total concentration
of the cohesion-inducing agent at a location R, sufficiently far
away from the sources, can be approximated by

XN
i¼1

c R� rij jð Þ; (4)

where c(r0) is given by eqn (3), and we neglected interactions
between the sources, implying the dilute limit. The ensemble
average over uniformly distributed positions of the sources
finally gives

�c ¼ 1

VN

ð
dr1; . . . ; drN

XN
i¼1

c R� rij jð Þ

¼
4pd2w
� �

r
kd

ea

1þ a
;

(5)

where r = N/V is the particle number density, and a ¼ d
ffiffiffiffiffiffiffiffiffiffiffi
kd=D

p
.

The ratio a compares the timescale for the cohesion-inducing
agent to diffuse the size of the source particle, to the timescale
of its degradation, and is assumed to be small in our steady-
state regime.33 With this is mind, eqn (5) shows that the
concentration of cohesion-inducing agents is a linear function
of the particle number density r,33 and therefore we can expect
cohesive interactions, which are mediated by these agents, to
be a linear function of the local particle density (provided we
are in the regime where the agent concentration can be
considered to be in steady state). We also note that 4pd2w is
the total amount of agent being secreted through the surface
per unit time, and thus the prefactor in eqn (5) is the ratio of
the production rate to the degradation rate.

We now take a further step and assume that the cohesion-
inducing agents can be treated in a coarse-grained manner, as
an effective interaction between the particles. We suppose that
the agents produce attractive forces between the particles, and
that the degree of attraction is proportional to the local
concentration of cohesive agents. Following our analysis above
(in particular eqn (5)), this in turn implies that the degree of
attraction depends on the local density of the particles themselves.
Hence, our system can be modelled as a collection of particles
interacting via a density-dependent attractive potential.

In soft matter physics, the concept of a density-dependent
potential is not new: for example, density-dependent effective pair
potentials arise when treating polymers as soft colloids, and when
treating a two-component mixture as an effective one-component
system, as in the Asakura-Oosawa model for polymer–colloid
mixtures.34 It is well known that naive application of potentials that
depend on the global particle density can lead to problems such as a
lack of consistency between virial and compressibility routes to the
equation of state.34 This problem appears to be alleviated in the case
of interactions that depend on the local density, like those
we consider here.34,35 Moreover, our model represents a non-
equilibrium system, in which cohesive agents are continuously
produced – for such a system we would not necessarily expect
the rules of equilibrium thermodynamics to be obeyed.

We also note that in a real system of interacting biological
cells, many other factors may be at play, including motility and
cell growth and division. For the sake of simplicity, these
factors are neglected here.

Free-energy formalism

We consider the aggregation of our agent-secreting particles as a
phase separation process, in which a homogeneous suspension of
particles come together to form condensed phase regions of higher
density (aggregates). We address this via a Landau–Ginzburg-like
free energy formalism.36 We first review this formalism for
particles interacting via density-independent interactions, then
discuss how it changes when the interaction depends on the
local particle density.

Density-independent interactions. The canonical Landau–
Ginzburg free energy density is usually expressed as an expansion
of an order parameter field, x, about some critical value xc.

Fig. 1 Schematic illustration of cohesion-inducing agents (red disks)
emanating from a source particle of radius d (green). At the particle’s
surface, the flux of the cohesion-inducing agent is fixed according to
eqn (2); this boundary condition imposes a diffusive flux of cohesive agent
away from the source.
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For the purposes of this work, x is a measure of the local
particle density, defined such that xc = 0. The free energy
density can then be expressed as

f ðxðxÞÞ ¼ a

2
x2 þ c

4
x4 þ k

2
rxð Þ2: (6)

In Landau–Ginzburg theory, the phenomenological coefficients
a and c often depend on the temperature. The coefficient a, which
is a function of the deviation of the system temperature and the
critical temperature (T � Tc), is the critical parameter that governs
the transition between the disordered and ordered states. In our
model, however, we will not consider this temperature dependence
explicitly. Rather, in our Landau-like free energy density, eqn (6),
we consider the x2 term as an effective two-body interaction in
which the critical parameter a governs the transition between
the disordered state in which entropic/repulsive interactions
dominate, and the ordered state in which enthalpic/cohesive
interactions dominate (Fig. 2(a)). Thus in our model a encapsulates
a tradeoff between repulsive (c) and cohesive (u) contributions,
such that a = u� c (analogous to the quadratic coefficient in the

Bragg–Williams approximation for the Ising model37). We fix c
arbitrarily to �0.05 so that the phase transition is governed by
the value of u, which represents the strength of the cohesive
interactions. The quartic term in eqn (6) ensures that the
equilibrium state has a bounded value of x, and thus must have
a positive coefficient c 4 0. The square gradient term imposes a
free energy cost for any non-uniformity in x, and thus k, which is
related to the surface tension, must be positive. Note that we
omit a positive cubic term in eqn (6), which is allowed by
symmetry but would not affect our results, to facilitate numer-
ical comparison to the density-dependent case described below.

For positive values of the parameter a, the free energy
density, eqn (6), has a single minimum at x = 0. In contrast,

for negative values of a, eqn (6) has two minima at �
ffiffiffiffiffiffiffiffiffiffi
c=2a

p
. For

the model represented by eqn (6) to be physically realistic, the
condition of positive density, x Z 0, has to be imposed
throughout, ruling out any equilibrium phase with x o 0.
Fig. 2(a) shows the homogeneous part of the free energy density
(eqn (6)); the region shaded red is inaccessible because it does
not meet the condition xZ 0. The continuous transition from a

Fig. 2 Homogeneous part of the Landau–Ginzburg free energy density and the associated phase diagrams. (a) Free energy density, f (x), for various
values of the critical parameter, a, in the density-independent system (eqn (6)). Note that the point x = 0 undergoes a continuous transition from a
minimum to a maximum as a decreases through a = 0. Thus, this free energy density would produce a second-order phase transition in a system where
the order parameter was not globally conserved. (b) Free energy density, f (x), for various values of the critical parameter, b, in the density-dependent
system (eqn (11)). Note the emergence of a secondary minimum at x Z 0 as b decreases. Upon decreasing through b B �0.237, where two equal free
energy minima appear, the system would undergo a first-order phase transition if the order parameter was not globally conserved. (c and d) Phase
diagrams generated by applying the common-tangent construction to the density-independent (c) and density-dependent (d) free energy profiles (see
the ESI† for details). The black solid and dashed lines denote the binodal and spinodal coexistence lines respectively. Red arrows represent constant
density quenches to the points (x = 0.07, a = �1.0, and x = 0.07, b = �0.5) within the coexistence regions of (c) and (d) respectively, as discussed in the
text. Green arrows represent constant density quenches to the points (x = 0.3, a =�1.0, and x = 0.3, b =�0.5) within the coexistence regions of (c) and (d)
respectively.
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state whereby x = 0 is the global minimum of the free energy
density to a state where the global minimum is a positive finite

value, x ¼
ffiffiffiffiffiffiffiffiffiffi
c=2a

p
, is a signature of the fact that this free energy

density would produce a second-order phase transition in a
system where the order parameter is not globally conserved.

Density-dependent interactions. For particles that secrete a
cohesion-inducing agent, we expect the cohesive interactions
between particles to increase linearly with the local particle
density (eqn (1)–(5)). If we consider the local particle density, x,
in our Landau construction to be proportional to the density, r,
in eqn (5), then we can express the attractive (enthalpic)
parameter, u, as

u p c(x) = Kx, (7)

where K is proportional to the ratio of the production and
degradation rate (4pd2w/kd) in eqn (5). More specifically, we
choose to write

u ¼ 2

3
u0Kx; (8)

where we have introduced an arbitrary (constant) prefactor, u0,
to ensure the correct units of energy per unit volume (or area in
2D), and the factor of 2/3 ensures that the resulting free energy
density will have a factor of 1/3 in the cubic term as standard.
Substituting eqn (8) into the standard free-energy density
expression, eqn (6), and using a = u � c, gives

f ðxðxÞÞ ¼ 1

2

2

3
u0Kx� c

� �
x2 þ c

4
x4 þ k

2
rxð Þ2: (9)

Expanding the first term in eqn (9) gives

f ðxðxÞÞ ¼ �c
2
x2 þ 1

3
u0Kx3 þ c

4
x4 þ k

2
rxð Þ2: (10)

Defining a new parameter b = u0K allows eqn (10) to be
written as

f ðxðxÞÞ ¼ �c
2
x2 þ b

3
x3 þ c

4
x4 þ k

2
rxð Þ2; (11)

and we fix c = �0.05 as before. We now have a different
parameter, the coefficient b of the cubic term, that controls
the phase transition. Fig. 2(b) shows the homogeneous part of
the free energy density, eqn (11); the region shaded red is
disallowed because x o 0. In this system, a free energy barrier
emerges at low particle density x as the critical parameter b
decreases, and gives rise to the region of metastability at low
density that appears in the phase diagram of Fig. 2(d). This
system therefore shows different physics to the density-independent
one as the phase transition resulting from a decrease in b through
its critical value, bc, is discontinuous; this would correspond to a
first-order transition in systems with non-conserved order para-
meter (i.e., model A38) and is analogous to the isotropic–nematic
transition in liquid crystals.39

In our model, particles are not created or removed (since we
neglect cell growth or death), and therefore the density must be
globally conserved. To minimise the free-energy density subject
to this constraint, we apply the common-tangent construction
to the homogeneous part of the free energy densities, eqn (6)

and (11), to generate the density-independent and density-
dependent phase diagrams shown in Fig. 2(c) and (d) respectively
(see the ESI† for details). Importantly, the cubic term in the density-
dependent system gives rise to a region of metastability (black
dashed line) at small values of x that is absent in the density-
independent system.

Field simulations

To determine the effects of the altered phase diagram on phase
separation dynamics, we performed 2-dimensional numerical
simulations of the density-independent and density-dependent
models defined by eqn (6) and (11), to assess the effect of the
free-energy barrier that emerges from the cubic term in the
density-dependent case. Since x is a conserved order parameter
(i.e.,

Ð
Axdx ¼ x0A, where x0 is the overall system density and A

is the total area), the phase-separation dynamics of the two
systems can be modelled using the Cahn–Hilliard equation40

@xðx; tÞ
@t

¼ mr2 d
dxðxÞ

ð
A

f ðxðxÞÞdx
� �

þr � Jr: (12)

In eqn (12), m is the mobility, the term in brackets is the chemical
potential, and Jr is a random flux which is spatially and temporally
uncorrelated, i.e., hJr(x,t)i = 0 and Jr;aðx; tÞ � Jr;bðx; t 0Þ

� �
¼

Lxda;bdðx� x0Þdðt� t 0Þ, with a,b = x, y. For simplicity, both
m and the random noise strength L were kept constant, at
m = 0.01 and L = 0.1.41 Eqn (12) was solved on a 256 � 256 grid
using standard finite difference simulations, with periodic
boundary conditions.

Low-density quench. We first simulated the effect of quench-
ing the system at low density (x = 0.07) from the homogeneous
phase into the phase-separated region of the phase diagram.
For the density-independent case, this corresponds to decreasing
the parameter a as shown by the red arrow in Fig. 2(c) (a 4 0 -

a = �1.0). Since the system is quenched into the spinodal region
of the phase diagram (Fig. 2(c)), we expect phase separation to
occur via spinodal decomposition (a consequence of the negative
curvature of the free energy function at x = 0.07 in Fig. 3(a)).
Fig. 4(a)–(c) shows that this is indeed the case: the low
density and high density phases separate spontaneously (see also
Movie S1 in ESI†).

We also performed a similar quench for the density-dependent
case. Here the parameter b was decreased as shown by the red
arrow in Fig. 2(d) (b 4 0 - b = �0.5), such that the resulting
condensed phase density, xcp B 2, was similar to that of the
density-independent system. In this case, the system is quenched
into the low-density metastable region of the phase diagram
(which does not exist for the density-independent case), and
therefore we expect phase separation to occur via nucleation,
requiring a large enough density fluctuation to overcome the
free-energy barrier (red curve Fig. 3(a)). Indeed, the snapshots in
Fig. 4(d)–(f) are consistent with nucleation: we observe the
formation of a single aggregate that grows larger with time
(see also Movie S2 in ESI†).

Higher-density quench. Next, we simulated a quench at the
higher density of x = 0.3, which lies to the right of the free
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energy barrier in the density-dependent system (Fig. 3(b)). At
this value of x, both the density-dependent and density-
independent systems are quenched into the spinodal part of
the phase diagram (green arrows in Fig. 2(c) and (d)). Let us
first focus on the density-dependent case, for which the quench
was performed from a homogeneous density at b 4 0 to
b = �0.5. Fig. 5(d) shows a snapshot of the system, taken at
time t = 2.5 � 105 simulation units (SU) following the quench. It
is clear that phase separation does indeed proceed via spinodal
decomposition (see also Movie S3 in ESI†), with many aggregates
forming spontaneously. Fig. 5(a) (black line) plots the distribution of
density values at this same time point; the distribution is clearly
bimodal, with distinct peaks corresponding to the condensed and
non-condensed phases.

We would like to know whether phase separation in the
spinodal region differs intrinsically between the density-dependent
and density-independent scenarios. To test this, we performed a
series of quenches in the density-independent case, for x = 0.3, a 4
0 initially, and a range of final a values (�0.1,�0.2, �0.3,. . .,�1.0;
dark green points along the green line in Fig. 2(c)). The rationale
for performing a range of simulations was that the density-
dependent simulation effectively samples a range of u values (since
u = 2/3u0Kx); thus many values of a should be sampled in the
density-independent system in order to compare with the density-
dependent case. Fig. 5(b) and (c) show snapshots of these simula-
tions, for a =�0.2 and a =�1.0 respectively, taken at time t = 2.5�
105 SU following the quench. Clearly, the spinodal decomposition
process is affected by the value of a: a more negative value of a
produces a more rapid contraction of the early-stage elongated
structures into the later-stage rounded clusters (see also
Movie S4 (a = �0.2) and S5 (a = �1.0) in ESI†). The coloured lines
in Fig. 5(a) show the distribution of density values at this same
time point, for each of the density-independent simulations.

Fig. 3 Free-energy governing low and high density quenches in the
density-dependent and -independent systems. (a) Free energy densities
of the density dependent system, b = �0.5, and its density-independent
counterpart with a = �1.0. There is a small free energy barrier in the
density-dependent system at small x (red curve). The black vertical line
corresponds to the lower quench density, x = 0.07, which lies to the left of
the barrier. Note that there is no barrier in the density-dependent case
(blue curve). (b) The barrier is not evident when the free energy is plotted
over larger x values. The black vertical line at x = 0.3 (higher quench
density) lies to the right of the barrier in the density-dependent system.
It provides a guide with which to visualise the curvature at the
global density x0. The curvature (second derivative) of the free energy
density at x0 is �0.1825 in the density-dependent case, and �0.9325 for
the density-independent case: i.e., it is less negative in the density-
dependent system.

Fig. 4 The time evolution of the density-independent (a–c) and -dependent (d–f) systems following a quench highlights the effect of the free energy
barrier at low density shown in Fig. 3. (a) Density-independent, x0 = 0.07, a = �1.0, at t = 0 SU. (b) Density-independent, x0 = 0.07, a = �1.0, at t = 250 SU.
(c) Density-independent, x0 = 0.07, a = �1.0, at t = 47 500 SU. (d) Density-independent, x0 = 0.07, b = �0.5, at t = 0 SU. (e) Density-independent,
x0 = 0.07, b = �0.5, at t = 250 SU. (f) Density-independent, x0 = 0.07, b = �0.5, at t = 47 500 SU.
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These distributions are also bimodal, with a gas-phase peak at
x B 0.07 and a condensed-phase peak at a value xcp that
increases with decreasing a.

Comparing the density distributions in Fig. 5(a) between the
density-dependent and density-independent cases (black vs.
coloured lines), we see a notable difference: aggregate formation
appears to be hindered in the density-dependent system.
Specifically for the density-dependent case, the gas phase peak
is larger, and the condensed phase peak is smaller. This
points to a higher fraction of the gas phase coexisting with
the condensed-phase aggregates. This affects the aggregate size
distribution in the condensed phase: comparing for example
Fig. 5(c) and (d), the aggregates in the density-dependent
simulation (Fig. 5(d)) appear smaller and more narrowly distrib-
uted in size. This is confirmed by the aggregate size distributions
shown in Fig. 6. We also observe that density-dependence gives
rise to aggregates with more diffuse interfaces. These results
suggest that the existence of the low-density metastable region
(Fig. 2(d)) can affect the phase separation dynamics even upon
quenching into the spinodal region. Specifically, local density
fluctuations can bring the system locally into the low-density
metastable region, where there is a free energy barrier to phase
separation.

Time to phase separate. The driving force for spinodal decom-
position can be measured by the effective diffusion coefficient

Deff, which is related to the curvature of the free energy density at
the global density:42

Deff ¼ m
@2f

@x2
: (13)

Fig. 3(b) shows that this curvature is significantly less negative
in the density-dependent case than the density-independent case
(comparing (x = 0.3, b =�0.5) and (x = 0.3, a =�1.0)). We therefore
expect spinodal decomposition to happen more slowly for the
density-dependent case. Indeed, Fig. 7(a) shows that this is the
case; here we plot the maximum density xmax in our simulations as
a function of time following the quench to (x = 0.3, b = �0.5) or
(x = 0.3, a = �1.0) for the density-dependent and -independent
cases respectively. We can also measure the time taken to reach
the condensed phase density xcp, which is B1.75 in both cases:
this time is indeed much shorter for the density-independent
simulation (tps B 550 SU versus tps B 3750 SU in the density-
dependent case); see also Movies S6 (density-independent) and S7
(density-dependent) in ESI.† From Fig. 7(b), which shows
representative density distributions at tps of the density-
dependent (B3750 SU) and -independent systems (B550 SU),
we see that the density-dependent system contains a much
larger proportion of the noncondensed phase at this early stage.

Spatial structure during phase separation. The length scale
of the condensed phase structures formed during spinodal
decomposition is controlled by the wavevector q at which the
amplification factor

RðqÞ ¼ �Deffq
2 1þ 2kq2

@2f

@x2

0
BB@

1
CCA; (14)

Fig. 5 Field simulations. (a) Probability distribution, P(x), of the order
parameter x, at t = 2.5 � 105 SU, for the density-dependent system (black
curve), and the density-independent systems (coloured curves) at various
values of the critical parameter a. The distributions shown were generated
from one simulation run; distributions generated from repeated simulations
showed no discernible differences (data not shown). (b) and (c) representative
snapshots at t = 2.5 � 105 SU of the density-independent system with
a = �0.2 and a = �1.0 respectively, undergoing phase separation.
(d) Representative snapshot at t = 2.5 � 105 SU of the density-
dependent system with b = �0.5, undergoing phase separation. It is
reasonable to compare panels (c) and (d) since the density-independent
system with a = �1.0 has a similar condensed phase density, xcp B 1.75, as
the density-dependent system with b = �0.5. In all snapshots, the colour
bar indicates the density.

Fig. 6 Field simulations. Aggregate size distributions for the density-
dependent (red) and -independent (blue) systems computed at trun = 2.5 �
105 SU. The distributions are normalised such that they represent the prob-
ability that a given pixel belongs to an aggregate of size A. All distributions were
generated from 5 final configurations at t = 2.5 � 105 SU, produced in
independent replicate simulations. The construction of these distributions is
described in more detail in the ESI.†
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is maximal.42 Eqn (14) shows that R(q) depends on the curvature
of the free energy density; its maximum occurs at a smaller

q-value in the density-dependent case than in the density-
independent case (Fig. S12(a) (ESI†), comparing (x = 0.3, b =
�0.5) and (x = 0.3, a = �1.0)). We therefore expect to see larger
domains during spinodal decomposition for the density-
dependent system. Indeed, Fig. 8 shows that there is a clear
difference in the spatial structures that form during phase
separation in the two systems. In the density-independent
system, narrow elongated structures form that span the entire
system before breaking up (Fig. 8(a)–(c)). In the density-
dependent system, however, these elongated structures do not
form; phase separation proceeds instead via the formation of
larger, rounded aggregates (Fig. 8(d) and (e)). For both systems,
at later times, t 4 tps, the aggregates grow via coarsening and
coalescence with long-time scaling behaviour pt0.63 (see
Fig. S12(b), ESI†); this is consistent with classical models of
phase separation (pt0.67) in diffusive systems with negligible
hydrodynamic interactions.36

Local free-energy barrier in the spinodal regime for density-
dependent interactions. The characteristic features of phase
separation in the spinodal regime of the density-dependent
system – fewer small aggregates, narrower aggregate size dis-
tribution, slower phase separation and larger, more circular
spatial domains at early times – can be rationalised in terms of
the free energy barrier at low density (Fig. 3(a)), which arises
from the low-density coexistence region of the phase diagram
(Fig. 2(d)). This free energy barrier leads to a region of positive
curvature of f versus x, and hence positive effective diffusion
coefficient, for low x. Even when the system is quenched to a
point within the spinodal regime, when local regions of low
density form, these are in the coexistence region of the phase

Fig. 7 Field simulations. Phase separation in the density-dependent
system (red curves) is slower than in the density-independent system (blue
curves). (a) Time evolution of the maximum density, xmax. The dashed
horizontal line corresponds to the phase separation density xcp = 1.75, the
location of the condensed phase peak in Fig. 5(a). Black vertical lines
represent the time, tps, that it takes for the systems to reach xcp. (b) The
corresponding distribution of densities, p(x), at tps B 3750 SU (density-
dependence) and tps B 550 SU (density-independence). The black vertical
line corresponds to xcp = 1.75.

Fig. 8 Field simulations. Simulation snap-shots showing the time evolution of the density-independent (a–c) and -dependent (d and e) systems during

time tps. (a) Density-independent, t ¼ 140 SU � 1

4
tps . (b) Density-independent, t ¼ 275 SU ¼ 1

2
tps. (c) Density-independent, t = 550 SU = 1tps. (d) Density-

dependent, t ¼ 900 SU � 1

4
tps. (e) Density-dependent, t ¼ 1750 SU ¼ 1

2
tps . (f) Density-dependent, t = 3500 SU = 1tps.
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diagram (Fig. 2(d)) and hence they are locally ‘‘stable’’, in
the sense that the formation of higher density structures is
hindered by the free-energy barrier. This contrasts with the
density-independent case (also shown in Fig. 3(a)), for which a
gas of monomers is always unstable to aggregation. The fact
that such a free energy barrier can have significant effects even
when the system is quenched into the spinodal regime is a
consequence of the global conservation of the order parameter
and gives rise to a weakly first order transition, whereas without
global conservation of the order parameter, the first order
transition would be more pronounced.

‘‘System-swap’’ simulations confirm the role of thermo-
dynamics. Our discussion so far suggests that thermodynamics –
i.e., the form of the free-energy density – is crucial in
controlling the nature of phase separation in the density-
dependent system. But to what extent does the history of
a particular phase separation trajectory control its future
behaviour? This question can be addressed by ‘‘switching’’
from a density-dependent free-energy function to a density-
independent one (or vice versa), during a phase separation
trajectory. If the controlling factor is indeed the free-energy
density, then the trajectory should rapidly adjust its character-
istics in line with the new free-energy function. If instead,
trajectory history is important, then we would expect the
trajectory to retain the characteristics of its original free-
energy function.

To test this, we performed density-dependent simulations
initialised with the configurations from density-independent
simulations taken at tps (i.e., once the condensed phase density
had been reached), and vice versa. Fig. 9 shows representative
snapshots during the time evolution of these ‘‘switched’’
simulations (2nd and 4th rows), alongside, for comparison,
representative snapshots from simulations (initiated from the
same configurations) that were not switched (1st and 3rd rows).
Rows 1 and 2 illustrate the effect of turning on density-
dependent interactions in systems initialised from density-
independent simulations. Shortly after switching (compare (b)
and (e)), the density becomes redistributed in a manner that
increases the concentration of the gas phase whilst lowering
that of the dense phase (see also Fig. S13, ESI†). This redis-
tribution persists at later times (see Fig. S13, ESI†), leading to
smaller aggregates (compare (c) and (f)) that are more narrowly
distributed in size (see Fig. S14, ESI†). In other words, the
system takes on the characteristics of a density-dependent free-
energy function.

Switching from density-dependent interactions to density-
independent interactions (rows 3 and 4) has the opposite effect,
i.e., the aggregates become less diffuse and the density is
redistributed to decrease the gas-phase concentration whilst
increasing that of the condensed phase aggregates; this behaviour
persists at later times, leading to large aggregates that are more
broadly distributed in size – i.e., the system takes on the char-
acteristics of a density-independent free-energy function. Therefore
we conclude that it is the underlying thermodynamics which
govern the phase separation process; the trajectory history has
little influence on the long term dynamics of phase-separation.

Particle-based model

To assess the generality of our observations, we also performed
2-dimensional particle-based Brownian dynamics simulations,
with and without interactions that depend on the local particle
density. In these simulations, particles interact via the cut and
shifted Lennard-Jones potential. Although this potential is
more commonly used in atomistic simulations, it has become a
popular choice for modelling interactions between bacteria43–46 or
between bacteria and polymers,24 since it captures the essential
features of attraction and repulsion between soft-interacting
particles. To implement a density-dependent cohesive inter-
action we modify the standard Lennard-Jones potential such
that the parameter e, which governs the strength of the attraction,
depends on the local particle density r: e = e(r). The interaction
potential then becomes

U(r,r) = 4e(r)[(s/r)12 � (s/r)6 � Uc], (15)

for r o rc, and U = 0 for r Z rc, where r is the inter-particle
distance. Here, s is the particle diameter and the shift Uc =
(s/rc)12 � (s/rc)6 ensures that U = 0 at the cut-off distance
rc = 1.2s.

Following eqn (5), e(r) is assumed to take the linear form

e = r(x)e0, (16)

where e0, which has units of energy times area, determines the
sensitivity of the interaction to the particle density. Thus the
strength of the interaction between any pair of particles increases
with increasing local density of the surrounding particles (see the
ESI† for details). In practice, at each time step, the local density r
at each particle coordinate x is computed on a grid and the
corresponding value of e is assigned to that particle via eqn (16)
(see the ESI† for details). To compute interactions between pairs
of particles with different local densities, and hence different
values of e, we use the Lorentz–Berthelot rule e ¼ ffiffiffiffiffiffiffiffi

e1e2
p

(see the
ESI† for details), where e1 and e2 are computed according to
eqn (16).

In this particle-based model, as in our field simulations, the
total density is conserved, i.e., particles do not grow, reproduce
or die. The particles are also assumed to be non-motile.

Particle-based simulations

We performed 2-dimensional BD simulations of N monodisperse
discs interacting via eqn (15) and (16), comparing our results
to those of equivalent simulations with a standard, density-
independent, Lennard-Jones potential (no r dependence in
eqn (15)).

The position, xi of an individual particle, i, evolves in our
simulations via numerical integration of the over-damped
Langevin equation

dxi

dt
¼ bDFi þ

ffiffiffiffiffiffiffi
2D
p

ZiðtÞ; (17)

where D is the diffusion coefficient, b = 1/kBT, Fi ¼ �r
PN
jai

Uij is

the force on particle i resulting from interactions with the other
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N � 1 particles, and Zi(t) is a unit variance white noise variable

with hZi(t) i = 0 and Zi;aðtÞZi;b t 0ð Þ
D E

¼ da;bd t� t 0ð Þ, with a,b = x,y.

To implement our simulations, we non-dimensionalised

eqn (17) using s, kBT, and t ¼ s2

D
as the basic units of length,

energy, and time respectively (see the ESI† for details). Simulations
were performed in a square box of length 115 s with periodic

boundary conditions, using the Euler method of numerical
integration with a time-step of 2.5 � 10�5 t.

To characterise the system with density-dependent inter-
actions, we systematically varied the interaction strength para-
meter, e0, for three values of the total number of particles:
N = 3600, corresponding to area fraction y = 0.21, N = 4900
(y = 0.29), and N = 6400 (y = 0.38).47 We observed similar phase

Fig. 9 Field simulations. Simulation snap-shots showing the time evolution of the ‘‘non-switched’’ (1st and 3rd row) vs. switched simulations (2nd and
4th row). 1st row (top) – density-independent simulation initialised with a configuration sampled from a density-independent simulation at time tps =
550 SU. 2nd row – density-dependent simulation initialised with a configuration sampled from a density-independent simulation at time tps = 550 SU.
3rd row – density-dependent simulation initialised with a configuration sampled from a density-dependent simulation at time tps = 3500 SU. 4th row
(bottom) – density-independent simulation initialised with a configuration sampled from a density-dependent simulation at time tps = 3500 SU. Columns
(a, d, g, j), (b, e, h, k), and (c, f, i, l) correspond to snapshots taken at times t = 0 SU, t = 1500 SU, and t = 50 000 SU after initialisation.
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separation behaviour in all three systems – we therefore focus
on the results for the intermediate area fraction y = 0.29 (N =
4900). Results for the other area fractions can be found in ESI.†

After an equilibration period (1000 t) without inter-particle
attractions, our simulations were run for times trun = 1250 t (in
total 2250 t), which is the approximate time required for the
fraction of particles in the condensed phase to reach a steady
state. After time trun, coarsening and coalescence change the
distribution of aggregate sizes (ultimately leading to the formation
of one large phase-separated domain), but the aggregated fraction
remains constant (see the ESI† for details). The time-scales used
here, although not long enough to observe fully phase separated
states, are long enough to capture the rich early aggregation
behaviour resulting from density-dependent cohesion.

Fig. 10 shows configurations of the system for y = 0.29 and
for various values of e0, after simulation time trun = 1250t. For
e0 = 1 (weak density-dependent attraction), the system is in a ‘‘gas-
like’’ phase (Fig. 10(a)) whose ordering, characterised by the
structure factor S(q), is consistent with that of a simple colloidal
dispersion or hard sphere fluid (see the ESI† for details). For
e0 = 70 (strong density-dependent attraction), elongated and inter-
connected aggregates give rise to a ‘‘gel-like’’ state (Fig. 10(c)).

For e0 = 40 (intermediate density-dependent attraction), we
obtain interesting behaviour arising from the density-dependent
attraction. Our simulation snapshots at trun = 1250t (Fig. 10(b))
show clearly that the system is undergoing phase separation into
condensed and non-condensed phases, with the emergence of
the former being confirmed by the presence of well-defined peaks
in S(q) (see the ESI† for details). For this value of e0, inspection of
the simulation trajectory shows that phase separation proceeds
via the formation of aggregates that appear to grow only once
they reach a threshold size (see Movie S8 in ESI†). This is
reminiscent of the ‘‘spinodal nucleation’’ phenomenon observed
in our field simulations. Fig. 11(a) shows the aggregate size
distribution for e0 = 40, computed at time trun (i.e., the probability
that a particle belongs to an aggregate of a given size). Consistent
with the snapshot of Fig. 10(b), the distribution is bimodal, with
two peaks corresponding to aggregates of 4300 particles and
individual particles (clusters of o2 particles).

To determine whether this behaviour is intrinsic to the
density-dependent interaction potential, we also performed a

series of simulations with a standard, density-independent,
Lennard-Jones interaction potential. We used values of the
interaction strength e in the range 2.84 - 42.68 kBT: this
corresponds to the e-range that is sampled (via eqn (16)) in
the final configuration of our density-dependent simulation
with e0 = 40 (see the ESI† for details). A snapshot from the
density-independent simulation with e = 28.4 kBT is shown in
Fig. 10(d). Consistent with our observations from the field
simulations, the aggregates are more varied in size and shape
than those of the density-dependent system, and the non-
condensed phase contains small clusters rather than single
particles (compare to Fig. 10(b)). Phase separation in this system
proceeds in a manner typical of spinodal decomposition, in that
clusters form rapidly throughout the entire system (see Movie S9
in ESI†). Fig. 11(b) shows the aggregate size distribution (at time
trun) for density-independent simulations with e = 2.84 - 42.68
(see also the ESI†). In contrast to the density-dependent case,
none of these distributions are bimodal. Rather, the density-
independent system forms either large aggregates (for e4 25.6),
or predominantly small aggregates (for e r 25.6). We also
checked that a weighted linear superposition of the aggregate
size distributions for different e values cannot reproduce the
aggregate size distribution produced by the density-dependent
simulations (Fig. 11(c)) (see the ESI† for details). Thus, as we
observed in our field simulations, the bimodal aggregate size
distribution appears to be an intrinsic feature of the density-
dependent system. For the particle-based simulations, we also
observe that the peaks in the aggregate size distribution are
broader for the density-independent simulations than in the
density-dependent case (Fig. 11(b); see also Fig. 11(d) which
confirms that the large-aggregate peak is narrower in the
density-dependent system). Thus, density-dependent aggregation
appears to confer increased ‘‘control’’ of aggregate size.

Given that our particle-based simulations exhibit qualitatively
similar behaviour to that of our field simulations, we can
conclude that ‘‘spinodal-nucleation’’-like cluster formation,
consisting of rather homogeneous aggregates that appear to
show a barrier to growth, bimodal aggregate size distribution
and a narrow cluster size distribution, are characteristic
of systems with density-dependent attractive interactions,
whether manifested as a cubic term in the Landau–Ginzburg

Fig. 10 Particle-based simulations. Simulation snapshots of our particle-based simulations, for area fraction y = 0.29. Snapshots are taken at time
trun = 1250 t. Panels (a)–(c) show results from systems with a density-dependent potential (for different values of e0, in units of kBTs2); panel (d) (red box)
shows a snapshot from a system with a density-independent potential (with e in units of kBT).

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Se

pt
em

be
r 

20
19

. D
ow

nl
oa

de
d 

on
 9

/2
2/

20
24

 1
1:

39
:1

5 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9sm01462d


9130 | Soft Matter, 2019, 15, 9120--9132 This journal is©The Royal Society of Chemistry 2019

free energy, or as a density-dependent potential in a particle-
based model.

Conclusions

Living cells often interact via secreted molecules, some of
which can affect inter-cellular mechanical interactions. In this
paper, we have shown that in an idealised model where the
secreted cohesive agent is degraded rapidly enough that their
concentration profile around each cell reaches a steady state,
the effects of the secreted agent can be coarse-grained as an
attractive interaction between cells that depends on the local
cell density. This in turn leads to a picture in which cell
aggregation can be thought of as a phase separation process
driven by density-dependent attractive interactions – a process
which turns out to differ in interesting ways from phase
separation in standard, ‘‘density-independent’’ systems. Our results
complement previous work on systems where phase separation is
driven by particle motility,19,21–24,26 on changes in particle motility

due to polymer secretion,49 and on bacterial aggregation driven by
addition of exogenous polymer.24,28–32

Combining a field theory approach with particle-based
simulations, we observe behaviour that appears to be char-
acteristic of systems with density-dependent attractive inter-
actions. Specifically, we see an apparent barrier to cluster
growth even in the spinodal regime, that we term ‘‘spinodal
nucleation’’, and bimodal aggregate size distributions with
narrow peaks – corresponding to aggregates of rather uniform
size in a ‘‘sea’’ of single particles. These characteristic behaviours
can be understood as originating from a local free-energy barrier
to cluster formation at low particle density, even in the spinodal
region of the phase diagram. This barrier arises because local density
fluctuations drive the system into the low-density coexistence region
of the phase diagram, which in turn exists as a consequence of the
cubic term that emerges from the Landau–Ginzburg free energy
when the secretion of cohesion-inducing agents are considered, like
that observed in nematic liquid crystals.39

From the point of view of real biological cells, our model is
highly simplified: we neglect, for example, cell motility, proliferation
and death. Moreover, our assumption that the concentration field of
cohesive agent is at steady state around a given particle is idealistic:
in reality cohesive agents such as extracellular polymers are likely to
degrade only slowly and may well accumulate in the system. Even
for rapidly degrading agents the concentration field might be
perturbed, for example by local fluid motion. Taking account
of these factors would of course require a different modelling
approach. Nevertheless, our work suggests that production of
cohesive molecules might provide a route to control of aggregate
size, and reveals interesting physics associated with the kind of
density-dependent interactions that could be generated by the
non-equilibrium process of cohesive agent production.
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