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Sedimenting pairs of elastic microfilamentst
Marek Bukowicki and Maria L. Ekiel-Jezewska 2 *

The dynamics of two identical elastic filaments settling under gravity in a viscous fluid in the low Reynolds
number regime is investigated numerically. A large family of initial configurations symmetric with respect to a
vertical plane is considered, as well as their non-symmetric perturbations. The behaviour of the filaments is
primarily governed by the elasto-gravitational number, which depends on the filament's length and flexibility,
and the strength of the external force. Flexible filaments usually converge toward horizontal and parallel
orientation. We explain this phenomenon and show that it occurs also for curved rigid particles of similar
shapes. Once aligned, the two fibres either converge toward a stationary, flexibility-dependent distance, or
tend to collide or continuously repel each other. Rigid and straight rods perform periodic motions while
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1 Introduction

Recently, there has been a growing interest in understanding basic
features of the dynamics of elastic micro and nano filaments in
water-based fluids, moving under a constant force or entrained by
an ambient fluid flow. The motivation comes from modern
research on modelling biological systems, such as bacteria,"?
actin®> or nematodes,®” design of medical applications, e.g. hydro-
gel micro and nano fibers® ™ to deliver drugs, and investigations
important to protect the environment, for example, waste-water
treatment'” or diatom chains in oceans.™"”

Systems of elastic filaments moving in fluids exhibit inter-
esting, complex mechanical properties,'®'® caused by hydro-
dynamic interactions between segments of a single or multiple
filaments. It is of special interest to investigate how elasticity
affects sedimentation. The dynamics and shape deformation of
single elastic filaments settling under gravity (or in a centrifuge)
have been extensively studied numerically and experimentally.** >
The motion of rigid elongated particles of different shapes®®*” can
serve as a useful comparison. Sedimentation of pairs of rigid
particles with complex shapes has been also studied.”*° There
exist also some numerical results on the dynamics of two and three
elastic filaments.*** They indicate that the influence of elasticity
on pairwise hydrodynamic interactions is a complex problem, still
to be explored.

Therefore, the goal of this paper is to study the dynamics and
shape deformation of pairs of elastic filaments settling under
gravity and to check if they attract or repel each other, or tend to
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settling down. Apart from very stiff particles, the dynamics is robust to non-symmetric perturbations.

a stationary configuration, and how they orient with respect to
gravity and to each other, depending on their elastic properties.

A good starting point (and a relevant reference) is the
periodic dynamics of rigid elongated particles sedimenting in a
vertical plane. The motion of spheroids was analyzed in ref. 33-35
and periodic orbits of spheroids were found with positions
symmetric under reflection with respect to a perpendicular
vertical plane.**>® These solutions have been later used as a
benchmark for different computational methods. In particular, a
comparison with the Stokesian dynamics of particles made of
spherical beads was performed.*”*® Similar symmetric periodic
orbits of two elongated particles have been also found using the
slender body approximation and the 3D lattice Boltzmann
method for spherocylinders in a cubic periodic box.>® In this
reference, the fluid velocity field around the sedimenting particles
has also been analyzed.

Periodic dynamics of two identical rigid particles sediment-
ing in a vertical plane in a symmetric configuration have been
observed and studied both numerically and experimentally for
different shapes. Periodic trajectories of rigid ellipsoids were
evaluated by Kim,**** and periodic motion of disks was mea-
sured and modeled theoretically by Chajwa et al.*® A variety of
shapes were considered by Jung et al.*’ who found periodic
orbits in experiments with rods, disks, hemispheres and cubes,
and in simulations of prolate and oblate spheroids. Moreover,
similar orbits have been found also for larger numbers of rigid
rods in symmetric configurations.*®*

In this paper, we will show that this important benchmark
quasi-2D periodic solution can be generalized for a family of
three-dimensional periodic motions of two filaments in con-
figurations symmetric with respect to a vertical plane. In
Section 2, the system and methodology will be described. In
Section 3, we will demonstrate characteristic features of the
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periodic orbits for two rigid rods made of spherical beads, in
the symmetric configurations.

In Section 4, we will move on to the analysis of two elastic
filaments, initially in the same symmetric configuration as the rigid
ones. We will investigate their complex dynamics, depending on
the filament flexibility. In Section 5, the results will be compared
with the dynamics of curved rigid filaments. Section 6 contains the
results for slightly non-symmetric initial configurations. Finally,
Section 7 is devoted to discussion and final conclusions.

2 System, methodology and notation

In this paper we investigate the dynamics of two identical
flexible filaments or two rigid rods sedimenting at low Reynolds
number. Particles are assumed to be non Brownian. We mainly
focus on the configurations of particles symmetric with respect
to reflection in a vertical plane x = 0 (as shown in Fig. 1), yet
slightly non-symmetric cases are also considered.

Each particle is represented as a chain of N connected beads and
the dynamics of each bead is calculated. In our notation the
positions of all bead centers constitute a vector r = (ry, 75,. . ., an)
where r; denotes the position of the -th bead. All beads are identical
and have radii equal to a. The simulations are performed as
Stokesian dynamics. In this approximation, inertia effects are
neglected and non-hydrodynamic forces are balanced by the hydro-
dynamic ones. The particle velocities are proportional to the non-
hydrodynamic forces acting on each bead: (1) gravitational force
(corrected for buoyancy) and (2) elastic forces, calculated from the
potential energy U(r) described in the next paragraph. The velocity of
each bead i is the sum of contributions coming from the forces on
all the other beads j # i and the force acting on the bead i,

Fr= Y m(r—n) f; + &

J#i

Initial configuration Time-dependent

0P VIEW orientation
end-to-end
vector
\
©(0),
Z
FRONT VIEW end-to-end
~ . vector y
Xen(0) Lo (t)
X

Fig. 1 System and notation. Left panel: Initially the filaments are straight
and horizontal; their configuration is described with the rotation angle ¢(0)
and the distance from the center-of-mass to the symmetry plane x.m(0).
Right panel: Filaments can bend while sedimenting. Their ‘orientation’ is
defined as the orientation of the end-to-end vector, which connects the
centers of the first and the last bead in the filament. The time-dependent
orientation of the end-to-end vector is given in spherical coordinates as
the tilt angle 0(t) and the rotation angle ¢(t).
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where f; is the total non-hydrodynamic force acting on the j-th bead,
and 3 x 3 translation-translation mobility matrix u(R) is given by the
Rotne-Prager-Yamakawa (RPY) approximation:****

1 20 2P\R@ R
420 4 (1= 2\ B2 e R >0
8 R

3R? R? R?
1 9R .
LT(-28),
2)

R=|R| and y, = (6nna) " is the mobility coefficient of a single bead.
The gravity to elasticity ratio is characterized by dimension-

3RROR
32a R?

less elasto-gravitational number B:>**'3?
LiG
Bt ®)

where G is the magnitude of gravity (corrected for buoyancy)
acting on a single particle, A is the bending stiffness, related to
Young modulus Ey by

E 4
4= %7 (4)

and L, is the length of the filament in the absence of external
forces, defined as the distance between the centers of the first and

the last beads in the equilibrium configuration, L, = 2a(N — 1).
The elastic potential is given by:

Ulr) == Z (li =

U{N+1,..2N—1}

where [; = |ryy — 1y, o; is the equilibrium angle between
consecutive bonds joined to the center of the i-th bead and f;
is the actual measure of this angle. The elastic forces are

0
fi= =5 U, ©

Usually we are interested in particles which are straight at the
equilibrium, and therefore o; = 0 for all i. The equilibrium
length of bonds is denoted as [, = 2a, A4 is the bending stiffness
defined before and the parameter k characterizes the elastic
response to stretching of bonds between beads:

_ rtEya _ 2L()2G

k = .
2 Ba3

(7)

Rigid particles are modelled by application of very large elasti-
city parameters k and A (very small B).

In summary, the model of elastic filaments presented here is
the same as in our previous work.”’ It is based on the harmonic
elastic potential, similarly to work by Gruziel et al.*® Unlike in
the latter reference, here the stiffness coefficients parameters k
and A are coupled and very short range repulsion forces are
absent. This elastic model is also similar to that in work by
Schlagberger and Netz,”' Gauger and Stark’’ and Marchetti
et al.”® but with a harmonic bending potential instead of the
‘cosine’ one. Our choice is motivated by possible spurious
effects of the ‘cosine’ potential in some circumstances.*

This journal is © The Royal Society of Chemistry 2019
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The dynamics of the system, i.e. the time-dependent positions of
the beads, is determined by solving the system of first order
autonomous ordinary differential equations given by eqn (1). The
dynamics were calculated with the LSODA routine (ODEPACK
Fortran 77 wrapped in Python), which automatically switches
between non-stiff and stiff solvers with an adaptive time step.

Throughout the article we use dimensionless variables.
Distances are normalized by the equilibrium length of the particle
Ly, forces are normalized by the gravitational force acting on a
single particle, G, and the unit of time is given by 8myL,*/G, where
is the fluid viscosity. From now on all values will be given in
dimensionless units, while any dimensional value will be marked
with the tilde symbol above it.

Alongside vector r, which carries full information about
bead positions, in this paper we use the positions of filament
centers and orientations of end-to-end vectors to describe the
main features of filament configurations in a concise form. The
center of a filament is defined as the position of its center

of mass: for the first, ‘right’ particle (whose x coordinates
1 N
are greater than 0): rem = (Xem, Vem, Zem) = NZ r;, and for the
i=1
, N
second, ‘left’ particle r, =— >, r. An end-to-end vector
N N

connects the center of the first with the center of the last bead
of a particle and its orientation is parametrized by angles 6 and
¢ (see Fig. 1), which are defined in a manner consistent with
the standard labeling in the spherical coordinate system.

The majority of the results presented in this paper are
obtained for the system of two filaments symmetric with respect
to reflection in a vertical plane.: In this case it is sufficient
to consider the position and orientation of the ‘right’ particle.

i Such a system may be considered as a single filament near a free surface located
at the symmetry plane.*
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For systems where the symmetry is not imposed, the configu-
ration of the ‘left’ particle has to be considered separately.

The main family of initial configurations is shown schematically
in Fig. 1: the particles are located symmetrically in a horizontal
plane. The vertical symmetry plane is located at x = 0. The filaments
are straight and the distances between beads are equal to the
equilibrium length of the bonds J,. Each initial configuration is
given by the distance X.,(0) of the particle’s center from the
symmetry plane and the initial orientation angle ¢(0). Other
coordinates are set to: Yem(0) = 0, Zem(0) = 0, and 6(0) = n/2.

3 Periodic motion of rigid rods

First, let us briefly recapitulate the dynamics of rods which lie
and move in the vertical plane, as shown in the top (light blue)
panel of Fig. 2 (see also the top panel of Fig. 13 in Appendix A).
Initially, the rods are horizontal and their symmetry axes are
located on the same straight line. Due to the hydrodynamic
influence of the other rod, the rod’s inner end (that closer to
the symmetry plane) settles faster than the outer end: the rod
starts to rotate. Once tilted, the rods approach each other and
either collide, or reach a ‘vertical configuration’ (with 0 = 0 or
6 = 180°). In the vertical configuration the particles continue to
rotate and next drift away from each other, tending towards a
horizontal configuration again. Such tumbling dynamics was
described before for quasi-2D periodic sedimentation of 2 pairs of
point-particles,*® 2 rigid particles,***>*' 2 flexible trumbbells,** and
for the non-periodic case of 2 elastic dumbbells.** Moreover,
such vertical motions have been also generalized for 3D periodic
solutions of many-particle systems.*>%>!

Let us now consider another, very special initial configu-
ration: the rods are horizontal and parallel to the symmetry
plane (¢(0) = 90°). Based on time-reversal symmetry it is clear

0(0)=0 t=0 t=3T/16 t=T/4 t = 5T/16 t=TP2
FRONT
VIEW e sasese g ;1 o Ny, 00000 oossse
TOP i
VlEW jeceeee) [ecocee) Cooooo Q00000 E [ N} jeccccel [ecooee) [ececee) 000000
TIME ey
¢(0)=30°
FRONT
VIEW e = ~ 7 i N s o

TOP
VIEW

7 N

o ~

Fig. 2 Snaphots from the periodic dynamics of a symmetric pair of rods. Top panel: Quasi-2D dynamics of rods (¢(0) = 0) showing tumbling motion
reported before by Kim** and Jung et al.** Bottom panel: Periodic dynamics of rods not restricted to the vertical plane (here shown for ¢(0) = n/6).
Tumbling motion is combined with swinging along the 'y’ horizontal axis, what is clearly visible in the top view of the system.

This journal is © The Royal Society of Chemistry 2019
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that the particles in such a configuration will neither approach
each other, nor repel: their configuration remains constant,
and their only motion is the rotation around the long rod axis
combined with vertical settlement.

In the following paragraphs we describe the family of systems
in which the particles are initially horizontal (0(0) = 90°) and the
value of ¢(0) is in between the two limiting cases described
above, 0 < ¢(0) < 90°. In general the dynamics of a symmetric
pair of rods (not restricted to a vertical plane) requires one to
consider a system with five degrees of freedom: the distance of
the rod center from the symmetry plane x.,,(t) and two orienta-
tion angles, 0(¢) and ¢(¢), defined in Fig. 1, together with vertical
coordinate 2., and second horizontal coordinate y., of the rod
center-of-mass. However, the last two are the same for both rods,
and therefore do not influence their relative motion and will not
be analyzed in this work.

The periodic dynamics of rods out of plane is illustrated in
the bottom (light yellow) panel of Fig. 2 (see also ESL ¥ Videos 1, 2
and the bottom panel of Fig. 13 in Appendix A). It is similar
to the quasi-2D in-plane dynamics, but now particle rotation
is coupled with swinging along the y axis in the laboratory
reference frame.

The values of the 0 and ¢ angles during the period are shown in
Fig. 3A as closed curves, along which the system evolves counter-
clockwise (in this case, x.m(0) = 2). We may notice that although the
value of the ¢ angle varies during the motion, it never reaches 0: if
it did, the system would stay in the vertical plane forever.

The dependence of the period on the initial configuration is
presented in Fig. 3B and C. The shape of the blue curve in
Fig. 3B is sigmoidal with a very small increase for ¢(0) < 30°.
However, for larger values of ¢(0), the initial rotation angle has
a significant effect on the period. The shortest period is
observed when the particles are in the vertical plane, and the
longest for ¢(0) — 90°: the difference between the extreme
values is almost 5 fold. Larger ¢(0) leads to longer periods
because the particles do not approach each other as much as

8

4
Xan(0) =21 | 2
40 60 80 5
(0) a5
[a]
5]
103
)
3
Q
55

9(0) = 45°
Xem(0) = 2 ) ! 2 xem(0)® ¢

Fig. 3 Properties of the rods' periodic tumbling. (A) The rods’ orientation
during the period, presented as the evolution of tilt angle 6 and rotation
angle ¢. Different lines correspond to different initial values of ¢, taken
from range [0°, 90°] with step 5°. (B) and (C) Period of the motion and
trajectory length (in the reference frame settling with the center of mass)
as functions of the initial configuration parameters: rotation angle ¢(0) (B) and
initial distance xcm(0) (C).
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for smaller ¢(0) and therefore, being on average more widely
separated, their mutual interactions are weaker. It is note-
worthy that the period of oscillations for growing ¢(0) — 90°
converges to a finite number which is larger than zero. In the
limiting case, the two rods oriented along y do not change the
positions of their centers, but they roll with a certain finite and
non-vanishing frequency. In the same plot Fig. 3B but with a
red color we show the length of the trajectory of the centers of
rods, calculated in the reference frame settling with the particles.
It may be observed that the trajectory length initially increases,
reaches a maximum for about ¢(0) &~ 72° and sharply decreases
for larger ¢(0), hitting 0 for ¢(0) = 90°. The total length of the
trajectory (per period) measured in the laboratory reference
frame is dominated by the settling of particles and therefore
its shape is almost identical to the curve representing the period,
shown in blue.

The influence of the initial distance between the rods on the
period (Fig. 3C) is more straightforward: the period is longer for
larger x.,(0) and the growth is very close to linear in terms of
the trajectory length and slightly faster in terms of the period
time. The relations in Fig. 3B and C are shown for x.,(0) = 2
and ¢(0) = 45°, respectively.

In general, the initial symmetric configurations could have
arbitrary values of 0. Not all of them lead to periodic motion.
For example, it was shown by Kim?* that two rigid elongated
particles in a symmetric configuration may either perform
periodic motion, or have “single-encounter” dynamics and drift
away from each other. For the rods, the horizontal symmetric
initial configurations considered in this work (i.e. 6(0) = 90°) lead
to periodic dynamics for almost all the considered values of ¢(0),
except for ¢(0) = 90°, which is the stationary state. The closer
ends of the rods sediment faster and therefore become lower
than the other ones. In such a configuration, the lower ends are
attracted to each other, but the upper ones are attracted even
more, and as a result the rods rotate, and the angle between
them decreases. At a certain time ¢, the end-to-end vectors
become parallel to each other, with the corresponding angles
0(t)) < m/2 and ¢(t|) = n/2. Let’s denote the vertical positions of
the rod centers at ¢; as y; and z;. The occurrence of the parallel
configuration guarantees that the motion is periodic. The justi-
fication is a simple modification of the arguments given in
ref. 52. By superposition of the reflections in the horizontal
and vertical planes, z = z; and y = y|, and time reversal, it is
straightforward to deduce that at time ¢ = 2¢|, the rods will attain
the horizontal configuration which is the mirror reflection
Yy —Yy — y; +y of the initial configuration.

The above reasoning can be applied to a wider class of
identical rigid particles initially in horizontal symmetric con-
figurations. In 3D motion it is sufficient that they have axial and
fore-aft symmetries; in the quasi-2D dynamics (¢ = 0) it is
enough that apart from fore-aft symmetry the particles have
a symmetry plane which coincides with the vertical plane
of the motion (so that the system is truly quasi-2D). This
explains the experimental findings of Jung et al.*' who found
periodic oscillations of hemispheres and cubes sedimenting
vertically.

This journal is © The Royal Society of Chemistry 2019
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The new family of 3D periodic solutions for rigid particles
which has been presented in this section is interesting on its
own. Moreover, our periodic solutions are important because
they give a framework to understand the dynamics of deform-
able particles, and in particular elastic filaments.

4 Dynamics of elastic filaments
4.1 General picture

The dynamics of elastic filaments is rich. Four different modes,
observed for filaments with different elasticity, are shown in
Fig. 4 and in ESL{ Videos 3 and 4. If the flexibility of the
filaments is very low, the particles perform periodic motions similar
to rigid rods. The difference is that the amplitude of the oscillations
gradually decreases and after a long time the filaments end up in a
parallel and horizontal configuration where no oscillations occur.
In Fig. 4A snapshots of the filament configuration illustrate
damping of oscillations for B = 10 and ¢(0) = 45°: positions
marked as 1st, 3rd and 4th are shown for consecutive moments
when the end-to-end vector is horizontal.

Damping of the oscillatory motion is stronger for more
elastic filaments. Fig. 4B illustrates that for B = 100 the
filaments align almost instantaneously. For even more elastic
filaments the particles do not oscillate and start to repel each
other before reaching the parallel configuration. In Fig. 4C this
kind of behavior is illustrated for B = 150 where the number
2 marks the position where the distance between the filaments
is minimal. If the filaments are even more elastic, the filaments
repel each other from the beginning of the simulation, as
shown in Fig. 4D for B = 300.

In this paper we focus on the dynamics of weakly elastic
filaments (small B), which are the most common in current
applications. In this regime we observe a convergence of the
filaments to an aligned, horizontal configuration, in which the

(A) B=10 (B) B = 100 (C)
weakly damped oscillations, strongly damped oscillations,
alignment of particles alignment of particles

N

initially attraction, later repulsion,

AN £
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orientation of the end-to-end vector is given by 6 = 90° and ¢ = 90°.
The convergence to the aligned configuration is shown in
Fig. 5A. Oscillatory behavior of the system (compare with the
rigid particles in Fig. 3A) is coupled with damping, which is
faster for more elastic filaments.

The damping of oscillations is relatively easy to explain. It is
known that a single bent filament rotates to the horizontal
configuration,**** where ‘horizontal’ is understood as the orien-
tation of the end-to-end vector. Now consider the dynamics of
two weakly flexible filaments, arbitrarily close to the limit of stiff
rods. Since the filament is almost rigid, the dominant mode of
dynamics is the periodic motion described in the first section of this
work. Periodic oscillations, characteristic for stiff rods, are coupled
with the effects of the filament flexibility: due to gravity they are
weakly bent, which induces their slow rotation toward the horizontal
configuration. The combination of these two effects results in a
characteristic spiral form of the orientation plot (Fig. 5A).

The effect of alignment is strong even for weakly flexible
filaments, which is the most common case encountered in
experiments. Fig. 5B shows the configuration of the filaments
after the oscillations have been damped and the filaments have
aligned. We may observe that a value of elasticity parameter
B =10 corresponds to almost rigid filaments. In fact, even more
rigid filaments converge to a parallel configuration, for example
with B = 1, which corresponds to a filament which would bend§
only by 0.0015 of its length while sedimenting in a quiescent
fluid (in the case of B = 10 the bending amplitude is equal to
0.015 of the filament length).

4.2 Decay of the oscillation amplitude

In order to define the amplitude of the oscillations, we choose
shifted extrema of 0(¢); more specifically, extrema of 0(¢t) — 90°,

§ The bending amplitude is defined as max,(z;) — min,(z;) where z; are the vertical
coordinates of the bead centres.

B =150 (D) B =300

repulsion, no alignment

DN ve

8 4

no alignment

" A |
\ 274 positions
4. 3. of particles
TOP >, shown at time:
VIEW 2. Tmax
/ \3. § 2. 3Tmaxl/4
\ ’ 3. Tuax/2
Tmax = 50 Tmax = 50 Tmax = 150 Tmax = 100
Tmaxl4
2.
FRONT +_3 1
— | — ia — R— )  (— s — ] 0
VIEW ki W W

Fig. 4 Different types of dynamics of elastic particles. The colors of the particles indicate the time when the snapshot was taken with respect to Tuax.
different for each B. Low flexibility (B = 10): the particles perform tumbling motion, but the amplitude of the oscillations decreases. Finally the particles
align in a horizontal configuration. The dynamics after alignment is discussed in the next section. Moderate flexibility (B = 100): for more flexible filaments
the damping of the oscillations is faster, for B = 100 shown here it is almost instantaneous. Large flexibility (B = 150): even more flexible filaments first
approach each other and later drift apart. Unlike for B = 100, the orientation angle ¢ does not reach n/2. Very large flexibility (B = 300): very elastic
particles repel each other straight away, without approaching the attractive phase observed for smaller B = 150. Dynamics shown for x.n(0) = 2.

This journal is © The Royal Society of Chemistry 2019
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(A) Convergence (B) Aligned configuration

TOP FRONT SIDE
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] ®00s0se0e® B=40
45 § % B=100
45 90 135
9
Fig. 5 (A) Convergence to the aligned configuration shown in terms of

orientation angles 0 and ¢. The orientation angles are plotted against each
other for low flexibility (B = 10, blue line), moderate flexibility (B = 40,
green) and high flexibility (B = 100, red). (B) Configuration of the filaments
after alignment — when the orientation angles 6 and ¢ remain constant.
Deformation of filaments is very moderate, even for more flexible fibers of
B =100. For stiffer filaments with B = 10 the deformation is almost invisible.

which is the angle between the horizontal plane and the orienta-
tion vector. Its value is equal to 0 in horizontal configurations
and has local extrema in parallel ones. A selected example of
0(t) — 90° as a function of time is shown in Fig. 6A, with the
extrema marked with dots in order to visualize points at which
the oscillation amplitude is measured.

We observe that the decay of the oscillation amplitude is
exponential with respect to number of oscillations (Fig. 6B). There-
fore the amplitude of the n-th oscillation A(n) can be written as:

A(n) = Ao", (8)

where the amplitude ratio r characterizes the damping intensity.
If the amplitude is considered as a function of time, instead
of the number of oscillations, the observed decay is not exponential
(nor power-law). Also, the interval between consecutive (¢) extrema
is not conserved, as shown in the inset in Fig. 6A.
The speed of the exponential decay of the oscillation ampli-
tude depends on the filament flexibility and is larger for more

A amplitude and tumbling B decay of oscillations:
( ) time of oscillations ( ) amplitude A(n) = Ag'r"
1* - 107 -,
40 g 25 R
20| ) W s
S (o) 1 X, s
20 213 7 10 \ .
° 210l e, | @ " 02 \
S [ T -
> oscillation count Il g a0 8
AR W ————— | = . B
= < 10° ™
[<>) [ .
- kel =
20 S "\
= fit: A(n) = 61.8 - 0.825" N\
€ 101 N
-40 W
© x*)
0 20 40 60 80 100 0 10 20 30
t n (oscillation count)

Fig. 6 Decay of the oscillation amplitude. (A) Angle 0(t) — 90° as a function
of time for a selected example B = 10, ¢(0) = 45° and xn(0) = 3.
Dots indicate local extrema. The inset shows time intervals between
consecutive extrema of 6. (B) Exponential decay of the oscillation ampli-
tude, the fitted relation is shown with a black line. In the inset the
dependence of the amplitude ratio r is shown as a function of the filament
elasticity.
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elastic particles (see also ESI,t Videos 3 and 5). The inset in
Fig. 6B illustrates the dependence of the amplitude ratio r on
the flexibility B. As expected, for very stiff particles r is close to
the limit of 1, which characterizes undamped periodic motion.
Damping becomes stronger for growing B and more flexible
filaments may perform only a few oscillations before the
amplitude of the oscillations decays to negligibly small values.
For an initial configuration close to ¢(0) = 0 or ¢(0) = 90° the
exponential fit is not so perfect as for the case of ¢(0) shown in
Fig. 6, however this type of dependence can be still observed,
especially for small angles 0(¢) — 90°.

4.3 Comparison to a single filament

In previous sections of this chapter it was shown that a
symmetric pair of filaments converges to an aligned, horizontal
configuration. Because it is known that also an isolated, single
filament orients itself horizontally, it is interesting to study
whether the presence of another filament promotes or hampers
the filament reorientation. In other words, the question is
whether two particles in a symmetric configuration converge
to a horizontal configuration faster than the single one or
slower. In order to investigate this problem, the dynamics of
a single filament was evaluated for an initial configuration
identical to the configuration of one from the pair of sedimenting
filaments at chosen moments, when |0 — 90°| has local maxima.
Representative results are presented in Fig. 7 where the values
of & — 90° in the system of the two particles are plotted with
blue lines while the values of § — 90° for a single filament are
plotted with black, dashed lines. Each dashed line corresponds
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Fig. 7 Convergence of the symmetric system of two particles toward the
horizontal orientation (0 — 90° shown in blue), in comparison with the
system of a single particle (0 — 90° shown with black dashed lines). Local
extrema of 0 — 90° are marked in orange, some of them were used to
obtain the initial configurations for the single filament dynamics. Note the
different time scales in different panels. All results shown for systems
of two particles are obtained for initial configurations x.n(0) = 2 and
(0) = 45°.
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to an alternative dynamics in which the ‘left’ particle from the pair
instantaneously ‘disappears’. For each simulation of the dynamics
of the two particles a series of simulations of one filament were
conducted, for different initial configurations. It is visible that in all
cases the single filament converges toward 6 = 90° faster than the
pair of filaments. As it is shown in the figure, this result holds for
different values of the elasticity.

The important conclusion from this study is that two flexible
filaments, owing to the hydrodynamic interactions, orient
themselves horizontally much slower than a single filament,
if they are relatively stiff. In particular, for B = 1 shown in the
top panel of Fig. 7, the two filaments need additional time to
reorient to the parallel configuration because they oscillate,
and therefore they bend slower than a single one. This result
was obtained for a strictly symmetric configurations of two
filaments, however in Section 6 it will be shown that the
‘aligning’ dynamics of filaments is robust to even large devia-
tions from the symmetry and therefore the conclusion drawn
here may be valid for a wider range of systems.

4.4 Dynamics after alignment

When the filaments reach the parallel, horizontal configu-
ration, their relative motion usually does not stop. Depending
on their flexibility the particles may attract each other, repel, or
converge toward a stationary state. Signs of such migration are
visible in Fig. 4A-C. In order to investigate this phenomenon
more closely we performed simulations of filaments which start
from aligned configurations (¢(0) = 90°, 6(0) = 90°) for different
initial separation distances and different filament flexibility B.

The results show that filaments of low and moderate flex-
ibility (B < 74) attract each other and eventually collide, and
more elastic filaments (75 > B < 124) tend to stationary well
separated configurations while even more elastic ones repel
each other even at huge distances. These three regimes are
illustrated in ESI,T Video_06. Considering the regimes of low
and moderate B it is important to remark that the Rotne-
Prager-Yamakawa approximation of hydrodynamic interac-
tions, used in this work, is not an appropriate tool to model
the dynamics of very close filaments, which tend to collide.
More accurate methods, such as the multipole approximation
with lubrication correction® should be applied, which will be
the topic of future studies. However, the results obtained allow
us to conclude that moderately flexible filaments attract each
other, without specifying whether the distance between them
asymptotically decreases to 0 or they converge to a very close,
yet separated configuration.

Moderately flexible filaments, approximately in a relatively
narrow range of B € [75, 124], converge to a stationary configu-
ration, which is illustrated in Fig. 8A for selected values of B.
Fig. 8B shows the distance between the centers of the filaments
as a function of time, for two different initial configurations
(%em = 0.1 and Xy, = 1.0). Convergence of both results is clear for
each value of B. The separation of the particles at the stationary
state is larger for more elastic filaments and increases rapidly
for B > 124. For large B the stationary state may either exist at
very large separations (e.g. larger than 100 for B = 125), or may
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Fig. 8 Stationary configurations of flexible filaments. (A) Stationary con-
figurations with different values of B, drawn to scale. (B) Convergence
towards a stationary configuration shown in terms of the distance between
the centers of the filaments, for aligned initial configurations with different
values of Xcm(0): Xem(0) = 0.1 and xm(0) = 1.

not exist at all. It is worth noting that the drift of the filaments
in the aligned configuration usually is very slow, which can be
also observed in ESI, T Video_06.

5 Rigid filaments with curved shapes

The origin of the alignment phenomenon suggests that it may
occur not only for elastic particles. The key factor of the process
is self-reorientation of each particle, so that it tends to a
horizontal configuration. An example of such particles is rigid
fibres with curved shapes.”®?”

We analysed the family of rigid shapes derived from the
equilibrium configurations of isolated elastic filaments of
different elasticity. Therefore the family of rigid particle shapes
is parameterized by B, where small B corresponds to more
straight shapes and large B to more curved. In this way there is
a direct correspondence between elastic filaments and rigid,
curved particles, which will be explored in the following
paragraphs.

The results show that rigid, curved particles behave in the
same way as flexible ones: oscillations with decreasing ampli-
tude are observed, after which the particles converge to the
aligned, horizontal configuration. Rigid particles with shape
parameterized by a given B perform almost the same motion as
elastic ones with the corresponding value of the flexibility
parameter. These phenomena can be observed both in the 6,
¢ phase space (Fig. 9A) and as the evolution in time (Fig. 9B). It
is also illustrated in ESI,} Video_07.

After the alignment, similarly to the flexible fibres, the
curved particles can attract each other, repel, or converge
toward a stationary distance. The last of these scenarios is
illustrated in Fig. 9C and D. The stationary distance toward
which the particles converge is very sensitive to the fibre shape.
Additionally, the stationary distance of rigid particles para-
meterized by a given B is noticeably different than in the case
of their flexible counterparts, even though the oscillatory phase
of the dynamics is almost identical. This suggests that the
stationary distance may differentiate pairs of particles based on
very small differences of their properties.

Soft Matter, 2019, 15, 9405-9417 | 9411


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9sm01373c

Open Access Article. Published on 11 October 2019. Downloaded on 2/7/2026 4:09:50 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

1351 (A) fexible] 135[(B) nexible
igid
noe rigid

@

90 90

45 45

45 90 135 ¢ 20 T
’ t

(C) stationary configuration (D) convergence towards

stationary state

TOP —— shape of B = 100
VIEW shape of B = 110

—— shape of B = 120
FRONT
VIEW
SIDE
VIEW

0 500 1000 1500 2000
t
Fig. 9 (A) Convergence toward an aligned configuration of rigid

particle shapes corresponding to: B = 10 (blue), B = 40 (green) and
B = 100 (red). For comparison, results for flexible filaments are drawn
with dotted lines. (B) Comparison of the orientation angle 0(t) for
rigid curved particles (blue line) and flexible particles with B = 10 (gray
line). (C) Stationary configuration for different shapes of rigid particles
(here ‘B' denotes the shape of the particle, as explained in the main text).
(D) Convergence of rigid curved particles of different shapes towards a
stationary state.

6 Non-symmetric configurations of
elastic particles

Generally, particles in slightly non-symmetric configurations
behave in a very similar way to those in the symmetric systems.
We introduced a perturbation of the initial configuration by
modifying only the right filament (placed in the x > 0 half
space). We kept it straight but altered its position with four
different types of disturbances, illustrated in the top panel of
Fig. 10: a modified ‘y’ coordinate (denoted as a Ay perturba-
tion), a changed ‘2’ coordinate (Az), changed 6(0) (Af) and
finally changed ¢(0) (A¢). The translational perturbations, Ay
and Az, were tested up to 1/10 of the filament length while the
rotational ones, A0 and A¢, up to 10°.

For larger values of the elasto-gravitational number con-
sidered in this work, B € [10, 100], the observed dynamics
is robust to perturbations and the filaments converge to a
symmetric, horizontal, aligned configuration. Only for very stiff
particles does the system become unstable - initial non-
symmetric perturbations amplify. In Fig. 10, middle panel,
the asymmetry of the system is traced in time for very stiff
(B = 1) and moderately flexible (B = 40) filaments. The asym-
metry is measured as the root square deviation between the
positions of the beads from the first particle and the reflected
position of the beads from the second particle. The vertical
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reflection plane was chosen, at each moment separately, to
! !
the d((l’h...,}’}v), (I’N+1 7...,5‘2]\/)) =

2 2 .
ri —ryy1 | ...+ [ty — ron'|”, where r/ denotes the reflection

minimize

v

of the i-th bead position 7.9 The results presented in Fig. 10 show
that for very stiff fibres the initial perturbations amplify, while for
more elastic particles the perturbations attenuate (the particles
align), except a transient excitation when the particles are close to
each other (in Fig. 10, a maximum is visible at ¢ ~ 15). Both types of
behavior are new and important. Undoubtedly, the alignment
behaviour is more interesting, because it occurs for a flexibility
range which is commonly considered in studies concerning the
dynamics of fibres, e.g. periodic motions of three fibres,” and
reveals an attractor of the two-filament dynamics. Nevertheless,
the unstable behaviour of stiffer particles is also a meaningful
result, indicating the possibility of transient chaos in the system
of two settling particles.>

The bottom panel of Fig. 10 presents bead trajectories (top view)
for a selected example of a system in which alignment occurs (Az =
0.02, see also ESI,i Video_08). It can be observed that the alignment
is preceded by an intricate, oscillatory phase of the dynamics. In the
moving reference frame, the alignment of particles is clearly visible
and it becomes evident that rotation and drift of the pair, observed
in the laboratory reference frame, is caused by only minor asym-
metry of the system. The moving reference frame was chosen in such
a way that the center of mass of the system does not move horizon-
tally, and the new ‘x’ axis is parallel to the minimal asymmetry plane.
Alignment of filaments, observed for a wide range of asymmetric
configurations, suggests that the parallel configuration of filaments
is an important attracting state for the dynamics (not forgetting that
the aligned configuration is not always static — see Section 4.4 - as
the distance between the aligned filaments may change).

Unlike for more elastic filaments, stiffer particles with B < 10
rarely align. Different types of the observed behaviors are shown in
Fig. 11 and Videos 9-12. The dynamics becomes very sensitive to the
perturbations of the initial configuration and the filaments usually
collide (Fig. 11B and Video_10). Two new types of long-lasting
configurations have been observed, which are illustrated in
Fig. 11C (Video_11) and D (Video_12). In the former, the end-to-
end vectors of the filaments are parallel, but one particle is higher
than the other and the fibres are shifted in the horizontal direction,
perpendicular to the fibre orientation. Such an arrangement leads to
horizontal movement of the pair of particles. It was shown
before®"*? that in similar configurations the upper particle settles
faster and finally catches up with the lower one, yet this process is
very slow, especially for stiffer particles. In the second type of
configuration (Fig. 11D) the centres of the particles are one above
the other, but the fibres are not parallel. Such a configuration was
studied by Saggiorato et al.,>> who observed that it leads to helical
movement of the filaments, which is in agreement with our results.
In the long term the upper particle would catch up with the lower
one, and at the same time the orientations of the two fibres become
more and more similar.

expression:

9 Also the reverse order of beads in the reflected particle was considered:

d((l‘l ‘‘‘‘‘ I‘N), (l"g/\,/ 5 5‘2/\/,], e "’N+l,))
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Fig. 10 Evolution of a non-symmetric pair of elastic filaments. In the top
panel four types of initial perturbations are illustrated. Note that in the case
of A0 the rotation is around the horizontal axis perpendicular to the
particle. In the middle panel the asymmetry of the system is shown for
different types (see the legend) and different amplitudes of initial pertur-
bations. For stiff particles (B = 1) the initial perturbations amplify, while for
more flexible ones (B = 40) they attenuate. In the bottom panel trajectories
of the beads are shown (top view) in the laboratory and in the moving
reference frames for initial perturbation Az = 0.02, for which the system
converges to a symmetric, aligned configuration. The initial and final
positions of the beads are marked in grey.

The behaviour of the non-symmetric pairs of filaments is
summarized in Fig. 12. It shows a wide range of the parameter B,
which corresponds to fibres of different flexibility, or to a variable
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Fig. 12 Influence of the external field (e.g. gravity) magnitude on the type

of the dynamics in a non symmetrical system. Typical configurations are
shown for B e {1, 40, 100}.

strength of the external field - which can be found e.g. under
gravity, in a centrifuge or for electrically-driven motion of
charged particles. The stiffest filaments (B < 10) often collide
during the simulations, and the contact between them is estab-
lished at ‘random’ points. More flexible ones (10 < B < 75) first
converge to a parallel configuration, and on a longer time scale
approach each other in the parallel configuration. The contact is
established at the ends of the fibres, yet the particles are close to
each other all along their length. Even more flexible fibres
(75 < B < 124) also converge to a parallel configuration, but
unlike in the previous case, they avoid contact. Very flexible
filaments (B > 150) avoid contact without forming stable pairs.
Independently of the flexibility of the filaments, if the perturba-
tion is large in some cases ‘simple’ collisions may be observed,
which are typical for stiff particles (B < 10). From the description
given above we can conclude that by varying the strength of the
external field, the flexibility of the filaments or the fluid density,
one may control the way in which two particles interact in the
Stokes flow and how far they are from each other.

7 Discussion and conclusions

In this article, we present new periodic orbits of rigid rods not
restricted to a vertical plane. We also explain why symmetric
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pairs of rods initially in a horizontal configuration must per-
form periodic motions. The basic features of such dynamics,
e.g. the dependence of the period on the initial configuration,
have been examined.

The periodic dynamics of rigid particles is key to explain the
dynamics of weakly bending filaments, which are of particular
interest because most physical systems studied experimentally fall
into this regime of small flexibility B. Weakly bending filaments,
initially in a symmetric horizontal configuration, later perform
oscillations similar to rigid rods, but with time, the amplitude of
the oscillations diminishes and the particles converge to a parallel,
horizontal configuration. We provide an explanation of this beha-
vior and show that the decay of the oscillation amplitude is roughly
exponential with respect to the number of oscillations (but not with
respect to time). We also show that damping of oscillations is faster
for more flexible filaments, and for moderate flexibility, B ~ 100, it
is almost instantaneous.

After alignment, stiffer filaments approach each other and,
under the RPY approximation, eventually collide. Moderately
flexible filaments converge to a well-separated configuration,
and even more flexible ones drift apart.

The mechanism of the alignment of flexible fibres was
shown to depend solely on their bent shape. This observation
allowed us to extend the applicability of the results to rigid,
curved particles. In the studied system, rigid particles behave
almost identically to their flexible counterparts, given that the
fixed, curved shape of the former is similar to that adopted
under gravity by the latter ones. The key factors of particle
alignment are their elongated shape (which entails their initial
drift toward each other and the movement along the y axis)
combined with the ability of each curved particle to orient itself
perpendicularly to gravity or another external force driving the
system. As a result, the findings obtained here for flexible
filaments may be applicable to a wide class of elongated particles
which self-orient while sedimenting, e.g. banana-shaped rigid
particles® or crescent-shaped sickle red blood cells in sickle cell
disease.”®

Additionally, we briefly discussed the dynamics of more
flexible filaments, B > 150 for N = 10. In this case the filaments
do not align, but drift apart in a non-parallel configuration. If the
filaments are not too flexible, e.g. B ~ 150 for ¢(0) = n/4, the
particles first approach each other and later repel. In the case of
even more flexible filaments, e.g. B > 200, the particles drift
away from each other immediately, without an attracting phase.

During the studies of the dynamics of flexible filaments, in
addition to the presented results for N = 10, we also investigated
the dynamics of shorter and longer filaments, consisting of
N € {6, 13, 20, 30} beads. Qualitatively the dynamics are the
same as for the shorter fibers and only minor, quantitative
changes are observed. Filaments consisting of up to N = 30
beads may perform all modes of symmetric dynamics presented
in Fig. 4. In particular, fibres converge to the aligned configu-
ration for a very similar range of B. Also in the parallel configu-
ration particles behave in the same way as shorter filaments:
flexibility-dependent attraction, repulsion, or convergence to a
steady distance is observed. The aspect ratio of the filaments
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(number of beads) influences slightly the limiting value of B
between different modes of the dynamics, as well as the
B-specific equilibrium distance for the parallel filaments (see
Fig. 8). In particular, the upper limit of ¢(0) for which collisions
of the filaments are observed (instead of alignment) is larger for
longer fibres. Due to their larger mobility in the elongated
direction, thinner particles collide more easily than thicker ones.
Overall, however, the main effect of different filament length
(or aspect ratio) is included in the dimensionless parameter
B = 4GLy’/nEya®. The quantitative effects, mentioned above, are
secondary. The dynamics of filaments with the same values of B
are similar to each other for a wide range of aspect ratios.

The range of the considered values of B chosen in this article
often corresponds to elongated flexible filaments which can be
found in nature, and also those which were studied theoreti-
cally in the literature, as discussed in ref. 45.

One of the fields in which our results may apply is the
dynamics of chain-forming diatoms.'*'*'® These non-motile
phytoplankton species have an important role in marine food
webs."® The diatom chains have a diameter of about 20-50 pm
and a density of 1.1 kg dm™>. Their bending stiffness (corres-
ponding to the parameter 4) is estimated as 1.3 x 10~"” Nm? for
Guinardia delicatula up to 1.7 x 10~ for Lithodesmium undu-
latum.** Some diatom species can be even more flexible.'* In
terms of the elasticity-to-bending parameter B, a hypothetical
diatom of diameter d = 20 pm, density p = 1.125 kg dm >, chain
bending stiffness A = 1.3 x 10~"” and length 750-2000 pm
corresponds to B € [10, 200], investigated in this paper.

In conclusion, in this paper we provide a description of the
dynamics of two sedimenting particles for a wide range of their
elastic properties: from very stiff to very flexible. The most
attention is devoted to relatively stiff particles, due to their
importance in applications. Additionally, a physical explana-
tion is given for the most important features of the observed
dynamics: periodic motions of rigid particles and convergence
to an aligned configuration by elastic filaments.

This study reveals a few interesting problems for future
work. It is worthwhile to examine the dynamics of filaments
after alignment with the use of a more accurate approximation
of hydrodynamic interactions between the beads, such as the
multipole expansion of the Stokes equations corrected for lubri-
cation, implemented in the numerical code Hydromultipole.”?
In this way, it would be possible to avoid spurious collisions and
determine the dynamics of filaments with some of the beads
coming very close to each other. Moreover, it would allow one to
reveal whether attracting, stationary, non-touching aligned con-
figurations exist for relatively stiff filaments. For more flexible
filaments it is important to study the dynamics after alignment,
in order to know the long-term dynamics of the filaments.
The transition between the alignment regime (smaller B) and
non-alignment/repulsion regime (larger B) also remains to be
analyzed. Moreover, it is worthwhile to study if there exist
different stationary or periodic solutions for two sedimenting
flexible filaments, and analyze their stability properties. Com-
parison with experiments would be also important. Moreover, it
is interesting to investigate how the dynamics and rheology of

This journal is © The Royal Society of Chemistry 2019


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9sm01373c

Open Access Article. Published on 11 October 2019. Downloaded on 2/7/2026 4:09:50 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Soft Matter

suspensions of flexible fibers®”~>° is affected by pairwise hydro-
dynamic interactions between elastic filaments. For example, in
sedimenting suspensions, flexibility causes elongated particles
to preferentially align in directions perpendicular to gravity.>® As
shown in this paper, a pair of flexible filaments shares this
commonality. Finally, it would be worthwhile to study hydro-
dynamic interactions of pairs of sedimenting elastic loops.*>®°
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Appendix A: filament trajectories

In Fig. 13 and 14, we present trajectories of two rigid and two
elastic symmetric filaments, respectively. We plot the trajec-
tories of each bead in the laboratory frame of reference.
The examples shown are representative also for other values
of the parameters. The trajectories in Fig. 13 and 14 correspond
to the snapshots presented in Fig. 2 and 4 in the main text.

Appendix B: list of supplementary videos

Video_01 Periodic motions of rigid, straight particles consisting
of 6 beads. ¢(0) = 30°.

View Article Online
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Video_02 Periodic motions of rigid, straight particles con-
sisting of 10 beads. ¢(0) = 45°.

Video_03 Dynamics of moderately elastic fibers, where the
particles converge to the aligned configurations. N = 10, ¢(0) = 45°.

Video_04 Dynamics of very elastic fibers, which converge to
a specific distance (B = 100) or repel each other (B = 150,
B =300). N = 10, ¢(0) = 45°.

Video_05 Influence of the fiber elasticity on the oscillation
decay. Stronger damping is observed for more flexible particles.
N =10, ¢(0) = 45°.

Video_06 Dynamics of parallel fibers (front view). Depend-
ing on their elasticity, the particles attract each other (most
stiff), repel (most flexible) or converge to a specific distance
(intermediate elasticity). N = 10, ¢(0) = 90°.

Video_07 Dynamics of flexible filaments (B = 40) and
rigid, curved particles with shape corresponding to the same
elasticity. ‘Correspondence’ is defined in the main text. N = 10,
¢(0) = 45°.

Video_08 Dynamics of a non-symmetric system which con-
verges to the aligned configuration. N = 10, B = 10, ¢(0) = 45°,
Az = 0.02.

Video_09 Dynamics of a non-symmetric system which con-
verges to the aligned configuration. N = 10, B = 5, ¢(0) = 45°,
Ay = 0.005.

Video_10 Dynamics of a non-symmetric system where finally
the particles collide. N = 10, B = 1, ¢(0) = 45°, Ap = 0.5°.
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Fig. 13 Dynamics of rigid rods made of N = 6 beads in the laboratory frame of reference. Trajectories of bead centers with labels 1, 6 and 2, 3, 4, 5
are marked with red, green and blue, respectively. Initially x.m(0) = 2. Top row: quasi-2D vertical sedimentation for ¢(0) = 0. Bottom row: 3D motion for

#(0) = n/6.
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B = 10, weakly damped oscillations, alignment of particles
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Fig. 14 Dynamics of two flexible filaments in the laboratory frame of reference, for the same parameters as in Fig. 4: N = 10, x.(0) = 2, ¢(0) = /4 and the
elasto-gravitational number B as indicated. Trajectories of all the beads are shown: green and red — first and last bead of each filament, blue — other beads.

Video_11 Dynamics of a non-symmetric system where in the Video_12 Dynamics of a non-symmetric system where in the
final stage the particles drift horizontally while settling down. final stage the particles rotate around the vertical axis while
N=10,B=5,Ap =0.5°, Ap = 10°. settling down. N = 10, B = 5, ¢(0) = 45°, Az = 0.1.
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