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Self-assembly of spiral patterns in confined
systems with competing interactionst
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Colloidal particles in polymer solutions and functionalized nanoparticles often exhibit short-range
attraction coupled with long-range repulsion (SALR) leading to the spontaneous formation of symmetric
patterns. Chiral nanostructures formed by thin films of SALR particles have not been reported yet. In this
study, we observe striking topological transitions from a symmetric pattern of concentric rings to a
chiral structure of a spiral shape, when the system is in hexagonal confinement. We find that the spiral
formation can be induced either by breaking the system symmetry with a wedge, or by melting of the
rings. In the former case, the chirality of the spiral is determined by the orientation of the wedge and
thus can be controlled. In the latter, the spiral arises due to thermally induced defects and is absent
in the average particle distribution, which forms highly regular hexagonal patterns in the central part of
the system. These hexagonal patterns can be explained by interference of planar density waves.
Thermodynamic considerations indicate that equilibrium spirals can appear spontaneously in any stripe-
forming system confined in a hexagon with a small wedge, provided that certain conditions are satisfied

rsc.li/soft-matter-journal

1 Introduction

Self-assembly of isotropic particles on two-dimensional (2D)
unrestricted flat interfaces leads to formation of ordered struc-
tures that have either hexagonal or two-fold symmetry. If the
self-assembly is driven by isotropic competing interactions that
are attractive at short distances, but repulsive at larger separa-
tions (SALR pair potential), then it was shown by computer
simulations," theory>® and experiments”™® that the observed
low-temperature microphases are made of periodically ordered
clusters, stripes or voids. The striped low-temperature structure
exhibits one-dimensional periodicity, which upon heating is
lost in a step-wise process. Firstly, thermally induced topological
defects destroy the translational order, but the orientational
order of stripe segments of various sizes is preserved. Further
heating turns the orientationally ordered stripe segments into an
isotropic labyrinth.?

One can expect that instead of cooling down the system to
limit the number of topological defects and restore the ordered
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by a set of phenomenological parameters.

pattern, one can impose boundary conditions with symmetries
that agree with the symmetries of the confined structure.
Indeed, in the slit geometry the number of topological defects
in the stripe forming SALR system can be reduced either by
decreasing the temperature or by decreasing the distance
between the parallel confining walls.'® However, the distance
between the confining surfaces must be commensurate with
the period of the structure stable in the bulk system, otherwise
the low-temperature structures have periodic corrugations that
spread along the whole slit. Thus, methods that help to
enhance the order but do not require a highly precise choice
of the wall-to-wall distance are of interest.

The patterns present in the slit and absent in the uncon-
strained system raise a more general question of the possibility
of creating new, desired patterns in self-assembling systems by
confining them in containers of different sizes and shapes. New
patterns can be expected especially when the symmetries of the
boundaries are different from the symmetries of the phases
present in the unconstrained self-assembling system. Despite
the expected significant role of confinement,">'* not much is
known about its effects on monolayers of SALR particles. Striped
2D SALR patterns were investigated only in a slit>'**** or on a
surface of a sphere,">"® where topological defects are enforced
by the system topology. In 3D, on the other hand, the effects
of imposing periodic or closed cylindrical confinement on a
hexagonal cylindrical phase were studied,”® showing stability of
helical structures similar to those that were observed for block
copolymer systems.**
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Here we focus on a monolayer of particles adsorbed on a
flat surface and confined by a closed boundary with high
symmetry — a case not studied for SALR systems yet. The natural
candidates to form such a type of confinement are circular
or hexagonal walls. Regular hexagons can form a honeycomb
structure dividing the plane into cells, and such a pre-patterned
surface can be experimentally prepared. Moreover, the clusters
in a SALR system can form a hexagonal pattern, but in the case
of stripes, new patterns can be induced by hexagonal walls.
Thus, we decided to begin the search for confinement-induced
new patterns in a 2D SALR system by choosing the hexagonal
confinement and thermodynamic conditions leading to for-
mation of stripes.

SALR systems were shown to share many properties with diblock
copolymers (BCP), which have found applications in a variety of
fields including filtration, photonics or nanofabrication.*™>*
In particular, microphases of the same symmetry are present
in the two systems, and the phase diagrams have the same
topology.>>** This remarkable similarity can be explained within
the Landau-Brazovskii theory, under the assumption of weak-
ordering (valid at relatively high-temperature).’> On the other
hand, the effect of micellization of amphiphilic particles on the
equation of state®® can be qualitatively different from the effect
of cluster formation on the equation of state in SALR systems
with dominant repulsion.®” In addition, the stripe phase with only
orientational order has not been reported in the case of BCP. Thus,
the analogy between SALR and BCP systems is not complete.

Single layers of hexagonally ordered BCP which form striped
thin films have been already broadly studied and used for
fabrication of e.g. nanoelectronics,**** and the effects of circular
or hexagonal confinement have been studied in ref. 43. In circular
confinement, concentric rings were observed at low temperature.
When the symmetry was broken by a wedge attached to the
circular wall, self-assembled spiral structures appeared. Based
on the similarity of the phase diagrams in the bulk®* and
previous confinement studies*® one might expect similar effects
of confinement in SALR and BCP systems. However, this con-
jecture is not justified by any general proof, and needs to be
either proven or verified by direct results for SALR systems,
which is the purpose of this work.

In Section 2 we describe the model and the simulation
method. We choose the triangular lattice model introduced in
ref. 4, and Monte Carlo simulations in the grand canonical
ensemble. The results are presented in Section 3. At low
temperature we find concentric hexagonal rings, which upon
heating first merge into long spirals, and upon further heating
the spiral breaks into disconnected segments of various lengths.
Due to the symmetry of the boundaries, the average density
shows no chirality, unless the symmetry is broken by a wedge
attached to a vertex of the hexagon. The orientation of the wedge
determines the chirality of the spiral. However, the average
density has the form of a spiral only for certain sizes of the
hexagon. The similarity between SALR and BCP systems, and
formation of chiral structures only for certain sizes of the
systems, raises a general question of in which stripe-forming
systems chiral structure can be induced by breaking the symmetry
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of the hexagonal confinement by a small wedge. Motivated by this
question, in Section 4 we present general, model-free thermo-
dynamic considerations for any stripe-forming system. We derive
inequalities that must be satisfied by phenomenological para-
meters such as surface tensions or free-energies associated with
structural defects, in order to obtain chiral structures in hexagonal
confinement with a small triangular obstacle attached to the
boundary. Our conclusions are included in Section 5.

2 Methods and model

To study confinement effects, one needs to know the bulk
behavior of the considered system. In the case of SALR particles,
competing interactions lead to highly complex energy land-
scapes, Kosterlitz-Thouless transitions, cluster formation and
periodic ordering, and thus sampling of their phase space can
be tricky."® Those difficulties are much easier to manage in a
discretized space. For that reason the core of our methodology
is Monte Carlo (MC) simulations of the lattice model studied
in ref. 2, 4 and 10. Our main results, however, were verified by
off-lattice molecular dynamics simulations for a continuous
model in order to make sure that our results are not artifacts
of the underlying lattice (see the ESIt for the continuous-model
results).

We performed lattice Monte Carlo simulations in the grand
canonical ensemble using the standard Metropolis algorithm™**
enhanced by the replica exchange scheme,”” which helps
to equilibrate systems which exhibit many metastable states.
For each value of the chemical potential we sampled n = 150
inverse temperatures, f3;, such that ;= i, + k3f, k= 0,. . ., n, with
typically i = 0 and 8 = 0.025.

We consider a triangular lattice model (Fig. 1) with the
interaction potential:

—Ji for |Ax| =1, (nearest neighbors)
V(Ax) =< +J, for |Ax| = 2, (third neighbors) (1)
0 otherwise,

where —/; and J, represent the attraction well and the repulsion
barrier respectively. The hard core repulsion between the parti-
cles was obtained by taking the particle diameter ¢ as a lattice
constant. Similarly to ref. 2, 4 and 10-12 the repulsion to

Fig. 1 The hexagonal model with a single-occupancy triangular lattice.
Interparticle short-range attraction (SA) acts only between the first neigh-
bors, while long-range repulsion (LR) only between the third.

This journal is © The Royal Society of Chemistry 2019
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attraction ratio J,/J; was set to 3. With the above interaction
potential the thermodynamic Hamiltonian has the form:

H:%ZZﬁ<x>V<x—x'>ﬁ<x'>—MZMX% @)

X

where ) denotes the summation over all lattice sites, the

X
microscopic density at the site x is p(x) = 1(0) when the site
x is (is not) occupied and y is the chemical potential. The results
are presented in reduced units, i.e. T = kgT/J;, u* = ulf;.

In the bulk, periodic patterns made of rhomboidal clusters,
stripes or rhomboidal voids are formed depending on the value
of the chemical potential. In the current study we set u* = 6,
corresponding to the stability of the striped phase. We should
mention that similar periodic structures occur in a number of
different lattice models designed for different physical systems,
including three- or two-component mixtures with amphiphilic
molecules. One of the first models of this kind was introduced
in ref. 46.

As discussed in the introduction, we impose confinement of
a hexagonal shape and assume hard-core repulsion between
particles and walls. Such a shape of confinement was previously
considered for BCP** or electrons on a Au(111) surface.*”** We
will comment on the found similarities with those systems in
the conclusions.

3 Results
3.1 The ground state (T = 0)

In the grand canonical ensemble, the stable structures are
those which correspond to the global minimum of the grand
potential per lattice site. At T= 0, the grand potential reduces to
the thermodynamic Hamiltonian given by eqn (2). We found
that for pu* = 6 concentric rings are formed in the hexagonal
confinement independently of the system size (Fig. 2). The only
difference between the found structures is the defect formed in
the center of the hexagon: a hexagonal void, a single particle, a
hexagonal cluster or a single empty site. Because the period of
the bulk lamellar phase is 4, what determines the particle
arrangement in the center of the hexagon is the remainder,
r, obtained when dividing M by 4. Similar conformations
were previously described for a BCP system within a circular
template.*®

3.2 The temperature effect

We start our study of temperature effects on the hexagonal system
by the analysis of the heat capacity, c¢y(7). Fig. 3 shows that
the dependence of ¢y on T is significantly different for r = 0, 2

Fig. 2 The ground state conformations for different system sizes, M. From
left to right: M = 8, 9, 10, and 11.
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Fig. 3 Upper panels: cy(T) for different sizes of the hexagon side M = 4 x
n + r, vertically shifted for visibility. Left upper panel from the bottom to
the top: M = 14, 18,. .., 36, right upper panel from the bottom to the top:
M =15, 19,..., 39. Lower panels: Temperatures corresponding to the cy(T)
peaks. G.S. indicates the region for which the ground state structures
depicted in Fig. 2 are stable. Density distributions and snapshots for the
(M,T) values indicated by squares are shown in Fig. 4. The circles corre-
spond to the temperature at which the average number of clusters, c(T),
drops significantly as shown in Fig. 6.

and r = 1, 3. In the former case, low-T ¢y peaks are significantly
higher and sharper, and occur at higher temperatures than for
r = 1, 3. Also the number of peaks is different in the two
cases. With increasing system size, new maxima arise and c¢y(7)
becomes more complex. For each value of r, the temperature of
the low-T peak of ¢y decreases monotonically, but for all the
considered system sizes it is still larger than the bulk value,
Toui® = 0.25, that corresponds to the lamella-molten lamella
phase transition.”

In Fig. 3, bottom panels, we show the structural diagram of
the system obtained by the heat capacity calculations. In this
diagram, small filled circles correspond to the maxima of cy.
Below the bottom line, the ground-state structures, i.e. concentric
rings, are stable. The concentric rings melt in a step-wise way,
with structural changes occurring at temperatures corresponding
to the maxima of ¢y,.

The average density distributions and representative snap-
shots for temperatures corresponding to the minima of ¢y are
shown in Fig. 4, for the temperatures and hexagon sizes
indicted in Fig. 3 by the squares. The average density distribu-
tions are highly symmetric. Of course, the symmetry of the
density distributions follows from the symmetry of the hexagonal
confinement. On the other hand, the snapshots are not symmetric
and appear disordered. A closer look reveals that near the system
boundaries the stripes are parallel to them. In the central part of
the system, however, we can observe spirals or twisted spirals in
the left column, and stripes parallel to each other and perpendi-
cular to the diagonal of the hexagon in the central and right
columns in Fig. 4. The probabilities of the configurations

Soft Matter, 2019, 15, 7715-7721 | 7717
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Fig. 4 Average density distributions and the corresponding snapshots for the different (M, T) points marked by squares in Fig. 3. In the snapshots, the
particles are shown in blue. The thin red rectangle encloses a local lamellar structure that forms in the center.

obtained by a rotation by the angles n/3 and 2n/3 are the same.
Hence, averaging over all configurations should have an effect
similar to a superposition of standing density waves leading to a
hexagonal pattern in the central part of the system.

Such patterns should be present in many stripe forming
systems in hexagonal confinement, and indeed were observed
experimentally.*”*® For different phase shifts of the interfering
waves one can find centrally located structures that resemble a
honeycomb or a pattern of hexagonally ordered clusters. Such
patterns can be seen in Fig. 4 for different values of r and T.
The density profiles computed along the symmetry axes of the
hexagon show a minimum or a maximum in the center of the
hexagon for r = 0, 3 or r = 1, 2, respectively (ESIT).

The average density and a representative configuration in a
large system at a temperature between the two first maxima of
¢y (between the two bottom lines in Fig. 3) are shown in Fig. 5.
From this figure, one can clearly see the formation of a spiral
occupying a large portion of the hexagon. Left- and right-handed

(@) (b)

Fig. 5 Density map (a) and a single configuration (b) of the SALR system with
a side of size M = 41 at T = 0.35. The color scheme is the same as in Fig. 4.

7718 | Soft Matter, 2019, 15, 77157721

spirals are typical structures in this region of the (M,T) structure
diagram, and to quantify the presence of such structures one
needs a proper order parameter.

The order parameter that would capture the transition from
rings to spirals can be defined in various ways. Here, we note
that when: (i) the number of segments decreases significantly
(i.e. the length of the stripes increases), (ii) the chemical
potential is fixed so that parallel stripes (lamellar phase) are
favorable in the unconstrained system, and the total length of
the stripes on the area of the considered hexagon is much
larger than its circumference and (iii) the rigidity of a long
stripe is large, so that bending of the stripe comes with a high
energetic cost, then a spiral or spirals are the most probable
configuration of a very long stripe in hexagonal confinement. In
a spiral, bends of the stripe by a large angle can be avoided.

Since in our model all of the above conditions are fulfilled
we decided to use an order parameter that does not depend
on the shape of a structure, but rather on the connectivity of
the stripe segments. As we show in Fig. 6, indeed, when the
concentric rings merge into a spiral the length of the obtained
stripe significantly increases, and thus a drop of the number of
disconnected stripes is observed.

Based on the above observation, we consider the average
number of clusters (disconnected segments of stripes) as an
indication of the presence of the spirals. The associated order
parameter can be defined as 1 — ¢(T), where ¢(7) is the average
number of clusters normalized by the number of clusters in the
ground state. 1 — ¢(7) vanishes for the GS structure where no
spirals occur, and increases when the number of disconnected
segments decreases.

This journal is © The Royal Society of Chemistry 2019
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Fig. 6 Number of clusters normalized by the number of the clusters in
the ground state. Left panel: r = O, right panel: r = 3, where r = M mod 4.

In the diagram in Fig. 3, small open circles correspond to the
temperature at which the (negative) derivative of the average
number of clusters, ¢(7T), with respect to T has a minimum. At
this temperature, ¢(7) drops significantly, as shown in Fig. 6. The
clusters were determined by a distance criterion, i.e. two parti-
cles were in the same cluster if they were nearest neighbors. The
dependence of ¢(T) on the system size is also presented in Fig. 6.
Note that the rapid decrease of the number of clusters and the
heat-capacity maximum occur simultaneously, when the con-
centric rings merge into spirals (see Fig. 3, lower panels). After
the rapid decrease, c(7) first increases slowly up to T corres-
ponding to the second maximum of ¢y, and above this tempera-
ture the slope of ¢(T) is significantly larger.

The nonmonotonic behavior of ¢(7T) reflects the merging of
the concentric rings into longer stripes and spiral formation
(a rapid decrease from 1), see Fig. 5. Upon further heating the
spirals break into smaller segments (c¢(7) increases) and form
structures that on the level of single configurations appear
disordered. This process can be observed in each row of Fig. 4,
where the panels show how a system of a given size melts. In
Fig. 6 one can see that the larger the system the more sudden
the drop of ¢(7T). For larger systems with M > 40 and r = 1, 3, the
drop of ¢(T) is deeper and results in formation of a spiral
pattern as can be seen in Fig. 5. Notably, the merging of the
rings upon heating in the hexagonal confinement is in contrast
to the behavior of bulk SALR systems, which upon a temperature
increase exhibit stripe breaking of the ground state structure
into smaller segments.> Importantly, in the symmetric hexagonal
system, the spiral can only be seen on the level of a single
configuration. The average density distribution should have the
same symmetry as the confinement and cannot be spiral. In
what follows, we show how to induce a spiral formation of the
average density and control its chirality.

3.3 Inducing a spiral

In order to check how a spiral configuration can be induced by
confinement, we tried to break the system symmetry in several
ways. We found that introducing a triangular wedge at the
vertex of the hexagonal boundary can trigger formation of a
stable spiral, as long as the side of the wedge is equal to the
period of the striped structure (Fig. 7a and b). What is more,

This journal is © The Royal Society of Chemistry 2019
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Fig. 7 Low temperature density maps of the system with different system
sizes. Panels (a and b): M = 21, panel (c): M = 44, panel (d): M = 43. The
wedge position is marked by a black triangle and the color code is the
same as in Fig. 5.

the chirality of the spiral can be easily controlled by the
positioning of the wedge. It turns out, however, that formation
of a defectless spiral depends on the system size, and happens
only for r = 1, 3 (Fig. 7c and d).

4 Thermodynamic considerations

In what follows we develop a simple thermodynamic descrip-
tion of a two dimensional stripe-forming system in hexagonal
confinement. Our goal is to find out under what thermody-
namic conditions the self-assembly into concentric rings if the
system is hexagonal and into a spiral pattern if the system has a
symmetry broken by a triangular wedge can occur, when the
striped pattern is formed in the unrestricted system.

The stripe patterns are stable for a range of density that at
low temperatures is very narrow, and in the case of a confined
system is not known a priori. For this reason one should
consider an open system with fixed chemical potential, for
which the grand thermodynamic potential takes a minimum in
the equilibrium state. In hexagonal confinement, the grand
thermodynamic potential Q is a sum of the contributions
proportional to the area of the hexagon, 4, the side length, M,
and a contribution associated with point-like defects, D. Thus,
we postulate

Q=wpA+ ([w+Tgp)M+D (3)

where wy, is the grand potential per surface area in the uncon-
fined system, I, is the sum of the surface tensions at all the
confining walls, and I'gp, is the sum of the surface tensions at the
boundaries between domains with different stripe-orientation.
The above formula is valid for low T, such that the stripes are not
disintegrated by thermal fluctuations. The phenomenological
parameters wp, I'w, I'qp and D contain both the energy and the
entropy contributions.

Soft Matter, 2019, 15, 7715-7721 | 7719
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Inside a symmetric hexagon one can expect ordered states
with either parallel stripes or concentric rings. In the former
case, I'q,b =D =0and I'y, = 2y + 4y, where y, and y, denote the
surface tension for stripes parallel to or tilted with respect to
the walls, respectively. For concentric rings I'y, = 67, I'ap = 67db,
and D = d., where d. comes from the defect in the center, and
depends on M (Fig. 2). Thus, the stable structure is determined
by phenomenological parameters such as yqp, Which is asso-
ciated with the bending rigidity of the stripes. The concentric
rings are stable if 4(yc — y|) — 6yap — do/M > 0, i.e. when the
stripes parallel to the walls are much more favorable than the
tilted ones, and the free-energy cost of bending the stripes
is small.

When a triangular wedge is introduced at a vertex of the
hexagon, then the ring adsorbed at the walls breaks, and its two
ends associated with the excess energy d. occur at the two sides
of the wedge. Breaking of the stripe leads to D = d.t+ 2d.. If a
spiral instead of concentric rings appears, then the length of
the domain-boundary initiated by the wedge shortens leading
to a negative contribution to D. Furthermore, a stripe end
appears in the center of the hexagon, leading to another
contribution to D. The sum of the two contributions to D is
denoted by ds. Thus, the grand potential difference between
the spiral and the concentric hexagons is (d. + ds) — (2de + d¢) =
ds — de — d.. If dg — d. — d. < 0, the spiral is more stable.

Our thermodynamic considerations indicate that there may
exist many systems forming chiral patterns on different length
scales, provided that the phenomenological parameters satisify
the inequalities 4(y, — 7)) — 6yap — do/M > 0 and dg — d. — d. < 0.
In our model spirals are formed for r = 1, 3, and are not formed
for r = 0, 2, indicating a smaller value of d. in the latter case; see
the ESI¥ for the calculation details in the particular case of 7= 0.
The results obtained for T = 0 should be approximately valid at
low T, where the entropic contribution is less important.

5 Conclusions

We have analyzed the self-assembly of a stripe forming system
when exposed to spatial confinement of a hexagonal shape. Our
results reveal two possible scenarios for obtaining a spiral
structure: (i) by proper temperature adjustment or (ii) by intro-
ducing a wedge that breaks the symmetry of the system and
determines the location of the spiral terminal point. In the
former case, the temperature controls the number of topological
defects and thus the self-assembled stripes can break and merge
into one stripe of a spiral shape. However, neither the spiral
orientation nor the position of the terminal point can be con-
trolled if the system is symmetric. Introducing the wedge gives
that control over the spiral. Importantly, the size of the trian-
gular wedge required for inducing the spiral does not depend on
the system size, but is determined by the stripe width. Thus, a
relatively small obstacle on the confining wall can lead to
striking topological changes in particle conformation.

Our results were obtained for a SALR system in which
isotropic competing interactions lead to formation of stripes.
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The proposed model-free thermodynamic approach shows,
however, that for many stripe forming systems hexagonal
confinement may favor formation of concentric rings if the
system is symmetric, or spirals if the symmetry of the system is
broken by a wedge of specific size. These structures can be
stable when thermodynamic parameters such as the surface
tensions and the free-energies of defects obey certain inequal-
ities. Importantly, such a general conclusion finds support in
previously conducted experimental studies on BCPs.*?

The analysis of both the thermal and structural properties of
the system indicates that the hexagonal confinement enhances
the integrity of the stripes. The melting temperature at which
concentric rings start to merge is significantly higher than the
stripe melting temperature in the bulk. On the other hand,
above the melting point defects induced by the temperature can
destroy the ordering, so that the average density distributions
and single snapshots are tremendously different. Thus, the
obtained density maps, although highly symmetric, do not
indicate formation of ordered patterns unless the time of
observation is much larger than the time scale characterizing
the dynamics of the system. Interestingly, similar patterns were
observed on the quantum level, where scattering of surface
state electrons at the edges of densely packed Au atoms led to
formation of standing waves by the local density of states.*”"*®
Thus, the unexpected family of highly symmetric patterns
shown in Fig. 4 can actually be present at length scales ranging
from a few nm to hundreds of micrometers.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors would like to thank Wojciech T. G6zdz for several
enlightening discussions during the course of this work.
This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement No. 734276 (CONIN).
Additional support in the years 2017-2020 has been granted for
the CONIN project by the Polish Ministry of Science and Higher
Education, agreement No. 3854/H2020/17/2018/2. Financial
support from the National Science Center under grant No.
2015/19/B/ST3/03122 is also acknowledged.

References

1 A. Imperio and L. Reatto, J. Phys.: Condens. Matter, 2004,
18, S2319.

2 N. G. Almarza, J. Pekalski and A. Ciach, J. Chem. Phys., 2014,
140, 164708.

3 B. Chacko, C. Chalmers and A. J. Archer, J. Chem. Phys.,
2015, 143, 244904.

4 J. Pekalski, A. Ciach. and N. G. Almarza, J. Chem. Phys., 2014,
140, 114701.

This journal is © The Royal Society of Chemistry 2019


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9sm01179j

Open Access Article. Published on 11 September 2019. Downloaded on 1/24/2026 6:41:07 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Soft Matter

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

A.J. Archer, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.,
2008, 78, 031402.

R. Roth, Mol. Phys., 2011, 109, 2897-2905.

F. Ghezzi and J. Earnshaw, J. Phys.: Condens. Matter, 1997,
9, L517.

R. P. Sear and W. M. Gelbart, J. Chem. Phys., 1999, 110, 4582.
A. D. Law, M. Auriol, D. Smith, T. S. Horozov and
D. M. A. Buzza, Phys. Rev. Lett., 2013, 110, 138301.

N. G. Almarza, J. Pekalski and A. Ciach, Soft Matter, 2016,
12, 7551-7563.

J. Pekalski, A. Ciach and N. G. Almarza, J. Chem. Phys., 2015,
142, 014903.

J. Pekalski, N. Almarza and A. Ciach, J. Chem. Phys., 2015,
142, 204904.

A. Imperio and L. Reatto, Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys., 2007, 76, 040402.

E.-Y. Kim, S.-C. Kim and S.-H. Suh, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2012, 85, 051203.

G. J. Zarragoicoechea, A. G. Meyra and V. A. Kuz, Mol. Phys.,
2009, 107, 549-554.

J. J. Amazon, S. L. Goh and G. W. Feigenson, Phys. Rev. E:
Stat., Nonlinear, Soft Matter Phys., 2013, 87, 022708.

S. L. Goh, J. J. Amazon and G. W. Feigenson, Biophys. J.,
2013, 104, 853-862.

J. J. Amazon and G. W. Feigenson, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2014, 89, 022702.

J. Pekalski and A. Ciach, J. Chem. Phys., 2018, 148, 174902.
H. Serna, E. G. Noya and W. G6zdz, Langmuir, 2018, 35, 702-708.
A.-C. Shi and B. Li, Soft Matter, 2013, 9, 1398-1413.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller,
A. Hogele, F. C. Simmel, A. O. Govorov and T. Liedl, Nature,
2012, 483, 311.

L. D.-C. Tzuang, Y.-W. Jiang, Y.-H. Ye, Y.-T. Chang, Y.-T. Wu
and S.-C. Lee, Appl. Phys. Lett., 2009, 94, 091912.

Y. K. Pang, J. C. W. Lee, H. F. Lee, W. Y. Tam, C. T. Chan and
P. Sheng, Opt. Express, 2005, 13, 7615-7620.

J. Pekalski, P. Rogowski and A. Ciach, Mol. Phys., 2014,
113, 1022.

J. Pekalski, A. Ciach and N. G. Almarza, J. Chem. Phys., 2013,
138, 144903.

M. Edelmann and R. Roth, Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys., 2016, 93, 062146.

J. A. Bollinger and T. M. Truskett, J. Chem. Phys., 2016,
145, 064902.

This journal is © The Royal Society of Chemistry 2019

29

30

31
32

33

34

35

36

37

38

39

40
41

42

43

44

45

46

47

48

View Article Online

Paper

J. A. Bollinger and T. M. Truskett, /. Chem. Phys., 2016,
145, 064903.

Y. Zhuang, K. Zhang and P. Charbonneau, Phys. Rev. Lett.,
2016, 116, 098301.

C. P. Royall, Soft Matter, 2018, 14, 4020-4028.

A.]. Archer and N. B. Wilding, Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys., 2007, 76, 031501.

A. Archer, C. Ionescu, D. Pini and L. Reatto, J. Phys.: Condens.
Matter, 2008, 20, 415106.

A.]. Archer, D. Pini, R. Evans and L. Reatto, J. Chem. Phys.,
2007, 126, 014104.

A. Ciach, J. Pekalski and W. T. Go6zdz, Soft Matter, 2013,
9, 6301.

A. P. Santos and A. Z. Panagiotopoulos, J. Chem. Phys., 2016,
144, 0447009.

A. P. Santos, J. Pekalski and A. Z. Panagiotopoulos, Soft
Matter, 2017, 13, 8055-8063.

H. Tsai, J. W. Pitera, H. Miyazoe, S. Bangsaruntip,
S. U. Engelmann, C.-C. Liu, J. Y. Cheng, J. J. Bucchignano,
D. P. Klaus and E. A. Joseph, et al., ACS Nano, 2014, 8,
5227-5232.

H.-C. Kim, S.-M. Park and W. D. Hinsberg, Chem. Rev., 2009,
110, 146-177.

D. J. Herr, J. Mater. Res., 2011, 26, 122-139.

F. H. Schacher, P. A. Rupar and I. Manners, Angew. Chem.,
Int. Ed., 2012, 51, 7898-7921.

G. Liu, Y. Wu, Y.-M. Lin, D. B. Farmer, J. A. Ott, J. Bruley,
A. Grill, P. Avouris, D. Pfeiffer and A. A. Balandin, et al., ACS
Nano, 2012, 6, 6786-6792.

H. K. Choi, J.-B. Chang, A. F. Hannon, J. K. Yang,
K. K. Berggren, A. Alexander-Katz and C. A. Ross, Nano
Futures, 2017, 1, 015001.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller and E. Teller, J. Chem. Phys., 1953, 21, 1087.

R. H. Swendsen and ].-S. Wang, Phys. Rev. Lett., 1986, 57,
2607-2609.

J. C. Wheeler and B. Widom, J. Am. Chem. Soc., 1968, 90,
3064-3071.

G. Rodary, D. Sander, H. Liu, H. Zhao, L. Niebergall,
V. Stepanyuk, P. Bruno and J. Kirschner, Phys. Rev. B:
Condens. Matter Mater. Phys., 2007, 75, 233412.

K. Schouteden, E. Lijnen, D. Muzychenko, A. Ceulemans,
L. F. Chibotaru, P. Lievens and C. Van Haesendonck,
Nanotechnology, 2009, 20, 395401.

Soft Matter, 2019, 15, 7715-7721 | 7721


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9sm01179j



