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Recovering superhydrophobicity in nanoscale and
macroscale surface textures†
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Here, we investigate the complete drying of hydrophobic cavities in order to elucidate the dependence

of drying on the size, the geometry, and the degree of hydrophobicity of the confinement. Two

complementary theoretical approaches are adopted: a macroscopic one based on classical capillarity

and a microscopic classical density functional theory. This combination allows us to pinpoint unique

drying mechanisms at the nanoscale and to clearly differentiate them from the mechanisms operational

at the macroscale. Nanoscale hydrophobic cavities allow the thermodynamic destabilization of the

confined liquid phase over an unexpectedly broad range of conditions, including pressures as large as

10 MPa and contact angles close to 901. On the other hand, for cavities on the micron scale, such

destabilization occurs only for much larger contact angles and close to liquid–vapor coexistence. These

scale-dependent drying mechanisms are used to propose design criteria for hierarchical superhydrophobic

surfaces capable of spontaneous self-recovery over a broad range of operating conditions. In particular, we

detail the requirements under which it is possible to realize perpetual superhydrophobicity at positive

pressures on surfaces with micron-sized textures by exploiting drying, facilitated by nanoscale coatings.

Concerning the issue of superhydrophobicity, these findings indicate a promising direction both for surface

fabrication and for the experimental characterization of perpetual surperhydrophobicity. From a more basic

perspective, the present results have an echo on a wealth of biological problems in which hydrophobic

confinement induces drying, such as in protein folding, molecular recognition, and hydrophobic gating.

1 Introduction

Several interfacial phenomena of technological interest run
under the name of superhydrophobicity: self-cleaning,1 anti-
fouling,2 drag reduction,3 etc. Such behaviors are tied to the
occurrence of a ‘‘suspended’’, so-called Cassie–Baxter, state in
which a liquid body is in contact not only with a solid surface
but also with vapor or gas pockets which occupy surface
asperities, sustained by capillary forces. However, this super-
hydrophobic state is fragile, in the sense that external factors,
such as pressure variations, contaminants, or mechanical
vibrations, can cause its collapse into the Wenzel state in which
all surface asperities are wet.

If present, perpetual superhydrophobicity promises to heal
the fragility of a suspended superhydrophobic state, thus opening
novel scenarios for applications in materials science. It has been
shown4 that the Wenzel state can become thermodynamically
unstable in nanoscale hydrophobic cavities, making the super-
hydrophobic state capable of self-recovery when the pressure is
lowered to ambient conditions. However, direct experimental
evidence of perpetual superhydrophobicity is still lacking for
surfaces close to application interests, due to conceptual,
experimental, and fabrication difficulties. Here, we clarify the
concept of perpetual superhydrophobicity in its various connotations
at the macro and nanoscale, with the goal of proposing new design
criteria for superhydrophobic surfaces and stimulating accurate
experimental studies of this drying phenomenon. Drying is an
interfacial phase transition in which, upon changing pressure
or temperature, the solid–liquid interface is replaced by a solid–
vapor and vapor–liquid interface.5

Understanding drying in hydrophobic confinement is crucial not
only for superhydrophobicity but also for a number of important
biological phenomena. For proteins (or large molecules) in solution
the proximity of hydrophobic residues can give rise to local
evaporation and, as a consequence, to hydrophobic attraction.6,7

This mechanism is known to play a role in protein folding,8,9
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molecular recognition,10 self-assembly,11 and hydrophobic
gating12,13 – to name a few systems. The results discussed here,
with a particular focus on superhydrophobic surfaces, are of
relevance for this panoply of phenomena, in the sense that they
contribute to disentangle the complex dependence of drying on
the size, the geometry, and the degree of hydrophobicity of
the confinement. In particular, we investigate four textures:
two-dimensional grooves, cylindrical, parallelepipedic, and ink-
bottle-shaped pits which are representative of different degrees
of confinement and of relevant geometrical characteristics,
such as corners, tapered walls, etc. In principle, currently
available techniques can be used for producing nanotextured
surfaces with similar geometries: quasi-2D grooves, cylindrical
pits, and tapered cylinders.14

Superhydrophobicity originates from capillary forces which
are capable of sustaining a liquid–gas interface atop rough
surfaces – the so-called Cassie–Baxter state. However, in a typical
situation, pressure variations or other changes of the environ-
mental conditions may overcome the capillary forces and induce
complete wetting of the rough surface (Wenzel state), with the
concomitant loss of superhydrophobic properties. The reverse
transition from the Wenzel state to the Cassie–Baxter state is
usually characterized by large free-energy barriers15–17 which
prevent the recovery of superhydrophobicity under ambient
conditions without an external supply of free energy. Various
strategies for active recovery have been proposed including the
application of electric18–22 or magnetic fields,23 illumination by
ultraviolet light,24,25 or heating of the surface.26,27 On the other
hand, self-recovery aims at destabilizing the Wenzel state by
purely passive means in order to completely and economically
realize perpetual superhydrophobicity, at least over a range of
technologically relevant pressures.

There have been several attempts to realize ‘‘reversible’’28 or
‘‘monostable’’29 superhydrophobicity; for highly non-wetting
liquids such as mercury, perpetual superhydrophobicity was
reported for surfaces decorated with micron-scale textures.29

For water, instead, due to its higher affinity for numerous
substrates (lower hydrophobicity), this simple approach is not
viable and the breakdown of superhydrophobicity proves irreversible
even when the textures are as small as 20 nm.30 Therefore, surfaces
with hierarchical roughness, one on the micron and one on the
nanometer scale, were proposed.28,29 This promising strategy relies
on the intuition that the smaller tier of roughness remains always
dry due to nanoconfinement-enhanced hydrophobicity and pro-
motes the drying of the larger tier. However, ensuring that nanoscale
roughness is perpetually dry, and that the larger textures inherit this
property, is highly nontrivial31 and is experimentally arduous to
verify. The present study aims at providing a coherent picture of
drying from the nano- to the macroscale and formulating the
conditions under which these mechanisms can be combined to
realize self-recovering hierarchical surfaces, providing the hitherto
missing theoretical tools to understand and design perpetual super-
hydrophobicity. In the following, we consider that there is no gas
dissolved in water but only its vapor phase is formed. The degassed
liquid represents the most unfavorable condition for the survival of
superhydrophobicity.32,33

To the best of our knowledge, spontaneous recovery of
superhydrophobicity has not been demonstrated unequivocally
in experiments with water. The main experimental difficulties
are that (i) it is challenging to realize and to characterize regular
surface textures on the nanometer scale, and (ii) the pressures
required in order to press the liquid into such textures – in
order to successively observe its spontaneous retraction – are
exceptionally high. However, for porous materials high-
pressure intrusion and extrusion experiments have shown that
spontaneous drying can indeed be achieved in hydrophobic
nanopores.34,35 Although these systems, composed of nanoporous
granules immersed in water, are quite distinct from superhydro-
phobic surfaces concerning shape and technological applicability,
they positively demonstrate the physical mechanism of spontaneous
drying at the nanoscale (based on which perpetual superhydro-
phobicity can be realized): after liquid intrusion into the pores
at high pressures, it is possible to trigger their drying simply by
decreasing the pressure below a certain threshold value, which
we call the drying pressure Pdry. Thus, for the smallest pores,
around 2 nm wide or below, drying was observed even at
pressures as high as tens of megapascals.35–37 This phenomenon
is related to the thermodynamic destabilization of the liquid phase
due to nanoconfinement, which may occur even under ‘‘normal’’
conditions; this fact could also be exploited for designing materials
endowed with perpetual superhydrophobicity. Importantly, the
drying pressure is controlled by the wetting and the geometric
characteristics of the pores, a topic which is rationalized in the
present study and which is crucial for designing surfaces featuring
perpetual superhydrophobicity.

On the theoretical side, early microscopic simulations have
shown38–40 that free-energy barriers for drying decrease with
increasing confinement; more recent simulation work has
demonstrated barrierless drying in nanostructured hydrophobic
surfaces with various geometries.41,42 Microscopic (classical)
density functional theory (DFT) calculations have also confirmed
barrierless drying in nanoscale grooves4 with moderately hydro-
phobic surfaces (i.e., contact angles yY slightly above 901). Finally,
macroscopic theories predict that it is possible to realize drying at
pressures which are much higher than the liquid–vapor coexistence
pressure Pcoex(T) (at a given temperature T) even for large-scale
textures, provided that the surfaces are sufficiently hydrophobic,
with the contact angle yY being typically much larger than in the
nanoscale case.32,42 Viewed together, these studies underscore an
important conclusion: drying is very sensitive to geometry, hydro-
phobicity, and roughness size, which are the main design para-
meters for perpetual superhydrophobicity. Another important
aspect, which has not yet been fully appreciated, is that the drying
mechanism at the macroscopic scale, which is well-known in the
special case of a wedge,43–46 apparently differs from and seems
to be unrelated to the nanoscale one which favors drying in a
much broader range of thermodynamic conditions and material
parameters.4

In view of the paramount technological interest, the scatter
of theoretical results, and the difficulty in realizing and inter-
preting experiments, it is urgent to clarify the physical mechanisms
of drying as well as to uncover their dependence on material
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parameters with particular attention to size-dependence. Here, we
address this issue by devising a generalized macroscopic theory of
drying in confinement (Section 2), by studying via microscopic DFT
drying in a variety of geometries (Section 3), and by discussing
drying on surfaces with multiple roughness scales (Section 4). The
coherent picture of drying, which emerges from this multiscale
analysis, provides crucial guidelines for designing perpetual
superhydrophobicity and for clearly interpreting corresponding
experiments on (perpetual) superhydrophobicity.

2 Macroscopic drying mechanism

In this section, we recall the existing macroscopic theory of
drying in infinitely extended corners (‘‘wedge drying’’) and
develop the missing macroscopic formulation for simple textures
of finite size and at generic pressures. The macroscopic drying
mechanism is expected to be relevant for surface textures being
larger than a few tens of nanometer and to be suitable only at
large contact angles yY. Additionally, the interval of pressures
DPdry (above and below bulk liquid–vapor coexistence), for which
drying occurs, rapidly reduces as the characteristic dimension w
of such textures increases; as will be shown below, one finds the
scaling behavior DPdry B 1/w.

The wetting properties of the solid walls forming the wedge
are characterized by Young’s contact angle cos yY � (gsv � gsl)/
glv, where gsv, gsl, and glv are the surface tensions of the solid–
vapor, solid–liquid, and liquid–vapor interfaces, respectively. In
order to find the value ywd of yY above which an infinitely
extended wedge dries at bulk liquid–vapor coexistence, the
following classical argument is considered, inferred from
ref. 43 by exchanging liquid and vapor therein (see also
references therein, e.g., ref. 47). An infinitely extended wedge – a
geometry formed by two half planes meeting at a given angle
c – is filled with liquid, except for a vapor filled region, i.e.,
a vapor bubble, occupying the wedge corner. At bulk liquid–
vapor coexistence the pressures in the liquid (Pl) and in the
vapor phase (Pv) are equal and given by the coexistence pressure
Pcoex(T), Pl = Pv = Pcoex(T). Under these conditions, mechanical
equilibrium requires a planar liquid–vapor interface meeting
the walls of the wedge precisely at the contact angle yY

characterizing the walls. This construction is only possible for
a specific value ywd of the contact angle at which the liquid–
vapor interface is in an indifferent equilibrium, i.e., its translation
does not cause any change of free energy. For a wedge with an
opening angle c, this condition reads

ywd ¼
180� þ c

2
: (1)

For a rectangular wedge one has ywd = 1351. For yY o ywd the
liquid–vapor interface in the wedge is unstable and the vapor
bubble shrinks to zero; for yY 4 ywd the position of the liquid–
vapor interface becomes unstable and it moves to infinity, drying
the wedge.

Microscopic DFT studies of wedge drying or of the related
phenomenon of wedge filling clearly show a vapor-filled region

at the wedge corner of hydrophobic walls or a liquid region in
the wedge filled by vapor in the case of hydrophilic walls.43–46

It is easy to extend the purely geometric construction leading
to eqn (1) to a three-dimensional corner formed by three
orthogonal planes:

ycd ¼ arccos � 1ffiffiffi
3
p

� �
� 125:3�; (2)

where the subscript ‘‘cd’’ stands for ‘‘corner drying’’.
To the best of our knowledge, there have been only limited

attempts to extend the concept of wedge drying to geometries in
which the maximum size of a vapor bubble in the geometry is
restricted due to the presence of further confining walls. We are
also not aware of attempts to explore the consequences of such
conditions off-coexistence, i.e., for DP� Pl� Pcoex E Pl� Pv a 0.
Here, we analyze, within the macroscopic framework of classical
capillarity, the conditions for drying in rectangular grooves,
focusing on the effects due to the finite width of the grooves.
The adaptation of wedge drying theory to include these geometrical
constraints provides an understanding of the limit of stability for
the Wenzel state in actual, finite-size textures, enabling the
determination of the pressure difference DPdry below which
the groove remains unconditionally dry, i.e., the confined liquid
phase becomes thermodynamically unstable.

The first step to formulate a macroscopic theory of drying in
rectangular grooves is to express the grand canonical potential
within the classical-capillarity approximation:48,49

O = DPVv + glv(Alv + cos yYAsv), (3)

where Vv is the volume of the vapor bubble, Alv is the area of the
(sharp) liquid–vapor interface, and Asv is the area of the solid–
vapor interface, and Young’s law for cos yY has been used which
relates the surface tensions and the contact angle. The fully wet
state, for which Vv = 0, Alv = Asv = 0, and O = 0, is chosen as the
reference state. Eqn (3) is just a sum of bulk and surface terms;
the sign of the first one depends on DP, the second is always
positive, while the third one is negative for hydrophobic
substrates (yY 4 901).

In the second step, we follow an extension of the classical
nucleation theory to confined geometries17,50 in order to calculate
the profile O(Vv) of the constrained grand potential related to the
nucleation of vapor bubbles. Accordingly, O(Vv) is obtained by
minimization of eqn (3), constrained to a given value of the order
parameter Vv. This approach yields the sequence of the most
probable bubble configurations and provides access to stable
and metastable states – corresponding to global and local minima
of the grand potential, respectively – and to the grand-potential
barriers separating them. Importantly for the present study, it is
possible to identify the spinodal conditions for which the grand-
potential barrier related to drying vanishes, which renders the
sought drying pressure DPdry.

The results of this procedure are illustrated in Fig. S1 (ESI†)
for infinitely deep grooves with yY = 1451. The grand-potential
profile close to Vv = 0 corresponds to two identical vapor bubbles
occupying the two corners at the bottom of the groove; the curvature
of the liquid–vapor interface decreases as Vv increases. We remark
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that the ‘‘Wenzel’’ minimum actually does not occur for a fully
wet groove (Vv = 0), as instead is the case for contact angles
yY o ywd,17,32 but for two finite bubbles occupying the corners of
the groove. The volume of each of these stable bubbles grows as
DP decreases from positive values towards bulk coexistence. At
Vv = V2b (marked by a star in Fig. S1, ESI†) the two bubbles touch
each other. This condition is used to locate the groove drying
pressure DPdry. Indeed, for DP infinitesimally below DPdry, the
topology of the liquid–vapor interface changes, with the two
disconnected pieces of interface merging into one spanning the
entire groove. The position of this merged interface could
only be stabilized at the much higher coexistence pressure of
capillary vapor and capillary liquid. Therefore, the merged
liquid–vapor interface detaches from the bottom of the groove
and slides without a barrier up to the mouth of the groove,
completely drying it (Fig. S2, ESI†). Clearly, this drying mechanism
is related to the finite width of the groove which permits the
merging of the two corner bubbles. In the case that both the width
and the depth of the groove are ‘‘infinitely’’ large, it is possible,
instead, to accommodate (meta)stable corner bubbles of any size
(thin lines in Fig. S1, ESI†), excluding the occurrence of groove
drying for DP 4 0 due to DPdry - 0 for w - N.

It is interesting to note that for grooves with yY o ywd, a case
considered in ref. 17 and 32, the macroscopic theory always
predicts a finite barrier for drying, even for DP o 0. In other
words, the macroscopic expectation is that there is no spinodal
drying, i.e., no barrierless drying in grooves for yY o 1351,
whatever the pressure. As it will be shown in the next section,
this result is a direct consequence of the classical-capillarity
approximation. In addition, the present macroscopic theory
neglects thermal fluctuations, which can easily overcome barriers
of the order of kBT, where kB is the Boltzmann constant and T the
temperature, leading to a kinetic criterion for drying (see, e.g.,
ref. 42 and 51).

A further comment is in order concerning the typical angle
yY at which drying occurs, e.g., 1351 for rectangular grooves.
This value is unrealistically large for the contact angle of water
on a smooth hydrophobic surface. One should however consider
first that there are other liquids which exhibit such large values of
the contact angle, e.g., mercury,29 to which the present results
apply. Secondly, geometries different from the rectangular wedge
(see, e.g., eqn (2)) and nanoscale confinement (see Fig. 2) can
significantly decrease the drying contact angle. Thirdly, in
Section 4, hierarchical textures are proposed which allow one
to overcome the practical limitation imposed by the typical
angle yY of water.

Fig. 1 summarizes the predictions of the macroscopic theory
for drying of grooves of varying width and contact angle. Both
DFT units (the fluid particle diameter s and the energy unit kBT)
and actual units are used, obtained by assuming s = 0.315 nm
and kBT = 4.16 � 10�21 J. The first important finding, which
differs from the simple wedge drying equation (eqn (1)), is that,
for yY 4 ywd, the finite width of the groove allows for drying at
DP 4 0. This confinement effect is enhanced in smaller cavities
and is particularly effective at the nanoscale, where drying is
expected even at pressures as large as 10 MPa for grooves with a

width of 2 nm; this estimate is obtained from using yY = 1601,
s = 0.315 nm, and kBT = 4.16 � 10�21 J. (The limitations of such
macroscopic models at the nanoscale will be discussed in Section 3.)
As the width of the groove is increased, DPdry rapidly decreases
p1/w (see Fig. 1(b)). For instance, using yY = 1601, s = 0.315 nm,
kBT = 4.16 � 10�21 J, and w = 200 nm, the macroscopic prediction
is DPdry E 1 atm. This result implies that for hydrophobic cavities
of a characteristic size of ca. 1 mm completely dry cavities are
observed in practice only at bulk coexistence and only for
yY Z ywd. DPdry increases approximately linearly with yY, and
DPdry(yY = ywd) = 0. The second important conclusion is that, for
yY o ywd, the grooves never undergo spinodal drying, i.e., the
formation of vapor bubbles in the groove is always associated
with a free-energy barrier;17,32 therefore, in such conditions,
perpetual superhydrophobicity is not possible according to the
macroscopic theory of capillarity.

3 Microscopic drying mechanism

The macroscopic theory predicts that for yY 4 ywd nanoscale
hydrophobic confinement can induce drying at pressures much
larger than those at bulk liquid–vapor coexistence (Fig. 1;
DPdry(yY 4 ywd) 4 0), e.g., DPdry = 10 MPa for grooves with a
width of 2 nm; this estimate is obtained from using yY = 1601, s
= 0.315 nm, and kBT = 4.16 � 10�21 J. At these scales, however,
the macroscopic assumptions may turn out to be unreliable. In
this section we investigate nanoscale effects on drying by
performing density functional theory (DFT)52–54 calculations,
which capture the actual nonzero widths of diffuse interfaces as
well as microscopic effects in confined fluids, such as layering at
the walls and specific density inhomogeneities at the corners. For
details concerning the DFT calculations, the reader is referred
to the Appendices, to the ESI†, and to previous studies.4,55

In addition, we examine the effect of the geometry of nano-
confinement by considering cavities of different shape and size,
i.e., quasi-two-dimensional grooves and cylindrical, parallelepi-
pedic, and ink-bottle-shaped pits (see the ESI† for details).

Fig. 1 (a) Drying pressure for grooves of width w as a function of Young’s
contact angle yY, according to the macroscopic prediction. Connection
with the DFT calculations below is established by using in the macroscopic
theory the relevant values for glv and w: glv = 0.406 � kBT/s; w/s = 6, 11,
and 21, where s is the diameter of the fluid particles. The second y axis is in
actual units, obtained by using s = 0.315 nm and kBT = 4.16 � 10�21 J. The
triangle at ywd = 1351 is the wedge drying condition (1) attained at bulk
liquid–vapor coexistence (DP = 0). (b) Drying pressure as a function of the
inverse groove width 1/w, which turns out to be linear.
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One important nanoscale effect becomes apparent upon
observing how the contact angle ydry, at which drying occurs
at liquid–vapor coexistence (DP = 0), depends on the size of the
cavity (Fig. 2). On macroscopic grounds no such dependence is
expected, as exemplified by the wedge and corner drying
predictions in eqn (1) and (2), respectively. The reason is that
the solutions to the equations of classical capillarity are self-
similar, meaning that the geometry of macroscopic bubbles
does not depend on their absolute size. In contrast, at the
nanoscale, the size of the liquid and wall particles as well as the
range of the fluid–fluid and fluid–wall interactions introduce
intrinsic length scales to the problem, which influence the
effective hydrophobicity of the cavity, the bubble shape, and its
interaction with the neighboring bubble. In general, smaller
cavities tend to facilitate drying, decreasing ydry by more than
151 as compared to the macroscopic expectation (see below
the comparison of the macroscopic expectations with the DFT
results for the parallelepipedic pit and the groove of size w = 6s
in Fig. 2). This effect is reduced as the size of the cavity increases,
tending towards the macroscopic limit (ywd for the groove and ycd

for the parallelepipedic pit). In other words, nano-confinement
pushes the boundaries of the drying transition deeper into the
range of only moderately hydrophobic materials, for which the
macroscopic theory would exclude the possibility of achieving
perpetual superhydrophobicity.

In more detail, the size-dependent shift of the drying contact
angle ydry(w) at coexistence to values considerably smaller than
the macroscopic expectation ywd might be understood as follows.
Hydrophobic walls close to a corner are effectively more hydro-
phobic than the infinitely extended planar wall for which the

contact angle yY is defined. The disturbed balance between the
fluid–fluid and the wall–fluid interactions at corners as well as the
mentioned interference of wall-induced density oscillations leads
to this change of the wetting properties. The enhanced hydro-
phobicity at corners promotes the growth of corner bubbles
beyond the macroscopic estimate. Small corner bubbles are much
more influenced by the locally enhanced hydrophobicity than big
ones, because far away from corners the aforementioned effects
are reduced. Therefore, the macroscopic condition for drying, i.e.,
that the corner bubbles have to touch in the center of the pit or of
the groove, implies that ydry(w) for very wide pits or grooves, i.e.,
large touching corner bubbles, almost coincides with the macro-
scopic expectations. In contrast, for very narrow pits or grooves,
i.e., small touching corner bubbles, a shift to much smaller values
of ydry is observed. Other nanoscale effects, which point in the
same direction, are the nonzero width of the vapor–liquid inter-
face, the density oscillations at the pit or groove bottom, and the
complex intrinsic structure of the vapor–liquid interface in nano-
confinement (see Fig. 3(d)). In the presence of these effects the
bubble-contact condition for drying becomes fuzzy and drying of a
nanocavity may already occur for bubbles which are smaller than
implied by the macroscopic condition. These nanoscale effects are
in principle relevant also to wider pits or grooves; however, their
relative importance decreases with increasing width. All the nano-
scale effects discussed above are also relevant to the determination
of the drying pressure DPdry discussed below.

Fig. 3(a) reports DPdry computed via three-dimensional DFT
for four geometries. This shows that, for the same characteristic
dimension, the shape of the confinement has a major effect on
drying, with the following order of the cavities with the most
destabilizing effect on the liquid: ink-bottle, cylindrical pit,
parallelepipedic pit, groove. This trend reflects the fact that
increasing the number of hydrophobic confining surfaces, e.g.,
switching from a two-dimensional groove to a three-dimensional
pit, facilitates drying. Similarly, the presence of acute corners
promotes drying, which is revealed by comparing cylinders with
ink bottles. Comparing the drying behavior of cylinders and
parallelepipeds is more subtle, because for the smallest ones
(6s) the cylindrical geometry encloses a smaller volume of liquid,
thus favoring drying (compare the solid red circles and the solid
red squares in Fig. 3(a)). In contrast, macroscopic predictions
(ref. 42 and eqn (2) for ydry) suggest that the larger parallelepipeds
should be more favorable for drying, because of the presence of
four sharp corners at the bottom, which tend to destabilize the
bubbles. This crossover is reflected also in the predictions for the
drying contact angle in Fig. 2 (see the intersection of the green
and the red lines therein).

By using s = 0.315 nm and kBT = 4.16 � 10�21 J it is possible
to translate the results in Fig. 3 into experimentally relevant
units. It is seen that the values of DPdry can be larger than
20 MPa for the smallest three-dimensional pits (cylindrical and
parallelepipedic with w = 1.9 nm and yY Z 1281). As better
discussed in Fig. 4, the drying pressure decreases with the size
as DPdry B 1/w; for the cylindrical pit with w = 6.3 nm and
yY = 1281, this leads to DPdry E 2 MPa. The degree of confine-
ment also plays an important role: for approximately the same

Fig. 2 Drying angle ydry at DP = 0 as a function of the cavity dimension
computed by microscopic DFT calculations for cylindrical (red circles) and
parallelepipedic (green filled squares) pits and for the groove (blue empty
squares); the lines are guides to the eye. Error bars are computed as half
the difference between the values of yY before and after drying. The
second x axis is in actual units, obtained by using s = 0.315 nm. The
macroscopic predictions are reported for comparison for those cases in
which an analytical expression is available: ywd = 1351 for the groove and
ycd = 125.31 for the parallelepipedic pit. As the trend indicates, it is
expected that, in the limit w - N, ydry tends to the macroscopic
predictions ywd for the groove and ycd for the parallelepipedic pit. The
trend indicates that these limits are attained rather slowly.
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dimensions (reported in the same colors in Fig. 3(a)) and
contact angles (y = 1301), the two-dimensional grooves are less
likely to dry, with DPdry o 10 MPa and o1 MPa for w = 1.9 nm
and w = 6.6 nm, respectively.

Fig. 3(a) also highlights another surprising nanoscale effect,
which permits the drying transition to occur for grooves at
yY o ywd = 1351. This result cannot be explained by the
macroscopic theory according to which there is no drying
possible for yY o ywd. In Fig. 3(b) the density distribution
obtained by DFT shows that this corresponding destabilization
of the liquid phase is related to the formation of nanoscale
bubbles in the lower corners of the cavities which, however, are
not compatible with the classical capillarity approximation for

yY o ywd. In particular, in nanoscale confinement the for-
mation of such minuscule bubbles is promoted by the long-
ranged interaction of the fluid particles with the walls; the
cause also includes the density oscillations (layering) induced
by the various walls meeting at the wedges or corners. These
various layers strongly interfere in the vicinity of wedges or
corners, leading to specific distributions of the fluid density
there (see Fig. 3(b) and (d)). As a result, the nanoscale bubbles
in the corners significantly differ from the circular segments
predicted by classical capillarity. However, for larger contact
angles, the shape of the corner bubbles is similar to that of the
macroscopic bubbles (Fig. 3(c)).

In order to rationalize the nanoscale results, we translate the
pressure data in Fig. 3(a) into dimensionless quantities by
multiplying them by the characteristic dimension w of the
cavity and dividing them by glv. Fig. 4 shows that, if the drying
pressures are plotted not as a function of yY but as a function of
the deviation of yY from the geometry- and size-dependent
drying contact angle ydry at coexistence, the dimensionless
drying pressures approximately collapse on master curves w/
glvDPdry = f (yY � ydry), which depend on the geometry of the
confinement. In particular, the groove results remarkably fall
upon a single curve which, however, does not coincide with the
macroscopic expectation (brown line in Fig. 4). It is expected
that, for grooves with w c s, the master curve obtained from
the DFT results should approach the master curve of the
macroscopic theory. The rescaled plot in Fig. 4 summarizes
graphically the two nanoscale corrections to the macroscopic
models discussed above, both of which facilitate drying. The
first one is the reduction of the angle ydry (Fig. 2). A second
correction becomes apparent upon comparing within Fig. 4 the
master curve obtained from DFT for the groove geometry with
the corresponding curve derived from the macroscopic theory.
It can be seen that the dependence of DPdry on the chemistry
(yY) of the substrate is magnified due to nanoscale corrections,

Fig. 3 (a) Drying pressure as a function of the substrate contact angle
computed by microscopic DFT calculations for four confining geometries,
sketched in panels (b) and (e–g). The characteristic dimension w of the
cavities (side legend) is taken to be the width of the two-dimensional
groove (b), the side of the square base for parallelepipedic pits (e), the base
diameter for cylindrical pits (f), and the diameter of the lower base for the
ink bottle (g). The ink bottle is a right, circularly truncated cone with an
upper diameter of 6s and with a base diameter of 12s. The hard-sphere
diameter s and kBT serve as the units of length and energy, respectively.
The second y axis is in actual units, obtained by using s = 0.315 nm and
kBT = 4.16 � 10�21 J; for visual clarity, in the legend actual units are not
reported explicitly. Due to higher computational costs, for the pits the
calculations have been restricted to yY 4 ydry (corresponding to DPdry 4 0)
and to smaller yY intervals than explored for the grooves; this range is that
of foremost practical interest. (b) Number density distributions for the
groove with width w = 21s and yY = 1211. (c) Number density distributions
for the groove with width w = 21s and yY = 1611. These two configurations
correspond to the ‘‘Wenzel’’ state with DP slightly above the corresponding
drying pressure DPdry. (d) Number density distribution for a cylindrical pit
with diameter w = 20s and yY E 1311; DP is set slightly above the
corresponding drying pressure DPdry. The sidebar provides the color code
for the number density in (b–d).

Fig. 4 Dimensionless drying pressure as a function of the deviation of the
substrate contact angle yY from the drying angle ydry in Fig. 2. The cases
considered in Fig. 3 are reported here with the same color code as in Fig. 3;
the brown line stems from the dimensionless macroscopic theory for the
groove and the magenta line is the linear fit of the groove data via (the
dimensionless version of) eqn (4).
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as if the confinement was effectively enhanced. Fig. 4 also
suggests that these nanoscale corrections can be effectively cast
into the following empirical expression:

DPdry ¼
glv
w
f yY � ydryðwÞ
� �

� a
glv
w

yY � ydryðwÞ
� �

(4)

where a linear approximation has been introduced for f, and
ydry(w) has to be taken from the data in Fig. 2. This empirical
formula is particularly appealing because it allows one to
decouple the contribution to the drying pressure due to the
cavity size, encoded by w, and due to its surface chemistry,
encoded by yY. For the case of grooves the best fit is obtained
for a = 0.078, which can be compared to the best linear fit to the
macroscopic theory amacro = 0.046 (magenta and brown lines in
Fig. 4, respectively). This discrepancy is to be sought in the
nanoscale effects discussed above and summarized in the
conclusions, which are neglected in the macroscopic theory:
finite widths of the interfaces, density oscillations at the walls,
and increased hydrophobicity in confinement. Only for much
larger widths of the structures, which are too large to be
investigated directly via DFT, one would expect that these details
become less relevant and that the macroscopic curve is gradually
approached. The results for the pits scatter more broadly, with
the data for the wider pits almost falling on a single curve, while
the data for the very narrow pits clearly falling off, conceivably
due to additional scale-dependent confinement effects. Unfortu-
nately, neither for cylindrical nor for parallelepipedic pits an
analytical macroscopic theory is available for comparison.

Summarizing this section, microscopic DFT calculations
have shown that the classical capillarity theory for drying usually
underestimates the drying pressure: nanoscale effects promote
drying in hydrophobic confinement beyond the macroscopic
expectations. Certain general features of the molecular inter-
actions of the fluid with the walls, not accounted for in a
macroscopic theory, trigger the formation of small regions with
reduced density at the cavity corners, which allow drying at
contact angles much smaller than macroscopically expected.
Additionally, at a fixed contact angle, the drying pressure DPdry

in nanoscale confinement is increased as compared to the
macroscopic one, thus extending the range of pressures within
which perpetual superhydrophobicity is possible. Such nanoscale
contributions can be quantified by the effective empirical drying
model proposed in eqn (4).

4 Drying at hierarchical surfaces

Having analyzed macroscopic predictions and a microscopic
theory of wetting, here we address drying on surfaces with a
hierarchy of textures at the nanoscale and at larger scales which
are amenable to a macroscopic description. The concept was
first proposed in ref. 4 as a means to achieve perpetual super-
hydrophobicity on surfaces with micron-sized and larger textures.
The rationale is that, under the conditions given below, the larger
scale can inherit the self-recovery characteristics of the nanoscale
coating, while preserving the technological advantages of having
large textures. Indeed, previous studies have shown that hierarchical

surfaces are capable of achieving very large apparent contact angles,
low contact angle hysteresis, and superior mechanical robustness
as compared to surfaces with only one tier of roughness.28,56–61

However, to the best of our knowledge, the experimental and
conceptual difficulties exposed below have prevented heretofore
the direct observation of perpetual superhydrophobicity being
enabled by hierarchical surfaces. Here we briefly recapitulate the
conditions under which a hierarchical surface structure can
achieve the perpetual superhydrophobic state and discuss how
these prescriptions can be realized and verified experimentally.

A hierarchical surface with a structure similar to that shown
in Fig. 5 can be made perpetually hydrophobic by combining
the macroscopic and microscopic drying criteria uncovered in
the previous sections:4

(1) Adopting a nanoscale coating or roughness which is
perpetually superhydrophobic (Fig. 3);

(2) Controlling the solid fraction of the nanoscale coating
such that the effective contact angle of the coated surface is
compatible with the macroscopic drying condition (Fig. 1).

Only by satisfying both conditions, it can be ensured that the
Wenzel state is eliminated both at the micro- and at the nano-
scale and that, even if the transition to the Wenzel state happens
to occur due to, e.g., certain unfavorable external factors, the
Cassie–Baxter state can be recovered by lowering the pressure to
ambient values.

Since actual surfaces can feature roughness at various scales,
it is useful to discuss how to realize and characterize their
recovery properties based on the above criteria. One experimental
difficulty is to verify that such criteria are satisfied both at the
nanoscale and at the larger one, because their intrusion pressures
are usually very different. For instance, using the Kelvin–Laplace law
DPKL = �2glv cosyY/w for a groove of 10 mm, the typical intrusion
pressure is estimated to be of the order of kPa, while for a size of
10 nm it is of the order of MPa. Such a separation between the
intrusion pressures ensures that, under the usual operating condi-
tions of the surface defined by the largest textures, one is sufficiently
far from nanoscale intrusion. This feature is valid only for surfaces
with a clear separation of scales and not for random surfaces
for which a continuum of roughness dimensions is present.

Fig. 5 Illustration of a hierarchical surface with a tier of roughness at the
nanoscale, which covers a second one at the micron (or even somewhat
larger) scale (from ref. 31). The size and hydrophobicity of these textures
can be designed in order to achieve perpetual superhydrophobicity at both
scales; see the main text for further details.
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Usually experiments,28,29,58 aimed at demonstrating drying at
hierarchical surfaces, test the surface by applying small pressures,
for instance by the sessile drop method. At pressures of few tens of
kPa it is only possible to demonstrate that the larger of the scales is
capable of self-recovery. However, in order to demonstrate the
occurrence of ‘‘monostability’’ or perpetual superhydrophobicity, it
is necessary to explore much higher pressures, in order to induce
liquid intrusion into the nanoscale coating and subsequently to
observe its self-recovery upon pressure release. The consequences of
having a non-perpetual nanoscale layer are of some technological
importance and are well illustrated by ref. 59. In those experiments,
liquid intrusion was achieved by changing the wettability of the
liquid–surface pair by varying the composition of an ethanol–water
mixture instead of directly changing the liquid pressure; this
experiment demonstrated that, if surfaces with this nanoscale
roughness are wet, recovery of the suspended state is impossible
at both scales, rendering the Cassie–Baxter–Wenzel transition effec-
tively irreversible with the usual limitations of non-perpetual super-
hydrophobicity. To conclude, there is a twofold open experimental
challenge: fabricating well-characterized nanoscale textures capable
of self-recovery and measuring drying conditions.

5 Conclusions

In this study we have elucidated the mechanism of spontaneous
drying for liquids confined in hydrophobic cavities of varying
size, geometry, and surface chemistry. Comparing the classical
capillarity model with microscopic density functional theory has
provided a route to quantify nanoscale effects, which facilitate
drying in hydrophobic confinement (eqn (4)), by allowing drying
in much broader ranges of contact angles and pressures.

The general mechanism for spontaneous drying of hydrophobic
nano-cavities is related to the one operative at the macroscale.
However, nanoscale effects lead to substantial qualitative and
quantitative modifications. One such effect is the shift of the drying
contact angles (i.e., contact angles above which drying occurs) in
nano-cavities to much lower values as compared to the macroscopic
expectations. The macroscopic drying contact angles depend on the
geometry but not on the size of the surface features; macroscopic
values for right wedges or corners, ywd = 1351 and ycd = 125.31, are
higher than the maximum contact angles typically achievable for
water on flat surfaces. Nanoscale effects, however, shift the drying
contact angles to much lower values. These shifts depend not only
on the geometry but also on the size of the surface features. The
shifts become more pronounced for smaller feature sizes. Moreover,
the pressures up to which spontaneous drying occurs are increased
very much due to nanoscale effects. These nanoscale effects, inter
alia, originate from the long range of the fluid–wall interaction and
from the oscillations of the liquid density induced by the repulsive
part of the fluid–wall interaction together with the strong repulsion
between fluid particles at short distances.

The present calculations have also revealed that the geometry
of the confinement has a crucial impact on drying: the presence
of extended hydrophobic walls and acute corners further
facilitates drying, e.g., by favoring it for cylindrical pores as

compared to grooves. In general, these findings suggest that, in
order to obtain perpetual superhydrophobicity, it is convenient
to realize nanoscale hydrophobic cavities, which are capable of
remaining permanently dry over a broad range of pressures,
with levels of hydrophobicity attainable (for water) by using
standard wall coatings (yY o 1101). On the other hand, macro-
scopic cavities with sizes larger than a micrometer are advanta-
geous in order to enhance certain superhydrophobic properties,
such as self-cleaning and drag reduction; however, self-recovery
is impossible for surfaces with average contact angles (i.e.,
yY E 1101). With this understanding, hierarchical surfaces,
consisting of micron-sized textures covered by a rough nano-
scale coating, emerge as a practical route to achieve perpetual
superhydrophobicity on texture sizes of technological relevance.
In order to be effective, this strategy requires that the nanoscale
cavities are capable of self-recovery and result in an effective
contact angle larger than the macroscopic drying angle.

The coherent picture of drying across the scales provided by
the present analysis not only offers useful design guidelines for
perpetual superhydrophobicity, but also helps to understand
the complex interplay of size, geometry, and degree of hydro-
phobicity which plays a crucial role in other technological
(lyophobic porous materials) and biological (interactions of
hydrophobic proteins) contexts. Finally, the present results are
expected to encourage new experiments capable of realizing
controlled nanoscale cavities and probing their drying behavior.
This largely unexplored phenomenology is expected to be rich.
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A Appendix: classical density
functional theory

In this study we employ classical density functional theory in
the version introduced by Rosenfeld in which fundamental
measure theory is used to provide an expression for the excess
free energy corresponding to the hard core repulsion among
fluid particles.52–54 The attractive part of the fluid–fluid pair
potential is taken into account within mean field theory and is of
the van der Waals type with a cutoff at a distance 2.5s. Further
details concerning the theory and the numerical implementation
are presented in ref. 55.

In the case of the rectangular grooves, the fluid–wall inter-
actions are accounted for via an external wall potential V(r) =
Vrep(r) + Vatt(r), which is the sum of a repulsive and an attractive
contribution. Vatt(r) is a linear superposition of the attractive
part of the Lennard-Jones potential between the fluid and the
wall particles.4 Vrep(r) is treated as a hard repulsion, leading to a
depletion layer of thickness s/2 where s is the diameter of the
fluid particles.

In the case of the pits, the substrate is built from atoms which
are placed at the vertices of a simple cubic lattice, defined by the
lattice constant 2Rw, i.e., twice the radius of the wall particles. The
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pair potential between fluid and wall particles is modeled via the
Lennard-Jones potential:

VðrÞ ¼ �4efw
X
l

sfw
jr� rl j

� �12

� sfw
jr� rl j

� �6
" #

; (5)

where the summation runs over all positions rl of the wall
particles. The parameter efw is the strength of the solid–fluid
interaction and sfw = R + Rw, where R = s/2 is the radius of the
liquid particles and Rw is the radius of the wall particles. A pit is
created by removing all wall particles within the desired pit
volume. We have chosen a ratio Rw/R = 0.2 in order to generate
smooth surfaces with weak corrugation.

We have checked that the details of how the wall–fluid
interaction is modeled (e.g., Lennard-Jones repulsion versus
hard-core repulsion) are of very little importance for the extrusion
behavior when the results are compared for two fluid–wall
interactions characterized, however, by the same Young contact
angle. More specifically, we have repeated the calculations for the
groove geometry by using the Lennard-Jones pair potential
between fluid and wall particles as described above, instead of
the hard-core repulsion used in the main text. The corresponding
result confirmed that the extrusion/intrusion behavior of a groove
with a nominal width of 5.9s essentially maps onto that of a 6s
wide groove with hard repulsive walls.

B Appendix: determination of the
drying pressure DPdry

The minimization procedure, which is used in DFT for determining
the equilibrium fluid number densities, is always initialized in a
configuration in which the grooves or pits are completely filled with
liquid (Wenzel state). The DFT calculations are performed at various
pressures, starting at a small value and increasing the pressure in
small steps. For values of DP smaller than DPdry the Wenzel state is
unstable and the numerical iteration converges to the Cassie–Baxter
state (pit filled with vapor). DP is subsequently increased up to a
value at which the Wenzel state remains stable (or metastable). We
have chosen DPdry as the center of the pressure interval between the
highest pressure at which the Wenzel state is still unstable and the
lowest pressure at and above which a stable Wenzel state is found.
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