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We present a hydrodynamic study of a monolayer of squirmer model microswimmers confined to a
boundary by strong gravity using the simulation method of multi-particle collision dynamics. The
squirmers interact with each other via their self-generated hydrodynamic flow fields and thereby form a

variety of fascinating dynamic states when density and squirmer type are varied. Weak pushers, neutral
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squirmers, and pullers have an upright orientation. With their flow fields they push neighbors away and
thereby form a hydrodynamic Wigner fluid at lower densities. Furthermore, states of fluctuating chains
and trimers, of kissing, and at large densities a global cluster exist. Finally, pushers at all densities can tilt

against the wall normal and their in-plane velocities align to show swarming. It turns into chaotic
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1 Introduction

Research of active matter has made much progress in the past
decade as documented, e.g., by the following review articles'™
but it keeps on challenging natural scientists including physi-
cists. One reason is the nonequilibrium nature of active matter
and the novel and diverse emergent behavior in many of the
observed phenomena. While the microscopic constituents
can often be characterized fairly easily, a collection of them
shows interesting collective dynamics, which can be altered by
external stimuli or geometrical constraints. One important
example for an active system is a collection of microswimmers.
They have a propulsion mechanism that enables them to
actively move through a fluid at low Reynolds number without
any applied external force.® However, in the presence of
external fields,””® such as flow fields,”** light fields,">® or
simple harmonic potentials,’”*® microswimmers show a plethora
of fascinating dynamics, especially if they are coupled to each
other by hydrodynamic interactions.>”%'°

An ubiquitous example of an external field is gravity, which
affects every swimmer that is not neutrally buoyant. Already a
range of diverse phenomena has been observed such as bound
swimmer states,*® polar order in sedimenting swimmers, which
in turn can be described by an effective temperature,>”>°
gravitaxis of asymmetric swimmers,*® and inverted sedimentation
profiles of bottom-heavy swimmers.*" Very appealing patterns
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swarming for strong pushers at high densities. We characterize all these states quantitatively.

occur during bioconvection®* and more recent work addresses
the formation of thin phytoplankton layers in the coastal ocean®?
or rafts of active emulsion droplets, where the role of phoretic
interactions has to be clarified.***> In realistic settings non-
buoyant swimmers will naturally interact with bounding surfaces.
Their impact has already been studied in several works.*®™*®

In recent articles we focussed on single microswimmers
in moderate gravitational fields*> and on their collective
sedimentation.*® For our studies we used squirmers as model
microswimmers,” > the swimmer type of which can be continu-
ously tuned from pushers over neutral swimmers to pullers. To
fully integrate hydrodynamic interactions between squirmers and
also between squirmers and bounding walls, we employed the
method of multi-particle collision dynamics (MPCD), a particle-
based solver of the Navier-Stokes equations.’>>*

In this article we address a monolayer of squirmers that
forms under strong gravity at the bottom surface of the simula-
tion box by performing parallelized simulations with up to 10®
fluid particles and up to several thousand squirmers. In con-
trast to our previous work*>*® where the squirmers can leave
the bottom surface to swim upwards, in this article gravity is so
strong that they are constrained to the bottom surface. Here,
the squirmers either point upwards or tilt against the surface
normal so that they move along the surface. They interact with
each other via their self-generated flow fields and thereby
induce an intriguing variety of dynamic states when density
and squirmer type are varied. We categorize them in a state
diagram. The most fascinating state is the hydrodynamic
Wigner fluid. It is formed by weak pushers, neutral squirmers,
and pullers at lower densities due to an effective hydrodynamic
repulsion and it shows a glassy relaxation dynamics. We also
observe states of fluctuating chains and trimers, of kissing, and
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at large densities a global cluster. Furthermore, pushers over
the whole density range can tilt against the normal and the
in-plane velocities align to show swarming, which turns into
chaotic swarming for strong pushers at high densities.

The article is organized as follows. In Section 2 we present
the squirmer model for microswimmers, introduce the MPCD
simulation method, and give the relevant parameters of our
simulations. In Section 3 we first present the state diagram for
the squirmer monolayer and discuss the different states in
subsequent subsections. Finally, in Section 4 we summarize our
findings and conclude.

2 Model and method

In this work we investigate the collective behavior of many
squirmers, which are coupled to each other and to a confining
surface by hydrodynamic interactions. In the following we first
introduce the squirmer and then our hydrodynamic simulation
method of multi-particle collision dynamics.

2.1 The squirmer model swimmer

In our simulations we use the squirmer®’>%* as a versatile

model for a microswimmer. It describes a sphere of radius R,
which has a prescribed slip velocity field on its surface, whereby
it propels itself forward without any external force acting on it.
The surface velocity in the co-moving frame of the squirmer
is given by

vs(rs) = By(1 + Be-is) [(&- )i — €], (1)

where ry is a vector from the center of the squirmer to a point on its
surface, t; = /R is the corresponding unit vector, and the unit
vector € gives the direction in which the squirmer propels in bulk
fluid. Of course, the surface velocity generates a hydrodynamic
flow field in the fluid in which the squirmer swims. This flow must
satisfy the no-slip boundary condition at bounding walls and agree
with the surface velocity fields of other squirmers. Therefore, the
squirmer interacts hydrodynamically with other squirmers and
bounding walls and thereby experiences additional linear and
rotational velocities. Eqn (1) only takes into account the first two
terms in the expansion of the slip velocity field of the general
squirmer model.*”*® These terms suffice to determine both the
bulk swimming speed v, = 2/3B; and the squirmer type through
parameter  with its characteristic hydrodynamic far field. Many
biological microorganisms, such as E. coli or Chlamydomonas, and
artificial microswimmers, like active droplets,****® can be char-
acterized by these two parameters. While a squirmer with =0 is a
neutral squirmer with the hydrodynamic far field of a source
dipole (~7%), B < 0 and B > 0 refer to pushers or pullers,
respectively, with the far field of a force dipole (~7?).>%%°
Note that f # 0 also generates a source quadrupole term

decaying as r*.

2.2 Multi-particle collision dynamics

The flow fields generated by squirmers are governed by
the Navier-Stokes equations, which we solve numerically by
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employing the particle-based method of multi-particle collision
dynamics (MPCD),**>%°"® yvhich includes thermal noise.
In this article we are concerned with microswimmers, which
move at low Reynolds numbers. In this regime the Navier-
Stokes equations reduce to the Stokes equation since inertia
is negligible.

In our MPCD simulations the fluid is composed of up to
10° point particles of mass m,, which perform alternating
streaming and collision steps. In the streaming step the posi-
tion r; of each particle i is updated using its velocity v; and the
time step At: rt + At) = r{t) + v;At. In the collision step the
simulation volume is divided into cubical cells of edge length
ao. All fluid particles within one cell exchange momentum
according to the MPC-AT+a rule.®! It ensures linear and angular
momentum conservation as well as a thermalization of particle
velocities to temperature 7. On average there are ng = 10 fluid
particles in each collision cell. We choose the duration of the
streaming step as A7 = 0.02ay \/W , with Boltzmann constant
kg, which sets the shear viscosity to n = 16.05/mokgT /as>.*> Note
that in a recent work the authors of ref. 64 used a larger number of
fluid particles per unit cell, ng = 80, where the MPCD fluid is less
compressible. For neutral squirmers confined between two plates,
they do not observe motility-induced phase separation (MIPS) into
a dilute and a cluster phase, which occurs for ng = 10.*”*° Since in
our system MIPS does not occur and clustering at medium
densities is only transient as in the simulations of ref. 64, we used
the lower value for ng = 10, which makes our simulations feasible.

In the streaming step momentum is transferred from the
fluid particles to the squirmers. Fluid particles that enter a
squirmer or a bounding surface are repositioned outside of the
obstacle by updating their positions and velocities. We apply
the “bounce-back rule”® to make sure the updated velocity
fulfills the surface flow field of eqn (1) and the no-slip boundary
condition at bounding walls, respectively. Between squirmers
and walls as well as between pairs of squirmers also steric
interactions are implemented, which we take into account in a
molecular dynamics step. Further details of our implementa-
tion are described in ref. 37 and 40. Since we simulate large
systems with many squirmers, we employ the parallelized
version of ref. 40.

As in earlier works, we are interested in squirmers moving
under gravity but now make it so strong that all squirmers are
constrained to the bottom surface with very little variation in
z-direction as discussed in the beginning of Section 3.3. Gravity
acts on each squirmer with a force F = —mge,. Here m is the
squirmer mass and g the acceleration. Through g = go(1 — p¢/ps)
it depends on the mismatch of fluid and squirmer densities
(or and pg) and the gravitational acceleration g,. The buoyant
squirmer mass then is m(1 — pg/p). The force F adds a contribu-
tion of F/(2m)A¢” to the update of the squirmer’s position during
the streaming step. Since the influence of gravity on a fluid on
the micron scale is negligible, the update of the fluid particles’
positions does not include F.

The MPCD method is known to reproduce analytic results,
e.g., the flow field around passive colloids,® fluid friction as a
particle approaches a wall,®® the active velocity of squirmers,*®

42,46
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or hydrodynamic torques acting on them close to walls.*® Even
in systems with many particles, such as a dense colloidal
suspension under Poiseuille flow, it correctly predicts velocity
oscillations and particle segregation.®”%®

Finally, MPCD resolves flow fields on time and length scales
large compared to the duration of the streaming step A¢ and the
mean free path of the fluid particles, respectively. Using a
squirmer radius of R = 4a,, we are therefore able to resolve
flow fields even if squirmers approach each other closely.

2.3 Parameters

We simulate the collective behavior of up to N = 3136
squirmers of radius R = 4a,. They are initialized with random
orientation and position within a box of height # = 56a, and a
quadratic base with linear extension L = 112a, or L = 448a,. We
employ periodic boundary conditions in the two horizontal
directions (x and y) while the box is confined by no-slip walls
at the top (z = h) and bottom (z = 0). Note we expect our box
height 7 = 14R to be sufficiently large so that hydrodynamic
interactions with the top boundary should be negligible
against hydrodynamic interactions between the squirmers
moving at the bottom surface. In particular, any flow distur-
bance initiated at the bottom surface decays at least with 1/r>.
For a mean squirmer distance of 4R at a density of ¢ ~ 0.3 this
means that the influence from the top surface is a factor 10
smaller than the direct hydrodynamic interactions between
the squirmers.

Similar to our earlier works there are two velocities that
characterize squirmer dynamics. These are the bulk sedimen-
tation velocity v, = mg/(6nnR) of a single squirmer, where m is
the squirmer mass, and its swimming velocity v, = 2/3B;.
Their ratio « = v,/v, is a dimensionless number, which we fix
throughout this work to « = 0.06 by setting B; = 0.11/kgT /mq
and mg = 1340ay\/mokgT. Without activity these squirmers
are equivalent to passive Brownian particles with the same
mass m, for which we can compute the passive sedimentation
length 6, = kgT/(mg) = 7.5 - 10~* @, = 1.9 - 10~ °R. Hence squirmers
experience only very little variability in their vertical position due
to thermal fluctuations. Together with the small o this means
that squirmers cannot escape from the bottom wall. The total
number of squirmers is sufficiently small so that they form a
monolayer with squirmer centers located close to z = R. We
quantify their two-dimensional density by the area fraction
¢ = NnR*/L*. Note, with monolayer we do not mean a densely
packed layer of squirmers but a collection of squirmers atz =~ R
with tunable density.

In our simulations the Péclet number Pe = vy R/D, where
D = kgT/(6myR) is the translational diffusion coefficient, takes
the value Pe = 323. This means that thermal translational
motion is negligible. Furthermore, we are within the Stokesian
regime of hydrodynamics, where inertia is irrelevant, as evident
from the low Reynolds number of Re = voRngn/n = 0.17. Note that
real microswimmers move at much smaller Reynolds numbers
but the present value is widely deemed acceptable in particle-
based hydrodynamic simulations.

42,46
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3 Results

In the following we explore the collective dynamics of a
monolayer of squirmers confined to a lower boundary by
gravity. It forms at the beginning of a simulation when the
squirmers are rapidly pulled to the bottom wall by strong
gravity and then equilibrates. Varying squirmer parameter f
and area fraction or density ¢, we identify many intriguing
states, which are illustrated in Fig. 1 and by Videos S1-S6 in the
ESI.{ We shortly introduce these states and then discuss them
in more detail in the following subsections. A collection of
systems at various densities ¢ and squirmer parameters f is
given in Video S7 (ESIt). The upper bound for ¢ is given by
/3

hexagonally close-packed circles with ¢y, = -~ 0.91.

tilted
41 sq.

kissin
: global

21 hydrodynamic cluster

Wigner fluid

6)& trimers

-4 o /
chaotic swarming
0.0 0.2 0.4 0.6 0.8

fluctuating
chains & trimers

Fig. 1 Top: Schematic state diagram illustrating the collective dynamics
of a monolayer of squirmers confined to a bounding wall by gravity. The
different states in the parameter space squirmer type f; versus area fraction
¢ are discussed in the main text. Note, the lines separating the states are
schematically drawn. In the shaded gray area local clusters such as pairs,
trimers, and chains are observed. Bottom: Snapshots of the observed
dynamic states as seen from above. The hydrodynamic Wigner fluid is
represented by a Voronoi tessellation, where pentagon and heptagon
defects are colored yellow and red, respectively. The kissing state is
represented by a single kissing event. The red and yellow color in the
dense packing of the cluster state indicate heptagon and pentagon
defects. The ring in the fluctuating cluster state shows a trimer cluster.
In the (chaotic) swarming state the arrows point along the orientation of
the squirmers. The ESI{ provides Videos S1-S6 of all the relevant states and
Video S7, which shows a collection of the dynamic states in the whole
state diagram.
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For all densities pushers (f < 0) exhibit swarming
(Section 3.3). Their swimming direction tilts against the vertical
so that they move in the horizontal plane. While strong pusher
at low densities and weaker pushers at large densities swarm
with a common direction, strong pushers at large densities
show chaotic swarming. Adjacent in the state diagram is a
region at small and medium densities, where neutral squirmers
and weak pushers/pullers form pairs, trimers, larger clusters,
and chains, which form and break up due to stochastic
fluctuations (Section 3.2). In contrast, stronger squirmer pull-
ers at medium densities perform a deterministic maneuver
which we term ‘“kissing” (Section 3.2). They approach each
other, form pairs or trimers, then orient away from each other
and thereby separate again. At large densities fluctuating and
kissing clusters enter a state, where one global cluster forms in
which squirmers hardly move or behave rather dynamic with
increasing fi. However, the most intriguing state is the hydro-
dynamic Wigner fluid, which weak pushers, pullers, and neu-
tral squirmers form at low to medium densities (Section 3.1).
Due to hydrodynamic repulsion they form local hexagonal
order while long-range translational and orientational order
does not occur. We start with describing this state in more
detail in Section 3.1.

A first understanding of the observed phenomenology at low
densities is provided by the probability distributions for the
orientation of single squirmers and their mean orientation
plotted in Fig. 2. Strong pushers (f = —4, —5) have a maximum
of the orientational distribution at 0 # 0, where 0 is the angle
between the wall normal and the squirmer’s orientation. Since
they are tilted against the wall normal, they move in the horizontal
plane and their collective motion initiates swarming. The tilted
orientation is expected for pushers at heights between the validity
of lubrication theory and far-field approximation.*** As we will
discuss in the beginning of Section 3.3, strong pushers are not
sitting directly on the surface. For all other f single squirmers are
oriented on average along the wall normal in agreement with the
fluctuating cluster state and the hydrodynamic Wigner fluid. The
orientations of strong pullers (f = 4, 5), however, strongly fluctuate
about the wall normal and instead of the Wigner fluid they form a
state “tilted squirmers”, which we shortly introduce in the para-
graph before Section 3.1.1.

— B=5
0.3 1.0 e YOI T s, B=4
= QUD, . ¢ — B=2
%0.2{ |509 — B=0
g — p--2
a
=-4
01 085 0 5 c
B —
0.0 Y il A~
0.80 0.85 0.90 0.95 1.00
cos@

Fig. 2 Probability distributions for the orientation of single squirmers
confined to a wall by gravity for different . 0 is the angle between the
surface normal and the squirmer orientation &. The inset shows the mean
orientation for different f.
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3.1 Hydrodynamic Wigner fluid

The state of the hydrodynamic Wigner fluid is most clearly
demonstrated for f = 0 and ¢ = 0.26 by Video S8 in the ESL¥
Here, neutral squirmers are well separated from each other and
local hexagonal order is visible. They fluctuate about their
mean position as in a colloidal crystal (see, e.g., ref. 69). The
squirmers have an upright orientation and push nearby fluid
downwards, which due to the bounding surface pushes nearby
squirmers away (see Fig. 3). Due to this long-range hydro-
dynamic repulsion local hexagonal order forms. Obviously,
the repulsion is enhanced for pullers, which pull additional
fluid downwards and to the side. In contrast, pushers at their
back draw fluid in and thereby destabilize the Wigner fluid so
that with decreasing f a transition to the state of fluctuating
chains and trimers occurs (see Fig. 1, top).

When thermal fluctuations tilt the swimming direction, a
squirmer moves towards its neighbors until their flow fields
and the hydrodynamic interaction with the wall rotate the
orientation back to normal. This causes the clearly visible
fluctuations in Video S8 (ESIt). Assuming perfect hexagonal
order, the squirmer distance in units of the squirmer radius is

approximated as
hex (¢) 2n
R 312¢p )

which for ¢ = 0.26 amounts to dp/R & 3.75. Here, the local
ordering is most pronounced. At low densities hydrodynamic
repulsion and thus hexagonal ordering is weaker. In the other
direction when density increases towards ¢ = 0.3, approaching
squirmers start to touch each other and the system enters the
states of fluctuating chains/trimers and kissing (see Section 3.2).
This implies that short-range interactions between the squirmers
are effectively attractive. An exception are pullers with f = 4, 5,
which are tilted against the normal so that they move backwards
(note the weak maximum at cosf = 1 of the orientational
distribution function for a single squirmer in Fig. 2). At low
¢ < 0.2 (see state “tilted squirmers” in the state diagram of
Fig. 1) this leads to a long-range hydrodynamic attraction and a
short-range repulsion, where local hexagonal ordering cannot form.
We will not discuss this state further.

3.1.1 Structural order. We now present a more quantitative
analysis also addressing the missing long-range order in
the system. To make the ordering visible, we performed
Voronoi tessellations for the squirmer monolayers and identified

%/ \i\\i

A\

Fig. 3 Schematic flow profiles between two neutral squirmers repelling
each other.

This journal is © The Royal Society of Chemistry 2019
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Fig. 4 The 6-fold bond orientational order parameter (|¢s’|) plotted
versus ¢ for different  in squirmer monolayers with linear extension
L = 112. Error bars give the standard deviation of (|q6|2) when averaged
over time.

pentagons/heptagons as defects in the hexagonal order (see snap-
shot in Fig. 1, bottom). Videos S1 and S9 in the ESI illustrate the
dynamics of these defects for f = 0 and ff = 2 at ¢ = 0.26. Clearly,
for f = 2 fewer defects are visible. To quantify the local ordering,
we introduce the 6-fold bond orientational order parameter

{|g2]),>”">”" which averages the local bond order value

ge) = N7 e (3)
JEN

over all squirmers. Here, N; is the number of all Voronoi
neighbors of squirmer k and oy is the angle between the hor-
izontal direction and the vector connecting squirmers k and j.
Note we always use (...) to indicate the ensemble average over all

squirmers and — to indicate the temporal mean. In Fig. 4 we plot

(|g6’|) versus ¢ for different f. In the region of the hydrodynamic
Wigner fluid at ¢ < 0.3 we see bond orientational order for
fp > —2, which is most pronounced at ¢ = 0.26 and f > 2 as
already stated. The swarming state (f < —2) at small ¢ does not
show any bond order, while a noticeable bond order develops
towards the global cluster or swarming state at large ¢ for all .

To analyze the Voronoi tessellation further, we plot in Fig. 5
the standard deviation ANy, from the mean number of Voronoi
neighbors, which is six in all our simulations as required by the
planar surface. The minimum at ¢ = 0.26 confirms the earlier
observations that at this density local hexagonal order is most
pronounced.

Ultimately, to probe the squirmer monolayers for long-range
positional order, we determine the structure factor

S(k) == ]‘V< S explik- (5 )] > (4)

k=1

In Fig. 6 it is color-coded in the ky, k, plane for § = 0 at
¢ = 0.26. Clearly, the inner ring at |k*| and two weak larger
rings indicate that long-range positional order does not exist
although weak maxima are visible in the inner ring, which we
attribute to the finite size of our simulations. This justifies the

This journal is © The Royal Society of Chemistry 2019
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Fig. 5 The standard deviation from the mean number of Voronoi neigh-
bors, ANy, plotted versus ¢ for f = 0, 1, and 2. Linear system size is L = 112.

S(k)

-1 0 il
kx 0.0

Fig. 6 Structure factor color-coded in the k,, k, plane for =0, ¢ = 0.26,
and L = 448.

name hydrodynamic Wigner fluid. We also checked that a
perfectly ordered squirmer monolayer is not stable but devel-
ops pentagon/heptagon defects in time and ultimately shows
the same structure factor. For f§ = 1, 2 the weak maxima in S(k)
are a bit more pronounced and seem to indicate the different
hexagonal domains visible in the Voronoi tessellation of
Video S9 (ESIt).

A two-dimensional system allows for a hexatic phase, which
is fluid but shows long-range correlations in the 6-fold bond
order as demonstrated in the theory of two-dimensional
melting.®®”>”7> The 6-fold bond-order correlation function,

Go([r = 1']): = (q6(1)g6(r")), ()

with ge(r) defined in eqn (3) identifies hexatic order by a power-
law decay compared to an exponential decay in the liquid
state.”> We plot it in Fig. 7 for § = 0, 1, and 2. Since G4(r) for
f = 0,2 decays strongly between distances r/dpex = 100 and 200,
hexatic order is not present and the hydrodynamic Wigner fluid
is in a pure liquid state. Surprisingly, for f = 1 the strong decay
is not visible. The Voronoi tessellation reveals hexagons

Soft Matter, 2019, 15, 5685-5694 | 5689
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Fig. 7 Time-averaged 6-fold bond order correlation function plotted
versus distance r for f = 0, 1, and 2 at ¢ = 0.26. Linear system size is
L = 448.

oriented roughly in the same direction all over the simulation
box and only small regions with a different mean orientation.
This might cause the observed feature and only simulations
with a larger system size can clarify if it is a finite size effect.
However, at present such simulations are unfeasible also
because the system is governed by a dynamics slower by at
least a factor of ten compared to f§ = 0, as we will see below.

3.1.2 Relaxation dynamics. Finally, we monitor the relaxa-
tion dynamics of the hydrodynamic Wigner fluid by looking at
the self-intermediate scattering function

F(k, 1) := ]1\,<Z exp[ik - (r;(1) — r;(0))] >7 (6)
=

which probes the motional dynamics of squirmers on lengths
associated with the wave vector k. Due to the overall rotational
symmetry as illustrated by the structure factor, the self-
intermediate scattering function only depends on the magnitude
|k|. Therefore, we average over all wave vectors with the same |k|
when determining Fy(|k|,t). In Fig. 8 we plot F(|k*|,f) for three
different § using the wave number |k*| = 2n/d where the structure
factor is maximal. Thus, d & d}e is the distance between nearest-
neighbor squirmers. We observe relaxational dynamics that slows
down with increasing f. It demonstrates that on lengths compar-
able to d the motion of single squirmers becomes decorrelated.
Due to constraints in the possible simulation time, the relaxation
for f = 1,2 is not complete.

Interestingly, after some initial decay the self-intermediate
scattering function, especially for f = 0, can be fitted by a
stretched exponential,

fe)=e @, (7)

Typically, this indicates a more complex relaxation process.
For = 0 we find the exponent « = 0.66 as indicated in the inset
of Fig. 8. Stretched exponentials are observed in the a-relaxation
of (colloidal) glasses close to the glass transition.”®®® It is
preceded by the f-relaxation}, which enters a plateau before
o-relaxation sets in. We do not observe such a plateau. However,

1 Note that this has nothing to do with the squirmer parameter f.
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Fig. 8 Self-intermediate scattering function Fg(|k*|,t) evaluated at the
maximum k* of the structure factor for different  at ¢ = 0.26. Linear
system size is L = 448. The black dashed lines are best fits with a stretched
exponential. The doted lines indicate the standard deviation across all data
with identical t. Inset: Double-logarithmic plot of —In Fg(|k*|,t).

already at f = 0 we can identify a different initial relaxation
process in Fy(|k*|,t), which cannot be fit by the stretched
exponential as the inset demonstrates. This process is even
better visible for = 1 and 2.

Close to the colloidal glass transition a-relaxation is asso-
ciated with a colloid leaving the cage formed by surrounding
colloids. We anticipate a similar dynamics as illustrated in
Fig. 9, where we plot the mean squared displacement versus
time. When calculating (|Ar|?) we first subtract any global drift
motion of all squirmers. For = 0 squirmers move beyond the
squirmer-squirmer distance dp.x leaving the cage formed by
neighboring squirmers. For f = 1 and 2 this process is not
completed in the available simulation time in agreement with
Fig. 8. Interestingly, the mean-square displacement is (super)-
diffusive for small times, becomes subdiffusive at intermediate
times, when the squirmer starts to feel its neighbors, and for
large times for f = 0 approaches diffusive dynamics. Thus,
squirmers in a hydrodynamic Wigner fluid perform glassy
dynamics reminiscent of what is observed close to the glass
transition.

3.2 Clusters

We now discuss in more detail aspects of the state of fluctuat-
ing chains and clusters, the kissing and the global cluster
states, which we introduced in the state diagram of Fig. 1. In
Section 3.1 we noted that starting with the hydrodynamic
Wigner fluid and increasing density beyond ¢ = 0.26 squirmers
touch each other and form pairs due to an effective short-range
hydrodynamic attraction. Further squirmers can join to form
chains and clusters but this process is reversible. In the state of
fluctuating clusters squirmers detach due to stochastic fluctua-
tions and the cluster breaks apart, while in the kissing state the
breakup looks more deterministic.

3.2.1 Cluster size: mean values and distributions. The
formation of clusters leaves more space to surrounding squir-
mers and reduces their tendency to attach to other squirmers.
This mechanism leads to a steady state, which we characterize

This journal is © The Royal Society of Chemistry 2019
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Fig. 9 Mean squared displacement (in units of R?) of neutral and puller
squirmers (f = 1 and 2) at density ¢ = 0.26. Linear system size is L = 448.
The horizontal dashed line belongs to the distance dex/R = 3.75. Note we
find that the distribution of squared displacements, P(Ar?), for § = O closely
matches an exponential distribution for all t, where the standard deviation
is equal to the mean value, (Ar?) = (Ar?). Thus, in our system with
N = 1024, the standard error of the mean is ¢(Ar?) /VN = (Ar?) /32. We
plot the standard error as dotted lines around (Ar?) also for = 1,2. They
are hardly distinguishable from the main curves.

by the mean value and the distribution of the number N, of
squirmers in a cluster.

The formation of clusters, their sizes and stability depend
on the hydrodynamic interactions between the squirmers. For
all § the probability of squirmers to touch each other and
thereby form clusters grows with area density ¢, as the mean
cluster size (N.), plotted in Fig. 10, demonstrates. To acquire
the statistical data for calculating mean values and also cluster-
size distributions, we define squirmers to be in the same cluster
if the gap between them is smaller than 0.1R, i.e., the distance
of their centers is below 2.1R. For all squirmer types ff the mean
cluster size ultimately grows faster than exponentially with
increasing ¢. Of course, in the hydrodynamic Wigner fluid
(B > —2) the mean cluster size is one and then increases
beyond ¢ = 0.26 when the states of kissing or fluctuating
clusters are entered. In the swarming state of strong pushers
(see f = —5) and in the fluctuating cluster state of weaker
pushers (see ff = —2) the mean cluster size is larger than 1 even

102_
\2, 101 J
100 : : : :
0.2 0.4 0.6 0.8
¢

Fig. 10 The mean cluster size (N) plotted versus density ¢ for different
squirmer types f.
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Fig. 11 Distributions of cluster sizes, P(N), of neutral squirmers ( = 0).
Linear system size is L = 448. Left: ¢ = 0.4, note the semi-logarithmic plot;
right: ¢ = 0.58, note the double-logarithmic plot.

100

for small ¢. Here, the squirmers are tilted against the wall
normal so that they constantly move along the bottom wall.
In this dynamic environment they bump into each other and
form transient clusters.

We further analyzed the distribution P(N) of cluster sizes
for neutral squirmers and found several characteristic shapes
(see Fig. 11 for two of them). Of course, for ¢ < 0.26 all clusters
have size one (distribution not shown). Above ¢ = 0.26 in the
fluctuating cluster state the cluster-size distribution has expo-
nential form (see Fig. 11, left), where the mean size grows with
¢ as discussed before. This shape persists until the largest
cluster of squirmers is close to the percolation transition, where
the cluster spans the whole system. Below but close to this
transition (see Fig. 11, right) the cluster-size distribution
takes the form of a power law with an exponential cutoff.
The exponent of the power law P(N.) ~ N * has the value
T & 2.0, which nicely agrees with the theoretical value
187/91 ~ 2.05 of two-dimensional percolation.?"** Finally, at
high ¢ the distribution P(N,) is bimodal (not shown). It results
from the dominant percolating cluster of fluctuating size,
which scales with L? at constant ¢, and a distribution of smaller
clusters, which break away from and merge with the dominant
cluster dynamically.

3.2.2 Kinetics of fluctuating pairs/trimers, and Kkissing.
Fig. 1, bottom shows an example of a system in the fluctuating
cluster state with abundant chains and a trimer, where three
squirmers form a nearly equilateral triangle. Also in the kissing
state such motives are found. We concentrate here on pairs or
trimers and characterize their kinetics further.

In the fluctuating cluster state pairs form when the orienta-
tions of the squirmers are tilted towards each other so that they
swim against each other (see Video S10 in the ESIt). The pairs
break up again when nearby squirmers approach or when
orientational fluctuations tilt the orientations away. The events
of a breakup occur stochastically and seem to be independent
from each other. Then, we expect them to follow a Poissonian
process like radioactive decay. Indeed, the distribution of
pair lifetimes is roughly exponential as the inset of Fig. 12
demonstrates.

In the kissing state the breakup of pairs and trimers follows a
different process. This is obvious from the distribution of pair
lifetimes plotted in Fig. 12 for puller squirmers (ff = 2) at ¢ = 0.33.
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The distribution has a clear maximum at a non-zero lifetime Ty,
Indeed, Video S2 in the ESI{ and the graphic representation in
Fig. 1, bottom for the formation and breakup of a pair hints to a
mostly deterministic process. As squirmers approach, their orien-
tations are tilted towards each other. However, this configuration
is unstable. As soon as they touch, they turn to the side, pass each
other, and thereby separate to find another nearby puller. Due to
this scenario, we called the dynamical state “kissing”. Interest-
ingly, similar behavior occurs for trimers (marked with a red circle
in Video S2 in the ESIY).

Finally, we note that for the large density of ¢ = 0.68 and
f = —1 we even observe symmetric clusters with seven squir-
mers as part of larger groupings (see, e.g., bottom left in the
beginning of Video S11 in the ESI{). They spontaneously switch
between rotating and non-rotating states.

3.3 Swarming

For f < —2 but also for f = —1 at large densities the pusher
orientation tilts against the normal so that it moves along the
bottom wall. This observation correlates very nicely with the
mean height of the squirmer above the wall, which is plotted in
Fig. 13 versus density ¢ for different f. While for f > —2
squirmers sit on the surface, for f < —2 the flow field due to
the tilted orientation lifts them up by a small amount. We note
that the tilted orientation fits to the expectation that for
pushers there has to be a transitional region between the
upright orientation at the wall as calculated in lubrication
theory and the parallel far-field orientation.*"** For small
densities and squirmer type § around —2 we observe random
motion of the squirmers in the fluctuating chain state as
indicated in the state diagram of Fig. 1. For stronger pushers
the in-plane velocities align and the squirmers show swarming
(see video S5 in the ESIt). We note that in this state the
in-plane velocities point in the same direction as the in-plane
orientations of the squirmers (data not shown). As we see in
Fig. 14 strong pushers (ff = —5) show a mean in-plane velocity of
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Fig. 13 Mean height of squirmers above the bottom wall in units of
squirmer radius R plotted versus density ¢ for different squirmer types p.
Error bars indicate the temporal standard deviation of the recorded
heights.

1.5v, at low densities, which cannot be explained by the mean
tilt of a single squirmer against the wall normal (see Fig. 2). So
the enhanced swarming velocity is also a collective effect.

Fig. 14 quantifies the swarming by plotting the mean

collective horizontal speed (|vno|), where vy,or:= (vy, ). Here it
is important that first the ensemble average of the in-plane
velocity vector is taken before the absolute value in order to
identify a collective swarming direction. Thus, swarming or
collective motion in a preferred direction is measured. We
consider the system to display swarming if (|Vyor[)/.vo > 0.5.
The mean collective horizontal speed reflects the different
states in the state diagram of Fig. 1. Since the slope of the
curves in Fig. 14 are rather steep around (|vie|) / vo =0.5,
changing the criterion will not strongly affect the schematic
boundaries in the state diagram. For § = —1 it is zero, which
corresponds to the Wigner fluid and the adjacent fluctuating
cluster state. Only at the largest densities a noticeable collective
horizontal speed indicates swarming. For f§ = —2 the in-plane
velocities have random orientation at small densities and then
for ¢ > 0.3 align with each other in the swarming state.

2.0

=
u

| (Vhor) |/ vo
=
o

0.5
0.0- - - ,
0.2 0.4 0.6 0.8
¢
Fig. 14 Mean collective horizontal speed plotted versus density ¢ for
squirmer type f = —1, —2, and —5. Error bars indicate the temporal

standard deviation of the recorded horizontal velocities.
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Interestingly, the in-plane velocity of strong pushers decreases
with increasing ¢ above ¢ = 0.2. Above ¢ =~ 0.58 a global
direction in the collective horizontal velocity does no longer
exist and the squirmers perform what we call chaotic swarming
(see video S6 in the ESIf). The flow field of strong pushers
possesses vortices close to the squirmer surface,”® which rotate
nearby pushers and thereby more and more destroy the align-
ment of the in-plane velocity for increasing ¢. This randomiza-
tion is also evident from the large error bars in Fig. 14, which

indicate the strength of temporal fluctuations of (|vho|).
Finally, we note that in the vicinity of the wall swarming
pushers can move faster than pushers in a bulk fluid.

4 Conclusions

Using hydrodynamic simulations with the MPCD method, we
studied a monolayer of squirmers that forms under strong
gravity at the bottom surface of a container. The squirmers
interact with each other via their self-generated flow fields and
thereby induce several dynamic states, which we identified by
varying squirmer density and squirmer type. The most inter-
esting state is certainly the hydrodynamic Wigner fluid that
neutral squirmers, pullers, and weak pushers form at low to
medium densities. The squirmers have an upright orientation
and push their neighbors away through their flow fields. They
thereby create a structure with local hexagonal order, which
nevertheless is fluid and does not show long-range hexatic
order. However, we identified a non-trivial relaxation of the
self-intermediate scattering function that follows a stretched
exponential. This is reminiscent of what is seen in the
o-relaxation of a glass-forming system close to the glass transi-
tion. For example, a Wigner glass in a colloidal system with
strong electrostatic repulsion exists.®*> However, in our case
we cannot just increase the strength of the hydrodynamic
repulsion by increasing density since then the squirmers start
to hydrodynamically attract each other.

If density is increased starting from the Wigner fluid,
squirmers enter the state of fluctuating clusters or, for medium
to strong pullers, the kissing state. Fluctuating clusters also
exist for medium pushers at small to medium densities. Both
states show an exponential cluster size distribution but they
differ in the kinetics how they break up. Fluctuating pairs break
up by stochastic events due to orientational fluctuations or due
to approaching nearby squirmers, which roughly gives an
exponential lifetime distribution. In contrast, the distribution
in the kissing state is peaked at a finite time, which hints to a
more deterministic process. At even larger densities the cluster
size distribution becomes algebraic close to the percolation
transition and ultimately reaches a bimodal shape in the global
cluster state where most squirmers are part of a percolating
cluster. Finally, the orientation of strong pushers and also
weaker pusher at large densities tilts against the wall normal.
The in-plane velocities align and thereby form the swarming
state, which for very strong pushers at large densities becomes
chaotic.

This journal is © The Royal Society of Chemistry 2019
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In a recent work hydrodynamically interacting squirmers
experience an aligning torque towards a bounding wall.*’
Similar to our results, the authors detect a variety of different
states. So, it would be interesting to identify an experimental
system to study structure formation close to a bounding wall
under defined conditions, which in our case would mean
strong gravity. Possible realizations of squirmers in such a
system are Volvox algae and active emulsions.”®

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank Peter Keim for insightful discussion. This project was
funded by Deutsche Forschungsgemeinschaft through the
research training group GRK 1558 and priority program SPP
1726 (grant number STA352/11). The authors acknowledge the
North-German Supercomputing Alliance (HLRN) for providing
HPC resources that have contributed to the research results
reported in this paper.

References

1 S. Ramaswamy, Annu. Rev. Condens. Matter Phys., 2010, 1,
323-345.

2 M. C. Marchetti, J.-F. Joanny, S. Ramaswamy, T. B.
Liverpool, J. Prost, M. Rao and R. A. Simha, Rev. Mod. Phys.,
2013, 85, 1143.

3 C. Bechinger, R. Di Leonardo, H. Léwen, C. Reichhardt,
G. Volpe and G. Volpe, Rev. Mod. Phys., 2016, 88, 045006.

4 D. Needleman and Z. Dogic, Nat. Rev. Mater., 2017, 2, 17048.

5 A. Doostmohammadi, J. Ignés-Mullol, J. M. Yeomans and
F. Sagués, Nat. Commun., 2018, 9, 3246.

6 E.Laugaand T. R. Powers, Rep. Prog. Phys., 2009, 72, 096601.

7 H. Stark, Eur. Phys. J.-Spec. Top., 2016, 225, 2369-2387.

8 N. Desai and A. M. Ardekani, Soft Matter, 2017, 13,
6033-6050.

9 A. Sokolov and I. S. Aranson, Phys. Rev. Lett., 2009,
103, 148101.

10 S. Rafa, L. Jibuti and P. Peyla, Phys. Rev. Lett., 2010,
104, 098102.

11 A. Z6ttl and H. Stark, Phys. Rev. Lett., 2012, 108, 218104.

12 S. Uppaluri, N. Heddergott, E. Stellamanns, S. Herminghaus,
A. Zottl, H. Stark, M. Engstler and T. Pfohl, Biophys. J., 2012,
103, 1162-1169.

13 A. Zottl and H. Stark, Eur. Phys. J. E: Soft Matter Biol. Phys.,
2013, 36, 4.

14 E. Clement, A. Lindner, C. Douarche and H. Auradou, Eur.
Phys. J.-Spec. Top., 2016, 225, 2389-2406.

15 C. Lozano, B. Ten Hagen, H. Lowen and C. Bechinger, Nat.
Commun., 2016, 7, 12828.

16 J. A. Cohen and R. Golestanian, Phys. Rev. Lett., 2014,
112, 068302.

Soft Matter, 2019, 15, 5685-5694 | 5693


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9sm00889f

Open Access Article. Published on 21 June 2019. Downloaded on 1/20/2026 2:19:01 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

17

18
19

20

21

22

23

24

25

26

27

28
29

30

31

32

33

34

35

36

37
38

39
40

41

42

43

44

45

46

47

48
49

R. Nash, R. Adhikari, J. Tailleur and M. Cates, Phys. Rev.
Lett., 2010, 104, 258101.

A. Pototsky and H. Stark, EPL, 2012, 98, 50004.

M. Hennes, K. Wolff and H. Stark, Phys. Rev. Lett., 2014,
112, 238104.

A. A. Evans, T. Ishikawa, T. Yamaguchi and E. Lauga, Phys.
Fluids, 2011, 23, 111702.

F. Alarcon and I. Pagonabarraga, J. Mol. Lig., 2013, 185, 56-61.
D. Saintillan and M. J. Shelley, C. R. Phys., 2013, 14, 497-517.
W. Yan and ]. F. Brady, Soft Matter, 2015, 11, 6235-6244.
A. Z6ttl and H. Stark, J. Phys.: Condens. Matter, 2016, 28, 253001.
N. Oyama, J. J. Molina and R. Yamamoto, Phys. Rev. E, 2016,
93, 043114.

K. Drescher, K. C. Leptos, I. Tuval, T. Ishikawa, T. J. Pedley
and R. E. Goldstein, Phys. Rev. Lett., 2009, 102, 168101.

J. Palacci, C. Cottin-Bizonne, C. Ybert and L. Bocquet, Phys.
Rev. Lett., 2010, 105, 088304.

M. Enculescu and H. Stark, Phys. Rev. Lett., 2011, 107, 058301.
F. Ginot, I. Theurkauff, D. Levis, C. Ybert, L. Bocquet, L. Berthier
and C. Cottin-Bizonne, Phys. Rev. X, 2015, 5, 011004.

B. Ten Hagen, F. Kimmel, R. Wittkowski, D. Takagi,
H. Léwen and C. Bechinger, Nat. Commun., 2014, 5, 4829.
K. Wolff, A. M. Hahn and H. Stark, Eur. Phys. J. E: Soft Matter
Biol. Phys., 2013, 36, 43.

T. Pedley and ]. Kessler, Annu. Rev. Fluid Mech., 1992, 24,
313-358.

W. M. Durham, J. O. Kessler and R. Stocker, Science, 2009,
323, 1067-1070.

C. Kriiger, C. Bahr, S. Herminghaus and C. C. Maass, Eur.
Phys. ]. E: Soft Matter Biol. Phys., 2016, 39, 64.

C. Jin, C. Krtiger and C. C. Maass, Proc. Natl. Acad. Sci.
U. S. A., 2017, 114, 5089-5094.

I. Llopis and 1. Pagonabarraga, J. Nonnewton. Fluid Mech.,
2010, 165, 946-952.

A. Zo6ttl and H. Stark, Phys. Rev. Lett., 2014, 112, 118101.

I. Jung, K. Guevorkian and J. M. Valles, Phys. Rev. Lett., 2014,
113, 218101.

K. Schaar, A. Zottl and H. Stark, Phys. Rev. Lett., 2015, 115, 038101.
J. Blaschke, M. Maurer, K. Menon, A. Zéttl and H. Stark, Soft
Matter, 2016, 12, 9821-9831.

J- S. Lintuvuori, A. T. Brown, K. Stratford and D. Marenduzzo,
Soft Matter, 2016, 12, 7959-7968.

F. Rihle, J. Blaschke, J.-T. Kuhr and H. Stark, New J. Phys.,
2018, 20, 025003.

S. Thutupalli, D. Geyer, R. Singh, R. Adhikari and H. A.
Stone, Proc. Natl. Acad. Sci. U. S. A., 2018, 115, 5403-5408.
Z. Shen, A. Wiirger and J. S. Lintuvuori, Eur. Phys. J. E: Soft
Matter Biol. Phys., 2018, 41, 39.

Z. Shen, A. Wiirger and J. S. Lintuvuori, Soft Matter, 2019, 15,
1508-1521.

J.-T. Kuhr, J. Blaschke, F. Riihle and H. Stark, Soft Matter,
2017, 13, 7548-7555.

M. Lighthill, Commun. Pure Appl. Math., 1952, 5, 109-118.
J. Blake, J. Fluid Mech., 1971, 46, 199-208.

T. Ishikawa, M. Simmonds and T. Pedley, J. Fluid Mech.,
2006, 568, 119-160.

5694 | Soft Matter, 2019, 15, 5685-5694

50

51

52

53

54

55

56

57

58

59

60

61

62
63

64

65

66

67

68

69

70

71

72
73

74
75

76
77
78

79
80
81
82

83

View Article Online

Soft Matter

M. T. Downton and H. Stark, J. Phys.: Condens. Matter, 2009,
21, 204101.

G. Gompper, T. Ihle, D. Kroll and R. Winkler, Adv. Polym.
Sci., 2009, 221, 1-87.

A. Malevanets and R. Kapral, J. Chem. Phys., 1999, 110,
8605-8613.

A. Z6ttl and H. Stark, Eur. Phys. J. E: Soft Matter Biol. Phys.,
2018, 41, 61.

S. Thutupalli, R. Seemann and S. Herminghaus, New
J. Phys., 2011, 13, 073021.

M. Schmitt and H. Stark, EPL, 2013, 101, 44008.

M. Schmitt and H. Stark, Phys. Fluids, 2016, 28, 012106.
M. Schmitt and H. Stark, Eur. Phys. J. E: Soft Matter Biol.
Phys., 2016, 39, 80.

C. C. Maass, C. Kriiger, S. Herminghaus and C. Bahr, Annu.
Rev. Condens. Matter Phys., 2016, 7, 171-193.

S. E. Spagnolie and E. Lauga, J. Fluid Mech., 2012, 700,
105-147.

J. Padding and A. Louis, Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys., 2006, 74, 031402.

H. Noguchi, N. Kikuchi and G. Gompper, EPL, 2007,
78, 10005.

R. Kapral, Adv. Chem. Phys., 2008, 140, 89-146.

H. Noguchi and G. Gompper, Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys., 2008, 78, 016706.

M. Theers, E. Westphal, K. Qi, R. G. Winkler and
G. Gompper, Soft Matter, 2018, 14, 8590-8603.

J. Padding, A. Wysocki, H. Lowen and A. Louis, J. Phys.:
Condens. Matter, 2005, 17, S3393.

J. Padding and W. ]J. Briels, J. Chem. Phys., 2010, 132, 054511.
P. Kanehl and H. Stark, Phys. Rev. Lett., 2017, 119, 018002.
P. Kanehl and H. Stark, J. Chem. Phys., 2015, 142, 214901.
K. Zahn, R. Lenke and G. Maret, Phys. Rev. Lett., 1999,
82, 2721.

P. ]J. Steinhardt, D. R. Nelson and M. Ronchetti, Phys. Rev. B:
Condens. Matter Mater. Phys., 1983, 28, 784.

J. Bialké, T. Speck and H. Lowen, Phys. Rev. Lett., 2012,
108, 168301.

K. J. Strandburg, Rev. Mod. Phys., 1988, 60, 161.

U. Gasser, C. Eisenmann, G. Maret and P. Keim, Chem-
PhysChem, 2010, 11, 963-970.

K. Zahn and G. Maret, Phys. Rev. Lett., 2000, 85, 3656.

C. Eisenmann, U. Gasser, P. Keim and G. Maret, Phys. Rev.
Lett., 2004, 93, 105702.

F. Sciortino and P. Tartaglia, Adv. Phys., 2005, 54, 471-524.
P. N. Pusey, J. Phys.: Condens. Matter, 2008, 20, 494202.

G. Brambilla, D. El Masri, M. Pierno, L. Berthier,
L. Cipelletti, G. Petekidis and A. B. Schofield, Phys. Rev.
Lett., 2009, 102, 085703.

G. L. Hunter and E. R. Weeks, Rep. Prog. Phys., 2012, 75, 066501.
L. Berthier and G. Biroli, Rev. Mod. Phys., 2011, 83, 587.

D. Stauffer, Phys. Rep., 1979, 54, 1-74.

D. Stauffer and A. Aharony, Introduction to percolation
theory: revised second edition, CRC press, 2014.

D. Bonn, H. Tanaka, G. Wegdam, H. Kellay and J. Meunier,
EPL, 1999, 45, 52.

This journal is © The Royal Society of Chemistry 2019


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9sm00889f



