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We use moving light patterns to control the motion of Escherichia coli bacteria whose motility is photo-
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therefore the accumulation of cells in up- and down-stream reservoirs. We validate our results with
two-dimensional simulations and a 1-dimensional analytic model, and use these to explore parameter
space. We find that cell accumulation is controlled by a competition between directed flux and

undirected, stochastic transport. Our results point to a number of design principles for using moving
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1 Introduction

Active colloids’ are fundamentally interesting, exhibiting
phenomena not found in equilibrium systems such as currents
and unique kinds of pattern formation.> Such phenomena have
been applied, e.g., to concentrate particles® or separate them by
size, actuate micro-machines,’ or self-assemble microstruc-
tures. For example, V-shaped ‘funnel gates’ fabricated using
soft lithography can rectify the motion of randomly-swimming
bacteria,® producing steady currents or spatial patterns. Similar
effects can be achieved by applying a spatial light pattern to
bacteria or other active colloids whose speed v depends on the
intensity of incident light, I. If dv/dI > 0, bacteria in illuminated
regions swim until they encounter a darker region, where they
are slowed down. Cells then accumulate in the dark regions
because they swim out of the light regions and stop in the dark.
Quantitatively, this leads to the relationship pv = constant™®
where p is the spatially varying bacterial concentration.

This technique for ‘painting patterns with bacteria’ has been
demonstrated using Escherichia coli in which the proton motive
force (PMF) driving swimming is generated by light-powered
proteorhodopsin (PR).®”® Potential applications include directing
swimmers into compartments®° to actuate micro-mechanical
components.” Such ‘bacterial painting’ becomes significantly
more versatile if the template is dynamic. Thus, globally time-
varying light fields projected onto PR-driven E. coli can
‘erase’ and ‘re-paint’ patterns.” Here, we study the response of
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light patterns and light-activated micro-swimmers in a range of practical applications.

PR-driven E. coli to spatio-temporally varying light fields, speci-
fically, wave-like propagating periodic patterns of illumination.
By using a combination of experiments, theory and simulations
we uncover a rich array of often counter-intuitive phenomena.
To motivate our work, consider a 1D model solvable by
inspection. Bacteria swim right (+x, —) or left (—x,—) at speed v
when illuminated, and stop completely in the dark; the (equal) —
and — populations do not exchange. Now impose and translate at
speed u > 0 a square-wave light pattern, Fig. 1a. If y =u/v =1, —
cells keep up with the moving light field in steady state, and so
maintain their speed v, whereas — cells spend only some of their
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Fig.1 (a) 1D schematic of a translating square-wave light field with
co- (red) and counter-moving (blue) bacteria. (b) Kymograph of a light
field moving at speed u (duty cycle o = 0.5) with light regions as white and
dark ones with grey stripes and with trajectories of non-tumbling right
(red) and left (blue) swimmers at speed v = u (i.e. y = u/v = 1) and the mean
trajectory (magenta). (c) Kymograph for y = 0.2 and 2, and « = 0.5.
(d) Schematic of the 2D light pattern in our experiments.
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time in the light, determined by the duty cycle (fractional on time)
of the pattern, «. This results in a net positive cell flux, i.e., a light
pattern translating at y = 1 rectifies the cells’ motion and
transports them with the pattern. We can represent this
behaviour in a space-time plot (kymograph), Fig. 1b.

Optimal rectification is obtained for y ~ 1: fory « 1, — cells
remain trapped at the slowly-moving light-dark interface, while
the — cells move faster through the light regions; for y > 1, the
light field moves much faster than the cells, so both — and —
cells spend ~50% time in the dark and the light. Either way,
the net flux falls, Fig. 1c. This qualitative picture has been
quantified previously in simulations and theoretically.'®""
Counter-intuitively, these works also predicted that a reversal
of the flux direction is possible for y « 1, and showed that this
was dependent on other parameters such as the bacterial
tumbling rate'® or the speed of bacteria in the dark.™

In this paper, we first perform bacterial experiments
designed to quantitatively test these theoretical predictions.
Our experiments reproduce the optimal rectification suggested
by the intuitive picture, and identify flux reversal at low pattern
speeds. Simulations of our system quantitatively reproduce our
experimental results, but only when we include a biological
delay in the bacterial response to light, and translational
thermal diffusion of the bacteria. We go on to explore the wider
parameter space using a one-dimensional analytical theory.
This allows us to explain various mechanisms for flux reversal,
controlled, e.g., by rotational diffusion or the duty cycle of the
pattern. Further, we show that the parameter dependence of
the steady-state downstream accumulation of bacteria, ie.,
their ability to form patterns, can be quite different, and even
reversed, from the parameter dependence of the flux in periodic
boundary conditions, which theoretical studies generally discuss.'*"*
Based on these findings, we articulate design principles for the
transport of light-activated swimmers using moving patterns
of illumination.

2 Materials and methods

The bodies of E. coli bacteria'® are ~2 pm x 1 pm X 1 pm
spherocylinders. They swim by using their PMF (of ~—150 mV) to
power membrane-embedded rotary motors which rotate ~7-10 um
helical flagella. Unusually for bacteria, E. coli can generate a PMF
without external nutrients'® by using internal resources and O, to
pump protons out of the cell. Without O,, swimming ceases'>
unless there is another source of PMF, as in cells expressing PR,
a photon-driven proton pump. Thus, under anaerobic conditions,
PR-expressing E. coli cells swim only when illuminated, which is
analogous to synthetic light-activated swimmers.">'®

We inserted a PR-bearing plasmid into E. coli AB1157, and
deleted the cheY gene and the unc operon encoding the ATP
synthase complex to give strain AD10.” The former deletion
turns wild-type run-and-tumblers into smooth swimmers, while
the latter gives fast stopping whenever illumination ceases.”

Overnight cultures were grown aerobically in 10 ml Luria-
Bertani broth at 30 °C. A fresh culture was inoculated at 1:100

This journal is © The Royal Society of Chemistry 2019

View Article Online

Soft Matter

dilution of the pre-grown cells in 35 ml tryptone broth and
grown for 4 h. The production of PR was induced by adding
arabinose to a concentration of 1 mM, as well as the necessary
cofactor all-trans-retinal to 10 uM in the growth medium. Cells
were incubated under the same conditions for a further hour to
allow protein expression to take place and then transferred to
motility buffer. A single filtration was used to prepare high
density stock solutions (optical density =~ 10) which were
diluted with phosphate motility buffer (MB, pH 7.0, 6.2 mM
K,HPO,4, 3.8 mM KH,PO,, 67 mM NaCl and 0.1 mM EDTA) to
an optical density ~6 at 600 nm (= 0.8 vol% cell bodies'?). 2 uL
aliquots sealed into 20 pm-thick, ~10 mm wide, flat glass
capillaries were observed in phase contrast under red illumination
using a PF 10x/0.3 NA objective on a Nikon TE2000 microscope.
Movies were recorded with a high speed CMOS MC1462 Mikrotron
camera. Swimming stopped a few minutes after sealing due to
O, depletion.

After leaving these cells in the dark for a further 10 min,
uniform green illumination was turned on (510-560 nm, corres-
ponding to peak PR absorption; ~5 mW cm > at the sample).
Differential dynamic microscopy (DDM)'”"*® returned an increas-
ing mean swimming speed ¥, saturating at ~6.5 pm s, with
standard deviation ~2.5 um s~ " and a typical fraction 8 ~ 25% of
non-motile bacteria (7 is averaged over the motile bacteria only).
The non-motile bacteria have diffusivity Dy ~ 0.15 pm?> s~
In this work, we use the terms ‘motile/non-motile’ to refer to cells
that are able/unable to swim in the presence of green light, while
the descriptors ‘swimmers/non-swimmers’ are reserved for those
motile cells that are transiently powered/not-powered by external
illumination.

A spatial light modulator projected a 4 x 4 array of static and
dynamic patterns onto this initially uniform field of swimmers
and non-motile cells. Each pattern featured a central dark
square (side / = 85 pm) inside an outer square (side L = 300 pm),
Fig. 1d. In the static pattern, the square annulus was uniformly
illuminated. The dynamic pattern comprised concentric square
annuli of equal width A/2 = 40 pm (x = 0.5) propagating inwards at
speed u. The area outside the patterns was dark in all cases. We
chose a square-wave intensity pattern because its predicted flux
is higher than other waveforms previously considered, e.g.,
sinusoidal."* Moreover, the fact that the swimming speed is
non-linearly dependent on the light intensity’ means that any
pattern apart from a square-wave pattern will be distorted,
complicating the experiment and analysis.

In our setup, the local intensity variance in the microscopy
image, ¢, has previously been found to be proportional to the
local cell density” (see ESIt for details). Here, we are interested
in the density p;,(f) of motile cells in the central square of
the pattern

pin() = foin’(O[1 — Bin(0)], 1)

where fis a constant of proportionality, and o;,> and f;, are
the local variance in pixel intensity averaged over the inner
square, and the motile fraction in the inner square, respec-
tively. We assume zero net transport of non-motile cells, ie.,
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Bin()oin(t) = Pin(0)0in>(0), and calculate the relative accumula-
tion of motile cells averaged over the inner square:

o =) o)~ 0wl(0)
P = T o) a2+ o)1~ 280y

Initially, pin(0) = Pout(0) = po, the uniform motile density every-
where. Subsequently, we find that the outer motile cell density
stays approximately constant, .e., pou(t) ~ po (see ESIT), so that
0(?) also corresponds to the contrast between the inside and
outside of the pattern, i.e., 5(£) = (Pin(t) — Pout())/(Pin(t) + Pout(t))-
Our choice of normalization means that p = £1 for complete
rectification in the inwards or outwards directions respectively.

3 Results

3.1 Rectification in 2D experiments and simulations

Fig. 2 shows data for u = 2.25 um s, corresponding to y = 0.35.
Imposing a static pattern ‘paints’ a central dark square and the
outer square acquires a dark edge, Fig. 2a, as previously,”
because cells in the bright (B) annulus swim into the dark (D)
central square and outer regions in roughly equal numbers and
stop upon arrival. Because the central square is much smaller
than the outer region this initial influx of swimmers from the
bright annulus gives a sharp increase in p;, and therefore p,
Fig. 2b (e). Thereafter, § decreases slowly as accumulated non-
swimmers diffuse back out into the bright annulus and swim to
the outside of the annulus. Presumably, at long times, a steady
state obtains where the B — D active flux balances the D — B
diffusive flux, so that we expect pin(t = ©0) & poult = )= po,
and p(t —» o) = 0. However, we cannot reach this limit
experimentally because bacteria slow down and begin to aggre-
gate with time, possibly due to accumulated photo-damage.
The contrast in the steady-state ‘static painting’ is due to the
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Fig. 2 (a) Phase contrast microscopy snapshots of a static pattern, and a

dynamic pattern with u = 2.25 um s™* (y = u/v = 0.35, with 7 = 6.5 um s™%).
(b) Experimental normalized density p at the center of the pattern as a
function of time for static and dynamic patterns. (c) 2D simulated p for a
dynamic (u = 2.0 pm s™% y = 0.31) and a static pattern, with (dots) and
without (dashes) thermal motion.
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annulus, inhabited by a small amount of non-motile cells and
few swimmers in transit, so that p,,n, < po.

The dynamic light pattern also accumulates cells in the
central square, Fig. 2a. The difference from the static case,
already visible in the snapshots but highlighted in Fig. 2b, is
that p(¢) does not decay after the initial increase, but reaches
instead a finite steady-state value. This enhancement of
accumulation depends non-monotonically on y = u/v, Fig. 3a,
and, counter-intuitively, it reverses sign at y « 1: cells are swept
out of the central region (9 < 0). Both of these features are
clearly illustrated in Fig. 3¢, which shows that at both ¢ = 500 s
and ¢ = 4000 s, p is peaked as a function of y, and that at the
later time p < 0 when y < 0.05 (see ESI,i Movie 1).

To explore these features, we simulated 2 x 10* non-
interacting swimmers in a 600 x 600 pm” periodic box. Particle
speeds v; are drawn from an experimental Schultz distribution
for our bacteria'”'® (mean = 6.5 um s, 40% standard deviation).
The dynamics of particle i obeys

t; = viA;Bip; + \/2Drér, 3)
0; = \/2Drég, @

A; = (I(r) — A)lta, (5)

B; = (I(r) — B)/rs, (6)

with r; and p; = (cosf; sin#6,) its position and propulsion
direction respectively. &r is a two- and g is a one-dimensional
unit-variance temporally-uncorellated Gaussian noise term
(in each direction for ¢p). Translational, Dy = 0.15 pm?® s,
and rotational, Dy = 0.05 s, diffusivities reflect experimental
values (see ESIt). The normalized light intensity, I(r;t) = 1 for
bright and 0 for dark. The two dynamical variables A and B
reflect the observation” that two independent, internal processes

control the response of our cells to changes in the intensity of
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Fig. 3 (a) Experimental time-dependent normalized density p(t) for pattern

speeds u = 0.045, 2.25, 9 pm s~ * (y = 0.007, 0.35, 1.4). (b) 2D simulations
(y = 0.006, 0.31, 1.54). (c) Experimental p as a function of pattern speed for
indicated times from experiments. (d) As in (c) but from simulations, and also
results for D1 = 0 and 75 = g = 0. Arrows in (c) and (d) correspond to the y
from (a) and (b). Error bars in (c) and (d) refer to the standard deviation of the
values taken in a £100 s window.
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external illumination. We independently measured 7, = 1.6 s
and 7 = 100 s (see ESIT). Note that in the instant-response limit
(ta = 7 = 0) this model reduces to the popular 2-dimensional
active-Brownian-particle (ABP) model that was previously used to
study the effect of translating light patterns.'®""

Our simulations reproduce the observed rise and decay in
o(2) for the static pattern, Fig. 2c (x). The saturation behavior
for the dynamic pattern is also reproduced, Fig. 2c (x). Most
visibly in the decay of the static case, the simulated dynamics is
slower than experiments, by a factor of ~2, possibly due to our
neglect of cell-cell interactions, which are expected to lead to
an increased apparent diffusivity."® Even so, the semi-quantitative
agreement is gratifying given the simplicity of our model.

We also claimed that the diffusion of cells that had stopped
swimming in the dark was responsible for the observed non-
monotonicity in p(¢) of the static pattern, Fig. 2b (e). Simulations
confirm this: setting Dy = 0 removes the drop in 5(¢), Fig. 2c (- - -).
The effect of removing diffusion on the dynamic pattern is to
render the rise to saturation significantly more rapid, Fig. 2c (- - -).
Thus, a dynamic pattern has to work against translational thermal
diffusion, as identified previously'® (see ESI,¥ Movies 2—4).

The simulations account well for the dynamics of 5(¢) at our
selected experimental u values, Fig. 3b, including the oscillations
at low u with a characteristic time = A/u ~ 2 x 10* s. These
oscillations occur because as the band of light approaches the
dark centre, swimmers in the band are able to ‘tunnel through’
and stop in the centre, increasing the accumulation transiently,
until the leading edge of the light band reaches the outer edge of
the dark centre. Now, thermal diffusion can transport cells from
the darkness to the light, whereupon they swim outwards,
reducing p in the central dark area (see ESI,T Movies 5 and 6).

Similarly, 5(y) is well reproduced over two orders of magnitude
in y, for both ¢ = 500 s and 4000 s, see Fig. 3c and d. In both cases
y =& 0.3 is optimal for accumulation, and flux reversal (drainage
of the central square) occurs if y < 0.1. Importantly, with Dy = 0,
Fig. 3d (green), simulations show no flux reversal: bacteria
transported inwards cannot escape the inner square (see ESL T
Movie 7). Nor does taking the instant-response limit 7, 5 = 0 give
quantitative agreement, Fig. 3d (black).

3.2 Exploring parameter space with a 1D analytic model

So far we have studied the effect of varying one parameter, the
pattern speed u = yv using 2D experiments and simulations. We
now turn away from experiments to construct an idealized 1D
analytic model, which will allow us to explore the wider parameter
space. Our calculations are based on recent analytical results for
light-activated particles in a 1D periodic moving light field,'" which
is the one-dimensional version of our 2-dimensional simulation
model, but with instant bacterial response, no translational
diffusion, and rotational diffusion replaced by tumbling (the
only possibility in 1D). The 1-dimensional model was originally
solved for a square wave in periodic boundary conditions, and
used to show that flux inversion can occur if the bacteria have a
finite swimming speed in the dark. Here, our bacteria do not
swim in the dark, so we look at other mechanisms for flux
inversion, notably caused by the pattern’s duty cycle, o, or by

This journal is © The Royal Society of Chemistry 2019
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the tumbling rate of the bacteria. We also extend the analysis to
account for the non-periodic boundaries in our 2D experiments,
which permit accumulation.

In the original theory,'" active point particles move right or
left at speed v in the light and v’ in the dark, but we set v' = 0
here. Particles reorient independently at rate k, which can be
viewed as a tumbling or rotational diffusion rate, non-dimen-
sionalised as k = kA/u (tumbling and rotational diffusion are
indistinguishable in 1D). A periodic, square light pattern is
imposed, moving at speed u > 0, in whose comoving frame are
periodic boundary conditions (BCs) at x = 0 and x = A, with
[0,0A4) light and [¢A,4) dark. The Fokker-Planck equation (FPE)
for this system with « = 0.5 was solved" to yield the average
transport velocity, (v) (equivalently, the flux), in periodic
boundary conditons.

In our experiments, we do not have periodic boundary
conditions, and we do not measure flux: instead we probe the
density difference between different regions, which is also the
relevant variable for pattern formation. We therefore extend
the results of ref. 11 (see ESIT) into a coarse-grained theory
to predict density differences. In detail, we calculate the
concentration difference between either end of a finite square-
wave illumination pattern of n (not necessarily integer) periods
moving from an ‘outer’ reservoir at x = 0 to an ‘inner’ reservoir at
x = L = An, see Fig. 4a. In the moving region, 0 < x < L, we
coarse-grain over the periodic dynamics by approximating all the
bacteria in this region as having uniform speeds given by the
mean speeds (v,) and (v_) that — and — bacteria, respectively,
would have in the equivalent periodic pattern, see Fig. 4. This
approximation should be valid as long as there are a sufficient
number n of periods in the moving pattern. The mean speeds
(v4) and (v_) are obtained in the same way as the overall mean
speed (v) = ((vy) — (v_))/2 was in ref. 11. We give expressions for
and outline the calculation of these quantitities in the ESL

Coarse graining

Pout Pin

Fig. 4 Schematic of coarse graining for 1-dimensional model. (a) Bacteria
swim at speed v(x,t) and tumble at rate k in a light pattern translating at
speed u between two reservoirs with steady-state bacterial concentration
Pout aNd pin. (b) After coarse graining, the bacteria are considered to swim
uniformly at the average speeds (v,) and (v_) they would obtain from the
same pattern moving with periodic boundary conditions.
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We are interested in concentration differences in steady
state, so we write down the resulting FPE for the time-invariant
(coarse grained) probability densities ¢.. in the lab frame

0 0 k

0 = G =l 30— 0.) o
0p_ op_ k

0= = 01 56, - )

where the first term on the right-hand side accounts for advection
due to swimming, and the second accounts for tumbling between
the two orientations. BCs account for the reservoirs: the flux
J+(0) of — particles into the light-pattern at x = 0 is

J+(0) = ¢+(vs) = Cpour, (8)

with po,c the bacterial density in the x = 0 reservoir, and C a
constant accounting for the rate at which bacteria exit the
reservoirs (the value of C does not affect the steady state
provided C > 0; this will be the case as long as there is any
translational diffusion, though we do not need to include this
explicitly in the model). Similarly, the flux of — particles out of
the x = L reservoir is

J D)= =¢ (v )= ~Cpin. )
The other condition is that steady state requires zero net flux
everywhere, soj=j, +j_ = (v.)¢, — (v_)$p_ = 0.

Solving eqn (7) subject to these conditions yields an

exponential density distribution across the moving part of the
light-field

S
b= e {<h><<>>} ’

and an expression for the parameter of interest, the steady-state
accumulation p., = p(t —» o0) (see eqn (2))

Do = tanh (%)

(11)

This result can be understood as a balance between the
persistent particle flux, (v), and stochastic events where indivi-
dual particles traverse the pattern against the flux. This can be
seen most clearly in the case where the flux is strong in
one direction, with bacteria only occasionally moving against
the flow, e.g., if (v_) « (v;). In this case, the probability of
a bacterium which leaves the outer reservoir reaching the inner
reservoir is p, ~ 1, whereas the probability p_ of a bacterium
passing in the opposite direction without returning to the inner
reservoir is much smaller, and is approximately equal to
the probability that zero left-to-right tumbles occur within the
time t_ = nA/(v_) taken for the bacterium to traverse this
distance, i.e., p_ ~ exp(—kr_/2). The steady state requirement
then gives pin/pour = p+lp— ~ explknd/(2{v_))], yielding
P ~ tanh[knA/(4(v_))], which is in fact the limiting form of
eqn (11) for (v_) « (v).
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Fig. 5
velocity (or flux) vs. pattern speed for o = 0.5and k =0, 0.01, 0.1and 1 s
Inset: Kymograph of a particle tumbling periodically at k = 0.07 s~ with o =
0.5and y = 0.1. (b) As in (a) but for k = 0.01 s™*and o = 0.25, 0.5 and 0.75.
(c) Predicted critical y for flux reversal, y*, vs. k for different o (in legend).

These theoretical results predict what happens when we vary
o and x (by changing k or A or both), Fig. 5. In particular, the
flux reverses at a critical y* < 1, Fig. 5a and b, that is k and
o-dependent, Fig. 5¢. Under our v’ = 0 conditions, such reversal
requires a finite k (whereas forv’ > 0, reversal can occur at k=0)."*

The speed reversal at k > 0 occurs, Fig. 5a, because of an
asymmetry in the effect of tumbling on the — and — parts of
the trajectory, which is illustrated in the inset for regular
(period 1/k) tumbling. Tumbling effectively retards particles
more during — (red) periods because they then become un-trapped
from the moving interface and so spend significant amounts of
time static in the dark. The effect on the — (blue) part of the
trajectory is weaker because this part of the trajectory is already
significantly in the dark even without tumbles, so tumbling will
not disturb the relatively rapid runs through the light, lasting
Tiighe = Ao/(u + v) until the tumbling rate increases above the rate
of this process, i.e., when ktjjgn, 2 1.

How the duty cycle « affects reversal, Fig. 5b, is illustrated
by the kymographs in Fig. 6a. For increasing o, —— particles
spend longer in the light (so the blue curve becomes steeper),
whereas — particles trapped at the boundary are unaffected

This journal is © The Royal Society of Chemistry 2019
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Fig. 6 (a) Kymographs for o = 0.3 and o = 0.7 with traces of non-tumbling

particles moving left (blue) and right (red) for y « 1. Magenta: the average
of the two tracks. (b) 1D simulation and theory of p vs. pattern speed for
#=05andk=0,00101s and1s™ (c) Asin (b) but for k = 0.01s*and
o =0.25,0.5and 0.75. The colour coding of (b) follows that of Fig. 5a, while
(c) follows that of Fig. 5b and c.

(the red curve stays the same); hence the reversal point y* shifts
to higher values with increasing o.

Perhaps counter-intuitively, the accumulation p.,, Fig. 6b
and c, is not trivially related to the behavior of the flux, Fig. 5a
and b. The case of o« = 0.5 is striking: the accumulation generally
increases with increasing k even though the flux decreases.
This is mainly because as the tumbling rate increases, the
probability of a bacterium moving from one reservoir to the
other, without tumbling, decreases; hence, the number of
events where bacteria ‘hop’ back over the moving light field
against the net flow also decreases. As the tumbling rate rises, it
thus becomes easier to maintain a concentration gradient, and
this effect turns out to be stronger than the simultaneous
decrease of the flux.

To validate our analytics, we simulated a 1D system obeying
the same dynamical equations already used for 2D, but with the
reorientation, eqn (4), replaced by a Poissonian tumbling
process, and with instant bacterial response, 7, = 7z = 0.
This reproduced the predicted fluxes exactly, Fig. 5a and b, as
before."* To extract j, we used simulations of a finite system,
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adding a small Dy = 0.01 um” s~ to allow the particles to escape
20 pm-long reservoirs. These simulations only approximately
reproduced the theory, Fig. 6b and c. This is reasonable, as the
theory itself is an approximation and we expect it to be exact
only in the limit of (i) many periods, i.e., n > 1, where the BCs
become less important, and (ii) for limited accumulation each
period, ie., for kA(v)/((vi)(v_)) « 1, where it is valid to use a
periodic approximation for the cell density distribution.

These results suggest that by tuning o and «, it should be
possible to exercise a great deal of control over how the
accumulation and flux vary with y. This is significant because
polydispersity in e.g., speed and rotational diffusion rates are
unavoidable, so that one will be dealing with a wide y distribution
in practice, and the ideal pattern design will depend on the goal.
For example, concentrating all bacteria in a single target region
requires bacteria with a wide range of speeds to be strongly
rectified in the same direction, corresponding to the wide y
plateau seen at low « or high A in Fig. 6b and c. Alternatively, to
separate a sample on the basis of speed when there is also
polydispersity in tumbling or rotational diffusion, the value of
o =0.75 would be ideal, as the reversal point is then independent
of k, see Fig. 5c.

4 Summary and conclusions

Recent numerical’® and analytical work'" has explored the
effect of moving patterns of light-dark illumination on light-
activated swimmers, and predicted the rectification of the
random motion of swimmers in the direction of the moving
light pattern, and a counter-intuitive regime of reverse rectification
at low pattern speeds. We have performed experiments and
simulations in 2D to verify that rectification in both directions
does indeed occur. The simulations included a finite bacterial
response time with two timescales accounting for distinct
biological processes, which we found was necessary to faithfully
reproduce the experimental results.

We have also generalized the recent 1-dimensional analytic
theory"" to predict not only the swimmer flux, but differences in
swimmer densities for different spatial regions, the latter being
a more natural experimental variable, and the variable directly
relevant to pattern formation. We used this 1D theory to explore
a wide parameter range and considered in detail two mechan-
isms of flux inversion: via bacterial tumbling, and via asymmetry
in the waveform (i.e. the duty cycle o). To the best of our
knowledge, the effects of waveform asymmetry have not been
previously considered in the theoretical or simulation literature.'®**
We expect that the ability to achieve precise control of bacterial
flux by several means will allow for crucial flexibility in future
studies.

Indeed, our results point to a number of design principles
for particle transport using moving light fields. If the target
application requires accumulation, y & 1 is a necessity, however
any light control delays, ie. deviations from t, = 73 = 0 are
expected to shift the y of optimum accumulation. Maximal
accumulation is also achieved by minimizing the tumble rate
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and regulating o. Additionally, e.g., if the possibility of flux
reversal is important, it will be necessary to use Brownian
particles, because setting Dy = 0 produced no reversal in our
simulations. It is likely that some, if not all, of these principles
will be applicable more widely to the control of active particles
in other kinds of spatiotemporally-varying fields, e.g., electrical®®
or ultrasound.”* Spatiotemporally-varying fields, in turn, may
become a standard component in developing applications such
as the separation of polydisperse mixtures, the directed-assembly
of active particles, and the dynamic actuation and control of
microscopic machines.
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