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We present a generic coarse-grained model to describe molecular motors acting on polymer substrates,
mimicking, for example, RNA polymerase on DNA or kinesin on microtubules. The polymer is modeled
as a connected chain of beads; motors are represented as freely diffusing beads which, upon
encountering the substrate, bind to it through a short-ranged attractive potential. When bound, motors
and polymer beads experience an equal and opposite active force, directed tangential to the polymer;
this leads to motion of the motors along the polymer contour. The inclusion of explicit motors
differentiates our model from other recent active polymer models. We study, by means of Langevin
dynamics simulations, the effect of the motor activity on both the conformational and dynamical
properties of the substrate. We find that activity leads, in addition to the expected enhancement of
polymer diffusion, to an effective reduction of its persistence length. We discover that this effective
“softening” is a consequence of the emergence of double-folded branches, or hairpins, and that it can
be tuned by changing the number of motors or the force they generate. Finally, we investigate the
effect of the motors on the probability of knot formation. Counter-intuitively our simulations reveal that,
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motor activity leads to a marked decrease in the occurrence of knotted conformations with respect to
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1 Introduction

Molecular motors that work out-of-equilibrium are key elements
for the viability of cells. Typical examples include myosin and
kinesin motors," RNA and DNA polymerases,” helicases® and
condensin.”® Although many of these protein complexes are
biochemically well characterised, we are far from having a full
understanding of their collective action in vivo. In some cases,
the behaviour may be tuned by inter-motor interactions that are
mediated by the substrate itself, a germane example being the
change in polymerase-DNA binding affinity due to substrate
supercoiling.®”’

Most previous theoretical and computational work on non-
equilibrium forces within live cells has focused on modelling
the propagation of stresses on biopolymer networks®® or active
fields which mimic cytoskeleton dynamics."® While molecular
motors can now be readily investigated using single-molecule
techniques,’ ™ the emergent properties of systems where a
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collection of motors interact on, and through, their target
polymer substrate remain poorly studied.*"*

Here we propose a coarse-grained computational model to
describe the action of generic molecular motors on polymers
with the aim of improving our understanding of the effects of
ATP-consuming translocating machineries on the conforma-
tional and dynamic properties of their target substrates. Within
our model, motors undergo free diffusion in 3-D until they
encounter the polymer, at which point they become “bound” to
it via an attractive interaction. While bound, a motor experi-
ences an active force propelling it along the polymer; at the
same time the polymer is subjected to an equal but opposite
active force. The result is that the motor displays relative
motion with respect to the substrate. The motor can unbind
from the polymer, for example due to thermal motion or
because it reaches the polymer’s end. While our model is
generic, and our aim is to understand its underlying physics, it
could be viewed as a model for DNA or RNA polymerases moving
along DNA or kinesin molecules stepping on microtubules.”

There has been a great deal of recent simulation work
exploring active polymers, and our model differs from these
in a number of ways. To our knowledge our work is the first
to explicitly treat discrete motors that track along a polymer
in a fully 3-D system. A number of recent studies*>° have
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considered a chain of beads, where each bead experiences an
active force, either directed along the chain bonds'”**?° or in a
direction independent of the chain.'*!® These works have
mainly focused on regimes of different behaviour at different
levels of activity (e.g., transitions from active translation to
rotational motion'” or to spiral configurations'® have been
observed - for a review see ref. 21). In the present work the
polymer only experiences an active force at the points where
the explicit motors are bound (and these vary in time), and we
focus on the effect on the conformational and dynamical
properties of the polymer. Another class of models have more
specifically focused on motor proteins found in the cyto-
skeleton, like myosin and kinesin which have provided a
model experimental system for active materials.>>*® These
can be modelled at a field theoretic level, but there have been
a number of simulation studies which resolved the motors
explicitly.>**” Unlike the current work, those studies focused
on dense suspensions of motors and their substrates, and/or
2-D systems where the motors are fixed to a surface, and have
often considered joined pairs of motors which can crosslink
different substrate molecules to drive them into relative motion.
In contrast, here we consider a single, semi-flexible polymer
which is free to move in 3-D, and is subject to the action of
multiple motors.

Our simulations reveal that motor activity affects the steady
state conformations of the polymer substrate; we find that
these are more crumpled with respect to their passive counter-
parts. We attribute this effective softening of the substrate to
the emergence of double-folded branches, or hairpins; the
effect can be tuned by changing, e.g., the strength of motor
activity. We also find that, for large enough motor activity, the
centre of mass of the polymer substrate can display super-
diffusive behaviour at short times, with a return to diffusive
behaviour at long times. Again this effect can be controlled by
varying the activity or number of motors. We conclude our work
by investigating the effect of motors on the propensity of the
polymer to form knots. This is relevant for many biological
processes involving DNA, where knotting would be detrimental
(e-g, knots and tangles might hinder transcription and replication,
repair of double strand breaks, or segregation of chromosomes).
We find that the motor activity effectively reduces the steady state
probability of finding knotted conformations. This is surprising
since at equilibrium, in a good solvent, and in the absence of
confinement, softer substrates show an enhanced probability
of knotting.® Thus, our findings point to an intriguing non-
equilibrium effect of molecular motors that could be important
in many biological systems.

2 The model

We perform Langevin dynamics simulations of a semi-flexible
bead-and-spring polymer consisting of L beads in solution with
N motors, as described schematically in Fig. 1. We use a
standard polymer model which includes finitely-extensible
non-linear elastic (FENE) springs connecting consecutive beads,
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Fig. 1 Schematic of our model for molecular motors acting on a generic
polymer substrate. Diffusing motors (blue) can interact with the polymer
backbone (grey); when bound, the motors (red) and the polymer experi-
ence opposite forces which cause relative motion. On the right hand side
of the figure we show the polymer in more detail: the vector G defines an
orientation for each bead and ¢; is then defined as the angle between G,
and the vector joining beads i and i + 1; an orientation potential acts to
minimise ¢; (see text and Appendix A for details).

a Kratky-Porod potential for triplets of beads providing bending
rigidity, and a Weeks-Chandler-Anderson (WCA) potential to
regulate steric interactions (see Appendix A for full details). The
intrinsic stiffness of the polymer is controlled by the bending
energy Kgpnp Which appears as a parameter in the Kratky-Porod
potential. Each polymer bead also displays an orientation, which
is tracked by a vector @i; as shown in Fig. 1, and we include a
potential to orient this vector along the local direction of the
polymer backbone (if the position of bead i is r; and the
orientation is 1@, then the potential acts to minimise the angle
¢; between @, and |r;y — 1)

The motors are represented by freely diffusing beads which
interact with each other sterically (via a WCA potential) and via
a Morse-like attractive potential with the polymer beads. The
latter is given by

Umor(r)
Kor (6% ~2675) — (e74mr ~2670)], 7 %
) { 0, otherwise,
(1)

Here r is the separation of the motor and the polymer bead, and
Kyor is the interaction strength. The potential has a minimum
when the motor and polymer beads overlap. We consider a
motor to be “bound” to a polymer bead when the centre-to-
centre separation of the bead and the motor is less than 7, ¢y,
which we set to be the same as the motor diameter. In addition
to this attraction, when a motor is bound to a polymer bead, it
experiences an active force of magnitude f in the direction
of the orientation vector @; of the bead; the polymer bead

This journal is © The Royal Society of Chemistry 2019
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experiences an opposite active force —f1; (in compliance with
Newton’s third law). It is possible for a motor to be within a
distance r,cqc Of more than one polymer bead at the same time:
in this case each interacting polymer bead will experience an
active force, and the total active force on the motor will be the
sum of that due to each interacting polymer bead. (In practice
motors spend over 95% of their “bound” time interacting with
two consecutive polymer beads.)

The result of the active force is that the motors and the
polymer are driven into relative motion; due to the connectivity
of the chain, the polymer tends to move less compared to
motors, so the latter effectively “track” along the polymer
substrate. Motors can become unbound from the polymer
due to thermal fluctuations (controlled by the parameter Kyor),
and also active effects (e.g. tracking off the end of the polymer -
this is discussed in more detail below). Since each monomer
has a preferred orientation, i.e., the polymer is polar, motors
will move in the parallel or anti-parallel direction depending on
the sign of f. In the present work we consider only the case
where all motors are the same and f > 0.

For simplicity motors and polymer beads are taken to have
the same diameter, o, mass, m, and unless otherwise stated
they experience the same friction ¢ due to the implicit solvent
(though in reality a motor such as RNA polymerase would be
much bigger). We use the LAMMPs molecular dynamics
software®® to perform the simulations: a Langevin equation
for each polymer bead and motor is solved using a velocity-
Verlet algorithm. A separate Langevin equation is solved for
each monomer orientation 1. Full details are given in Appendix A.
Throughout we quote energies and times in units of kg7 and

11y = /mo?/kgT respectively; how these map to physical units
will depend on the system of interest, as detailed in Appendix A.

3 Results

As discussed above, although a motor and the polymer bead it
is bound to experience forces of equal magnitude (but acting in
opposite directions), the chain connectivity means that the
motors can move more freely, and tend to track along the
polymer substrate. The three control parameters which we vary
in our simulations are the number of motors N, the interaction
strength Kyior, and the force acting on the motors f. However,
in what follows we also consider (n), corresponding to the
mean number of motors bound to the polymer at any one time.
We note that these parameters are not independent: for large
forces, motors have a shorter residency time due to the finite
size of the polymer substrate and if both N and f are large,
collisions between motors can also lead to a decrease in
residency time. That is to say, changing f at fixed N leads to a
change in (n), and this relationship depends on N itself - this is
examined in more detail in Appendix B.

As expected, the tracking speed of the motors in general
increases with f, though the relationship is complex (as noted,
changing f leads to a change in (n) which can affect motor
speed due to collisions). Within the range of parameters
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investigated, typically a motor will move from one polymer
bead to the next in a few 11 (e.g., for f=20 and N = 200 we
measure a speed ~ 0.4 beads/ty;). For an L = 500 bead polymer,
motors typically spend on the order 50-100 7;; bound to
it (increasing with Kyor and decreasing with increasing f
and (n)).

The motor action also changes the dynamics of the polymer.
At a global scale this can be quantified by measuring the
decorrelation time for the polymer end-to-end vector. For an
L = 500 bead polymer in the absence of motor action (f=0) a
typical decorrelation time is of the order 10° ;. Again, there is
a complicated dependence on f and N, but the motor effect
leads to a decrease in this decorrelation time by around an
order of magnitude. Nevertheless, the polymer relaxation time
remains much longer than the motor time-scales detailed
above, ie., the positions of motors on the polymer change
quickly with respect to the polymer dynamics. This implies
that, after some transient time, the properties of the polymer
will settle into a non-equilibrium steady-state (NESS) which is
independent of initial conditions (and the system is ergodic).
In the following sections we examine these steady state polymer
properties by averaging measurements over time and over an
ensemble of 50 independent simulations, unless otherwise stated.

Motor activity leads to polymer softening

In this section we study the role of motors on the steady state
conformations of the polymer substrate. We examine the effect
of different values of (n) and f, evolving the system until a NESS
is reached. By visual inspection of the simulated trajectories we
notice that, for large (n), the typical polymer conformations
become more crumpled and display kinks which do not appear
in passive (f = 0) systems (Fig. 2(a and b)).

To quantify the extent of polymer crumpling we measure the
radius of gyration R, defined by

RS = <%XL; ri — Rcm}2>, (2)

where r; is the position of the i-th polymer bead, R, is the
centre of mass of all polymer beads, and (- - -) denotes ensemble
and time average (after the system reaches a steady state). We
also measure the persistence length L, as defined from the
bond-bond correlation function

(byby.s) = e, ()

where b; = (r;qy — r)/|ts; — 1| represents the normalised
tangent to the polymer at bead i. Here the average is additionally
evaluated over bead index i. To calculate L, we perform an
exponential fit of the bond-bond correlation function (even for
cases in which this displays negative values - see below for more
on this point).

As shown in Fig. 2(c and d), both R, and L, exhibit a marked
decrease with increasing (n), in agreement with our initial
qualitative observation. Furthermore, the decrease in effective
persistence length L, is found to have a power-law scaling

Ly ~ ((m)f?y,

Soft Matter, 2019, 15, 5995-6005 | 5997
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(a and b) Comparison of conformations for a polymer of length L = 500 with (n) = 0 and (n) = 17 motors attached at any time. In (b) hairpins are

indicated by arrows and the purple beads mark the presence of an active motor bound to the polymer backbone. For clarity of visualisation, motors are
depicted as having a bigger size with respect to the polymer beads. (c) Persistence length L, as a function of the average number of motors attached (n)
for different values of f. Inset: The persistence length for different motor forces can be scaled on a master curve Ly(x = (n)f) ~ x* with o = —0.108 +
0.007. (d) Similar plot showing Rq as a function of (n). Again the inset shows the collapse of the curves when plotted as a function of (n)f? with coefficient
o = —0.100 £ 0.009. Error bars show the standard error in the mean (though these are often smaller than the points), and the lines connecting symbols

are always a guide for the eye.

with o &~ —0.1, which can also be used to collapse the different
curves for R, onto a universal master curve (Fig. 2(d), inset).
In other words we find that the decrease in average size of the
polymer can be well described by a scaling function of the
parameter (n)f>.

In order to shed more light onto the effect of the motors on
the metric exponent v relating the polymer size to its length
(Rg ~ L"), in Fig. 3 we plot R, a function of L for different
combinations of the number of motors N and force f.
We observe that passive systems (N = 0 or f = 0) closely follow
the expected self-avoiding statistics (v &~ 0.588). More interest-
ingly, larger values of N or flead to polymer behaviours that are
better fitted by v ~ 0.43. This value lies between that of an ideal
chain v =1/2 and that of a fully collapsed conformation v = 1/3.
It is intriguing to note that a simple scaling argument can
partially explain this finding using the value of « measured in
Fig. 2 (see Appendix C).

To conclude this section we examine the effect of the motors
on the global ‘“shape” of the polymer by measuring two
quantities: the asphericity 4 and prolateness S, which quantify
the degree of spherical symmetry and the oblateness of the
polymer respectively (see Appendix D for formal definitions).
In Fig. 4, one can readily observe that for increasing (n) and f
both shape descriptors decrease. This indicates that the coil is

5998 | Soft Matter, 2019, 15, 5995-6005

becoming more spherical, in agreement with our previous
observations that the polymer effectively crumples under the
action of the motors.

Effective softening is explained by hairpin formation

Having established a crumpling effect on the global polymer
conformation, we now examine the microscopic mechanism
driving this process. We measure the polymer bond auto-
correlation function

B(s) = (bsbyy),

whereas before angle brackets denote the time and ensemble
average, and average over {. For an equilibrium polymer f(s)
decays exponentially to zero (the bond orientation becomes
uncorrelated for contour separations much larger than the
persistence length). If fi(s) is close to one for a given s this
indicates that bonds with that separation are on average
oriented parallel to each other; whereas if ff(s) — —1, then
bonds with that separation are on average anti-parallel.
As shown in Fig. 5(a), f(s) drops below zero and displays
a minimum - this indicates a non-negligible probability that
bonds separated by about 75 beads are anti-parallel. In other
words, the polymer conformations display hairpins, or “branches”*
and the distance s for which f(s) has a minimum approximately

This journal is © The Royal Society of Chemistry 2019


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9sm00273a

Open Access Article. Published on 11 July 2019. Downloaded on 2/16/2026 11:42:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Soft Matter

6415 | | {

16}

128 256

16}

128 256 512

Fig. 3 Radius of gyration of the polymer substrate as a function of
substrate lengths L, for (a) a fixed motor force (fo/kgT = 20) and different
values for the total number of motors N; and (b) a fixed number of motors
(N = 200) and different values of the motor force f.

corresponds to the length of the hairpins that are formed on the
polymer. The minimum S, becomes deeper as both (n) and f
increase (Fig. 5(b)). In other words, higher values of the motor force
cause a more significant anti-correlation of the bonds, ie., more
pronounced hairpins. A fit of i, to the function f(x) = ax” gives us
its scaling as a function of (n), with coefficients a = —0.047 + 0.003
and b = 0.27 £ 0.03. An analogous scaling law can be found for
Pmin as a function of the force f; this time with coefficients
a=—0.024 £+ 0.006 and » = 0.39 £+ 0.08.

A possible physical mechanism underlying hairpin formation
is that the motors exert localised tangential forces on the semi-
flexible polymer they move on. As a result the portion of the
polymer “behind” the motor (ie., the polymer region through
which the motor has just moved) is under compression, while the
portion ahead is under tension - the situation is reminiscent of
forced translocation through a pore.®® The conformation of the
polymer could then be computed by minimising its bending
energy in the presence of such a localised force. This problem
may be viewed as a generalisation of the Euler buckling
problem.**?* Although a detailed calculation is outside the scope
of this work, it is reasonable to expect the combination of tensile
and compressive forces to result in local hairpin formation.

In Fig. 5(c) we analyse the dependence of the bond correla-
tion function on the intrinsic stiffness of the polymer set by
Kgenp (recall that in the absence of motor activity, the persis-
tence length L, ~ Kgpnpo/kgT). To this end, we perform three
sets of simulations with Kggnp = 10, 20 and 30kgT, for the case

This journal is © The Royal Society of Chemistry 2019
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Fig. 4 (a) Polymer prolateness S as a function of (n), for three different
values of the motor force f. (b) Polymer asphericity 4 shows a similar trend.
Insets show curve collapse when plotted as a function of (n)f? in a double
logarithmic scale.

of (n) = 17 and f= 20. Plotting f3(s) we observe that the position
of the minimum becomes progressively shifted towards higher
values of s as Kggnp increases, i.e., the hairpins become larger
(Fig. 5(c), inset). Additionally, we find that the value of f(s)
at the minimum, fin, gets closer to zero for smaller values of
Kgenp-

In Fig. 5(d) we study how changing the relative impact of
the active force on the motors and polymer beads affects the
hairpin formation. This is achieved by changing the friction
experienced by the motors (i.e., we change the viscous drag only
for the motors - this changes their effective hydrodynamic size,
or could reflect a difference in interactions with macro-
molecular crowders compared to the polymer). Increasing the
friction for the motors means that they will move less as a result
of the active force (which is kept at a constant magnitude).
Fig. 5(d) shows that as the friction for the motors is increased
relative to that of the polymer the minimum of f(s) shifts to
shorter s, and gets deeper and narrower. This implies that
greater motor friction leads to shorter and tighter hairpins.
We can understand this by considering the opposite limit of
very low motor friction; in that case the motors will move more
quickly relative to the polymer. Since a motor spends less time
at a given polymer bead, that bead will experience the active
force for less time and we can expect the effect of the motors
to be diminished. The polymer will, however, still experience

Soft Matter, 2019, 15, 5995-6005 | 5999
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(a) Polymer bond correlation as a function of the distance along the polymer backbone s, at fixed motor force f = 20. The arrow indicates the

direction of increasing (n). (b) Plot showing the minimum value of §(s) as a function of (n). Inset: Scaling of the minimum value of this functions, i, with
(n)f. (c) Polymer bond correlation as a function of the distance along the polymer backbone s, at fixed motor force f = 20, (n) = 17 and different (initial)
persistence lengths L. Inset: Position of the bond correlation minimum, L, (defined as the value which satisfies (s = L) = fmin), as a function of the
polymer persistence length L. (d) Plot of the polymer bond correlation for the case of motor force f = 20 and different values of the friction &
experienced by the motors. Inset: Position of the bond correlation minimum Ly, as a function of the friction &.

the active force, so we still expect a ballistic component to its
motion.

Motor activity gives rise to anomalous or enhanced diffusion

We now turn our attention to the role of molecular motors on
the overall polymer dynamics. To this end, we measure the
mean square displacement of the polymer centre of mass

MSDcum(?) = ([Rem(to + ) — Rem(to)]%),

where the average is over start times ¢,, and R.n(f) is the
position of the centre of mass at time ¢.

Fig. 6 shows that at short times the system is diffusive as the
propulsion exerted by the motors needs a characteristic time in
order to provide a displacement comparable to a Brownian
displacement. Following the Rouse model** MSDcy(f) =
(6Do/L)t, where D, = kgT/¢ is the diffusion coefficient of a single
monomer. This behaviour is recovered at all times for (n) — 0.

At intermediate times, the polymer exhibits super-diffusive
motion, i.e., MSDcp(t) ~ t* with o ~ 1.6. Finally, at large times
we observed enhanced diffusion, i.e., « ~ 1 but the diffusion
constant increases with motor activity (for (n)). In Table 1 we
report the measured diffusion constant D for the different cases
considered. One can readily observe that the exponent « is
roughly independent of (n) and f, whereas the diffusion coeffi-
cient increases with (n). Moreover, by comparing fits at short

6000 | Soft Matter, 2019, 15, 5995-6005

and long times for each value of (n), we find that the crossover
between the super-diffusive and diffusive behaviour occurs at
progressively larger times as (n) decreases. Together, this
implies that the motor action leads to a persistent motion of
the centre of mass of the polymer; at longer times the velocity
becomes uncorrelated and the motion is again diffusive.

These three regimes are typical of other active systems,
e.g., in polymers where an active force directed along the
backbone is applied to each polymer bead"**° and in Active
Brownian Particles (ABPs).** At intermediate times, the motion
of an ABP is dictated by a force which typically maintains its
direction for a characteristic time, leading to super-diffusion.
In our model, a correlation on the scale of the whole polymer is
set by the end-to-end vector.

Untying knots with molecular motors

Finally, we discuss a possible application of our model by studying
the knotting probability of a polymer in non-equilibrium
conditions. We start from the observation that a freely diffusing
linear polymer in a good solvent may display a physical knot -
i.e., a knot within an open segment of the polymer contour -
with probability P,o. It has recently been shown®*?%?7 that
Pynot displays a non-monotonic dependence on the stiffness of
the substrate with a maximum at around L, ~ 5-10g. In light of
the results presented above - i.e., motors drive a decrease in the

This journal is © The Royal Society of Chemistry 2019
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Fig. 6 (a) Mean squared displacement of the polymer centre of mass as a

function of time. Each set of points shows results for a different value of (n)
at fixed f = 20 kgTo~. Higher values of (n) induce a faster diffusivity of the
polymer. (b) Similar plot but now each set of points shows results for a
different value of f, with the total number of motors fixed at N = 400.

Table 1 Diffusion properties of the centre of mass of the polymer are
measured by fitting to the MSD for different numbers of motors. Fits are
evaluated using the function f(t) = a-x* and the diffusion coefficient (or
mobility u) is then D = a/6 following the Rouse model

Intermediate times: super-diffusive

(n) o It

17 1.720 + 0.002 3.1 x107° 4+ 0.5 x 10°°
9 1.690 £ 0.001 1.7 x10°+ 02 x 10°°
5 1.542 4+ 0.006 2.6 X 107° + 1.3 x 10°°

Long times: diffusive

(n) o D

17 1.025 4 0.001 2.7 x 1072+ 2.6 x 10°*
9 1.020 £ 0.002 2.0 x 1072+ 0.06 x 10~*
5 1.090 + 0.0001 0.4 x 1072+ 0.08 x 10~*

apparent persistence length of the substrate — we reason that
the presence of the motors should lead to a shift in the knotting
probability as a function of substrate persistence length.
Specifically, we expect that, due to the action of the motors,
the maximum in Py, will be located at larger values of the
intrinsic persistence length of the substrate, [, (to be clear, the
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Fig. 7 Molecular motors acting on a polymeric substrate reduce the
knotting probability Pnotllp) of a free chain in a good solvent. Here [, is
the intrinsic persistence length which would be measured in the absence
of motors. The simulations are performed on a 500 bead long chain and
the points are averages over 10 independent configurations (error bars
show the standard error in the mean).

lower case [, refers to the persistence length the polymer would
have in the absence of motors).

In order to test this hypothesis we perform simulations of a
freely diffusing linear polymer 500 beads long, and measure the
probability of forming physical knots as a function of [, by
adopting the algorithm described in ref. 38 and 39 and publicly
available at http://kymoknot.sissa.it/.*° By comparing Pinor(lp)
for cases with and without motors we find that, surprisingly,
the location of the maximum of Py, is unchanged by the
action of the motors, i.e., [, ~ 5-100. The most apparent effect
of the motor activity is a global reduction in the knotting
probability across the full spectrum of bending rigidities
studied (Fig. 7). In light of this finding we argue that the effect
of the motors goes beyond a simple softening of the polymer
backbone, and that subtler non-equilibrium effects must be at
play. We also speculate that the reduced knotting probability
due to motor activity may be relevant for the case of DNA under
the action of motors such as polymerase. According to our
model, the action of these motors would naturally have the
beneficial consequence of reducing the occurrence of knots
and self-entanglements in vivo.*"

4 Conclusions

In this work we performed Langevin dynamics simulations of a
coarse grained model to study the effect of molecular motors on
a polymer substrate. We examined both the static and dynamic
properties of polymers in dilute conditions while varying the
number of motors and the magnitude of the force which they
generate.

Our main result was that the effect of the motors is to reduce
the overall size of the polymer coil by increasing the likelihood
of double-folded segments, or hairpins. This “softening’ of the
backbone manifests as a reduction of the measured persistence
length of the polymer. We found that the data collapse onto a

Soft Matter, 2019, 15, 5995-6005 | 6001
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single curve when plotted as a function of (n)f”, revealing a
power-law scaling R, ~ ((n)f*)"*" and L, ~ ((n)f*)"" (insets of
Fig. 2(c and d)). We also performed simulations of polymers
with different lengths and obtained the explicit values of the
metric exponent v (where R, ~ L") as a function of (n) and f.
These confirm that at equilibrium the polymers obey self-
avoiding statistics, whereas motor activity leads to an exponent
between those expected for a crumpled globule and an ideal
chain (Fig. 3). A reduction in R, and L, has also been observed
in models without explicit motors, where an active force
directed tangentially to the polymer is added directly to each
polymer bead."**° In that case the softening arises because,
for an initially straight segment of the polymer (e.g., of length
equal to the persistence length), small fluctuations in backbone
direction will lead to components of the tangential force which
are perpendicular to the end-to-end vector for the segment; this
then drives the polymer into large smooth curves.'* Those studies,
however, did not find hairpins (the decay in bond correlations
remained exponential®’), suggesting the present case involves a
different mechanism.

We also found that the motors affect the dynamics of the
polymer. At intermediate times the centre of mass displays
super-diffusive behaviour while at longer times it follows an
enhanced diffusion. Both regimes are controlled by motor
activity (number of bound motors and force applied). While a
super-diffusive regime was to be expected, our simulation have
provided a detailed quantification of how that can be tuned
through the action of the motors (Fig. 6 and Table 1). The effect
of the motors on the knotting probability of the polymer was
subtler. Unexpectedly, Pino(lp) did not simply show a shift due
to the change in effective persistence length, but rather there
was a global reduction in the steady state knotting probability
across a range of substrate rigidities (Fig. 7). We can speculate
that since the motor action promotes polymer configurations
with hairpin bends, but suppresses knotted ones, then these
two types of configuration are incompatible. An interesting
future study would be to examine knotting probabilities in
other active polymer models where hairpins are not observed.

Throughout this paper we have limited ourselves to the
simple case in which all of the motors travel in the same
direction along the substrate. While this is the case for some
systems, e.g., kinesin on microtubules, in others the motors can
travel in either direction. For example, RNA polymerase follows
the direction of genes, depending on the specifically oriented DNA
sequences in gene promoters. This could be readily incorporated
into our model in the future by either considering a mixture of
two species of motors which move in different directions on the
substrate, or by setting some directional binding sites. Also, we
have considered the case of motors which are the same size as the
polymer beads - in reality RNA polymerase is a large molecule of
around 30 nm in size. However, as our results are mostly affected
by the magnitude of the force, we do not expect motor size to
have a qualitative affect. Nevertheless it would be interesting to
examine systems with larger motors in the future.

Another interesting scenario would be to consider a mixture
of passive and active polymers. Indeed, an activity-driven phase
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separation has been observed in another non-equilibrium polymer
system — where two species of polymer were held at different
temperatures.*” It would be interesting to see whether such
demixing behaviour can be recovered when the system is driven
away from equilibrium by a more biologically relevant mechanism,
such as that presented here.

Our model naturally lends itself to the study of the response
of polymer substrates to the action of molecular motors.
We therefore expect that in the future is could be employed
to address more specific biological questions, such as under-
standing the role of motors in the buckling of actin networks,*°
or in the bending and active collective motion of micro-
tubules*** by suitably tuning the rigidity of the substrate and
processivity of the motors.

Finally we stress that the model presented here is among the
first to explicitly account for the presence of physical motors;
as a consequence, it faithfully captures the feedback between the
action of the motors and the change in substrate-motor interaction
due to, for instance, alterations in local polymer conformation. For
this reason, we believe that our model will be pivotal in studying
complex active collective phenomena where interactions between
motors are mediated through the target substrate.
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Appendix A: full model details

We use the LAMMPS software>® to perform Brownian dynamics
simulations, where the position of bead i is determined by the
stochastic differential equation

dzl',' dl','
mi 7 = -VU;+F; - fia + 2k TE (1), (4)

where m; is the mass of the bead, ¢; is the friction it experiences
due to an implicit solvent, and #; is a vector representing
random uncorrelated noise which obeys the following relations

(n:{1)) = 0 and (n,()np(¢')) = apo(t — ¢). ()

The potential U; is a sum of interactions between bead i and all
other beads, as described below. F; is the active force on bead i
due to motor-polymer interactions. Such force, applied to the
polymer by all the motors in equal measure, is directed along
the polymer backbone. For simplicity we assume that all
polymer and motor beads in the system have the same mass
m; = m =1, and (except for the case of Fig. 5d) friction ;= & =2.
The orientation of each polymer bead is described by three
orthogonal unit vectors fi,\”/i and @, which form a right-handed
set of axes. A similar stochastic differential equation describes
the dynamics of the orientation

4dw,-

11 dr = Ti - ér,iwi + \/ ZkBTér,i”rj(t)v (6)

where o, is the angular velocity of bead i, and &, ; and I; are the
rotational friction and moment of inertia respectively. The latter is

This journal is © The Royal Society of Chemistry 2019
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set according to the Stokes-Einstein relation assuming a solid
sphere. The rotational noise vector #, () has the same properties
as the translation case, and the torque T; is due to the potential
given below. The equations of motion are solved in LAMMPS
using a standard Velocity-Verlet algorithm. Polymer beads are
connected via FENE bonds according to the potential

KreneRe? Tiitl :
7)

where r; ;.4 = |1; — I;;4] is the separation of the beads, and the first
term is the Weeks-Chandler-Andersen (WCA) potential

di\"_(dy\°
Uwea (1) _ 4[(_) ()

kT

Urene (riis1) = Uwea (rigs1) —

+ 1, ry < 21/664],'/'

(8)
0, otherwise,

which represents a steric interaction preventing adjacent beads
from overlapping. In eqn (8) d;; is the mean of the diameters of
beads i and j, which for simplicity is the same for motors and
polymer beads, and denoted o. In eqn (7) R, and Kggng are the
maximum extension and strength of the bond respectively, and
we use R, = 1.6¢ and Kegng = 30kgT throughout.

The bending rigidity of the polymer is introduced via a
Kratky-Porod potential for every three adjacent DNA beads

Uggenp(0) = Kgenp[1 — cos(0)], 9)
where 6 is the angle between the three beads as given by

[t —ri1] - [ripy — 1)

cos(f) =
(©) i —ri||riy — x|

(10)

and Kgenp is the bending energy. In the absence of motors the
persistence length in units of ¢ is given by L, = Kgpnp/ksT.
Unless otherwise stated we set Kggnp= 20kgT, I.e. we consider a
semi-flexible polymer; this has previously been used as a model
for DNA - if we take the bead diameter ¢ = 2.5 nm, then the
persistence length (in the absence of motors) is L, = 50 nm,
which is relevant for DNA in typical physiological conditions.
Once the simulation length scale has been fixed, and using the
energy unit of kgT with temperature 7 = 298 K, one can map
simulation time to physical units through the Brownian time
75 = 6°/D, using the Stokes-Einstein relation to find the diffu-
sion constant for a sphere D = kgT/(3myo). For a DNA system
a suitable value of fluid viscosity results in a Brownian time
Tg = 36 ns; with our choice of m = 1 and ¢ = 2, the simulation
time unit would then be 7 = t5/2 = 18 ns.

The torque on the polymer beads is due to a potential which
constrains bead orientations to lie along the polymer tangent,
given by

(1)

where ¢; is the angle between @; and the direction of the
polymer backbone such that

Uorient = Korment[1 — cos(¢,)],

;- (rip —17)

\rfﬂ - r,-\

cos(,) = (12)
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We set the orientation energy Kogrent = 30kgT. Steric interactions
between non-adjacent DNA beads are also given by the WCA
potential [eqn (8)]. Note that this is the polymer model described
in ref. 45 but without torsional rigidity.

The motors are represented by freely diffusing beads which
interact with each other via a WCA potential and via the
potential given in eqn (1). A motor is said to be “bound” to
the polymer when its distance to a polymer bead is less than
Tmeut = 0. In addition to this interaction, when a motor is bound
to a polymer bead, it experiences an active force of magnitude f
which is directed along the orientation vector of the polymer
bead. As a consequence of Newton’s third law, the polymer
bead experiences an equal and opposite force. The result is that
for non-zero f the motors track along the polymer substrate
while driving the motion of the polymer. In order to avoid
accumulation and jamming we want motors to detach once
they have reached the end of the substrate. To achieve this we
impose a large force fenqa » Kmor/o to motors when bound to
the last bead of the chain. Though large, this force does not
appreciably influence the dynamics nor the conformation of
the chain. Since the polymer is polar, motors can be made to
move in the parallel or anti-parallel direction depending on the
sign of f. In the present work we consider the case where all
motors are the same and f > 0.

Appendix B: motor statistics

The average number of motors attached (n) is a key quantity,
as it determines the average, total active force applied on the
polymer. It is also connected to the average time a motor
spends attached to the polymer, the residence time. In equili-
brium (f = 0), the motors do not move along the polymer and
the residence time scales as e**°"*s”, We report the average
number of attached motors (n) in Table 2, for the values of the
total number of motors N, the interaction strength Kyor and
the motor force f considered in our simulations. We observe
that (n) strongly depends on f, as well as N and Kyor. For fo/2 <
Kyor, (n) increases with Kyor as the residence time is still
proportional to the equilibrium one; we call this the thermo-
dynamic unbinding regime. If fo/2 ~ Kyor, then (n) decreases;
we call this the activity induced unbinding regime, and propose
three possible mechanisms. First, for larger forces the motors
move faster, and will “fall off the end” of the polymer after a
time shorter than the equilibrium residence time; second, the

Table 2 Average number of motors attached (n), as measured from the
simulations, for the different values of Kuot, N and f considered

Kyor = 10 Kyvor = 20 Kyor = 30

N f (n) N f (n) N f (n)
100 6 9 200 6 165 200 6 200
100 40 1 200 40 12 200 40 160
200 6 18 300 6 250 300 6 300
200 40 3 300 40 20 300 40 250
400 6 34 400 6 300 400 6 400
400 40 6 400 40 30 400 40 320

Soft Matter, 2019, 15, 5995-6005 | 6003
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Fig. 8 (a) Average fraction of occupied sites as a function of the motor

force for different substrate lengths L and fixed N = 200. (b) Average
fraction of bound motors for different N and fixed L = 500. Inset: Average
“used” motor force as function of the "nominal” motor force for different
N and fixed L = 500. In all cases, Kmot = 10kgT.

local bends induced by the motors may provide a negative
feedback, as a motor is more likely to detach as it moves around
a sharp bend; and third, at very high values of (n), motor
collisions might also result in a decreased residence time.

In Fig. 8a we show how the linear density of bound motors
(n)/L depends on L and f, at constant N = 200. For small motor
force (the thermodynamic unbinding regime) we find that (n)/L
increases roughly linearly with increasing L, as would be
expected at equilibrium; at high f longer polymers are more
populated than shorter ones. This suggests that motors moving
off the end of the polymer play a more important role in
the latter regime. In Fig. 8b we plot the fraction of motors
which are bound, (n)/N, as a function of f at fixed L = 500; data
for different N collapse onto the same curve, implying that,
even in the large fregime, motor crowding does not have a large
effect. Interestingly, if we plot the average “used” motor force
fn)N (Fig. 8b, inset) we observe non-monotonic behaviour: the
total force is maximal at f ~ 15kgT/o.

Appendix C: scaling argument for R

In the main text we have reported that the radius of gyration
scales as Ry ~ ((n)f*)”* with « = 0.1. We can link this observa-
tion with the scaling of R, with the contour length via the
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following effective blob picture: at steady state, the only length
scale that can be extracted from the parameters of the system
and that depend on the motor force is &, = kgT/f. In analogy
with traditional scaling arguments, we will take this to be the
typical blob size.*® Within a single blob the steric repulsions are
not screened and the chain behaves like a self-avoiding walk
(we expect the blob size to scale with the number of monomers
per blob as ~g*®). On a larger scale, the size of the chain will
grow as R, ~ m” where m is the number of independent blobs
and v is the metric exponent. In order to find the number of
blobs in a chain we first need to compute the number of
monomers per blob, ie.,

kT 5/3
()

As mentioned above, the size of the polymer then scales as

I\
ngéb(g) )

where L is the total number of monomers in the chain. By
combining these equations, we arrive at R, ~ f 63-1_ Comparing
this with the numerical result from the simulations, Ry ~ f %2
(Fig. 2(b), inset), we obtain

(13)

(14)

> 1=-02,

: (15)

or v=0.48 =~ 1/2, ie., the exponent of an ideal random walk. It is
intriguing to notice that this value is not far from the one obtained
by performing explicit simulations with different polymer lengths L
in Fig. 3.

Appendix D: measurements from
simulated trajectories

As detailed in the text, the main quantities we measured from
the polymer were the radius of gyration R,, the bond-bond
correlation function f(s) (from which we obtain the effective
persistence length L), and the mean squared displacement of
the centre of mass of the polymer. In each case the system was
initiated with the polymer in a random walk conformation; the
dynamics were evolved in the absence of motor interactions for
10° time steps to reach an equilibrium polymer configuration.
After switching on the motor interactions, the system was allowed
to reach a steady state, and then quantities were determined by
averaging over 3 x 10° time steps in each of 50 independent
simulations.

Additionally we measured two polymer shape parameters,
the asphericity and prolateness. These are calculated from the
principal moments of the gyration tensor, which is defined as

1K, ,
=52 (= R (= R,

i=1

Sum (16)

where 17, is the nth element of the position vector r; of the ith
monomer, and R;;" is the nth element of the centre of mass

This journal is © The Royal Society of Chemistry 2019
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position vector R.,. Specifically the asphericity is defined

L)
IErECasiv] (17)

and the prolateness
G (341 = R?) (342 — R?) (373 — RY) as)

6 )
Rg

where 4, > 4, > 13 are the principal moments. The radius of
gyration can also be defined as R,” = 4, + 1,° + 25>
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