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Interface structures in ionic liquid crystals

Hendrik Bartsch, *ab Markus Bier abc and Siegfried Dietrichab

Ionic liquid crystals (ILCs) are anisotropic mesogenic molecules which additionally carry charges. This

combination gives rise to a complex interplay of the underlying (anisotropic) contributions to the pair

interactions. It promises interesting and distinctive structural and orientational properties to arise in

systems of ILCs, combining properties of liquid crystals and ionic liquids. While previous theoretical

studies have focused on the phase behavior of ILCs and the structure of the respective bulk phases, in

the present study we provide new results, obtained within density functional theory, concerning (planar)

free interfaces between an isotropic liquid L and two types of smectic-A phases (SA or SAW). We discuss

the structural and orientational properties of these interfaces in terms of the packing fraction profile Z(r)

and the orientational order parameter profile S2(r) concerning the tilt angle a between the (bulk) smectic

layer normal and the interface normal. The asymptotic decay of Z(r) and of S2(r) towards their values

in the isotropic bulk is discussed, too.

1 Introduction

Ionic liquid crystals (ILCs) are pure ionic systems, solely com-
posed of cations (+) and anions (�). Moreover, at least one of
the ion species is characterized by a highly anisotropic mole-
cular shape.1 This anisotropic shape is typically due to long
alkyl-chains which are attached to charged moieties. Although
the alkyl-chains exhibit a rather strong flexibility, due to
microphase segregation of the charged parts and of the alkyl-
chains, liquid-crystalline phases are indeed observable among
ILCs.1–3 In the past decades various types of ILCs have been
synthesized.1,3 Different combinations of, e.g., (charged)
imidazolium rings and alkyl-chains allow one to tune not only
the length of the ionic mesogenes but also the location of their
charges, i.e., the intra-molecular charge distribution. Thereby
one is able to promote distinctive properties of ILCs, for
instance, a high thermal and high electrochemical stability,
which might be beneficial for technological applications.1,3–6

(We note, that here the term ‘‘mesogene’’ refers to any kind of
molecule which gives rise to the formation of mesophases,
irrespective of the underlying microscopic mechanism. Accord-
ingly, the aforementioned anisotropic molecules, which form
mesophases via microphase segregation, are considered to be
mesogenes.)

A specific example of an ILC system, which has been
studied, e.g., in ref. 7 and 8, is composed of cations with long
alkyl-chains attached (1-dodecyl-3-methylimidazolium) and
significantly smaller anions (iodide). For such an ILC system,
one observes a liquid crystalline structure, in particular the
smectic-A phase SA. (The SA phase is characterized by layers of
particles which are well aligned with the layer normal and the
layer spacing is of the size of the particle length.) The layer
structure of the large cations leads to a locally increased
concentration of anions in between the layers of cations.7

Thereby, the nanostructure of the cations gives rise to ‘‘pathways’’
for the anions, which increase the conductivity measurable in the
direction parallel to the layers. Therefore this particular type of an
ILC system is a promising candidate for technological applications,
e.g., as electrolyte in dye-sensitized solar cells (DSSCs).7,9

While the complexity of the underlying interactions gives
rise to these interesting properties of ILCs, it is at the same time
very challenging to study these systems within theory or
simulations. Previous theoretical studies10,11 of ILC systems have
been able to reduce this complexity by considering a simplified
description of ILC systems, which incorporates, however, the
generic properties of ILCs. They rely on an effective one-species
description in which one of the ion species (referred to as
counterions) is not accounted for explicitly, but is incorporated
as a continuous background, giving rise to the screening of the
coions. On the contrary, the coions are modeled as ellipsoidal
particles. Thus, the anisotropic molecular shape, which gives rise
to the formation of mesophases, and the (screened) electrostatic
interaction are both incorporated by this approach. Of course, this
is a simplified representation of any realistic ionic liquid crystal-
line system. However, it allows one to study the interplay of the
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two key features, i.e., an anisotropic molecular shape and the
presence of charges, which are omnipresent in ILC systems.
Yet it should be noted, that ILC systems exhibiting a significant
difference in size of the cations and of the anions (e.g., the
aforementioned example of 1-dodecyl-3-methylimidazolium)
might be candidates which come closest to the present theore-
tical representation of ILCs, as the size difference rationalizes
in parts the idea of structureless point-like counterions.

As a first step, such a model allows one to study the phase
behavior of ILC systems and thereby to gain insight about how
molecular properties, e.g., the aspect-ratio or the charge dis-
tribution of the molecules, affect the phase behavior of such
types of ILCs. A comprehensive understanding of the relation
between the underlying molecular properties and the resulting
phase behavior is inter alia, necessary for a systematic synthesis
of ILCs, which should meet specific material properties.
Furthermore, theoretical guidance is beneficial for finding
and exploring novel materials properties which might occur
in ILC systems. For instance, in ref. 11 a new smectic-A
structure (SAW) has been observed, which exhibits an alternat-
ing layer structure. In between layers of elongated particles,
which prefer to be oriented parallel to the layer normal, like in
the ordinary SA phase, one observes secondary layers in which
the particles prefer to be oriented perpendicular to it. Due to
this alternating structure the layer spacing of this new SAW

phase is significantly wider compared to the ordinary SA phase.
The SAW structure is stabilized by charges which are located at
the tips of the molecules. This shows in an exemplary way how
the combination of liquid-crystalline behavior and electro-
statics can lead to an interesting and novel phenomenology.

The aim of the present investigation is to extend the analysis
by studying spatially inhomogeneous systems of ILCs. This is
done by investigating how the structural and orientational
properties of ILC systems are affected by the presence of a free
interface between coexisting bulk states. Both smectic-A
phases, SA and SAW, observed in ref. 11 can be in coexistence
with the isotropic liquid phase L. This is of intrinsic interest,
because it allows one to investigate interfaces which interpolate
between a structured and orientationally ordered (i.e., smectic)
phase and an isotropic, homogeneous, and thus structure-less,
fluid phase. In particular, the transition in the structural and in
the orientational order allows one to study the interplay of both
properties while they build up at the interface. Although there
are theoretical analyses12–18 concerning related types of free
interfaces, in these studies the constituent particles are plain
liquid crystals without any charges. On the other hand, there is
a vast number of theoretical studies on ionic fluids. The
thermodynamic behavior19–22 as well as the structure23–27 of
these types of fluids, in which long-ranged Coulomb interactions
are present, have been intensively studied. However, ionic systems
are often analyzed assuming a simple geometry of the particles,
such as a spherical shape of the particles like in the restricted
primitive model.28–30 In this regard, the present study attempts to
analyze the aforementioned type of interface between an isotropic
and a smectic phase by accounting for an anisotropic particle
shape combined with the presence of charges.

Moreover, different orientations between the interface normal
and the smectic layer normal are possible. In this context, an
interesting question addresses the equilibrium tilt angle between
the interface and the smectic layer normal. This angle may
provide insight into nucleation and growth phenomena which
are affected by the dependence of the interfacial tension on the
orientation of the considered structure.31,32

The present study is structured as follows: in Section 2 the
model and the employed density functional theory approach
are presented. Our results for the interfaces between the
isotropic liquid L and the considered smectic-A phases SA or
SAW are discussed in Section 3. Finally, in Section 4 we summarize
the results and draw our conclusions.

2 Model and methods

This section presents in detail the molecular model of ILCs as
employed here. In particular, we discuss the intermolecular
pair potential, which can be applied to a wide range of ionic
and liquid crystalline materials due to its flexibility provided by
a large set of parameters.

This model is studied by (classical) density functional theory
(DFT), which will be applied to spatially inhomogeneous systems,
in particular free interfaces formed between coexisting bulk
phases. The methodological and technical details of the present
DFT approach are described in Section 2.2.

2.1 Molecular model and pair potential

We consider a coarse-grained description of the ILC molecules
as rigid prolate ellipsoids of length-to-breadth ratio L/R Z 1
(see Fig. 1). Thus, the orientation of a molecule is fully
described by the direction x(f,W) of its long axis, where f
and W denote the azimuthal and polar angle, respectively.

The two-body interaction potential consists of a hard core
repulsive and an additional contribution UGB + Ues beyond the
contact distance Rs, the sum of which can be attractive or
repulsive:

U¼
1; r12j joRs r̂12;x1;x2ð Þ

UGB r12;x1;x2ð ÞþUes r12;x1;x2ð Þ; r12j j �Rs r̂12;x1;x2ð Þ;

(

(1)

where r12 := r2 � r1 denotes the center-to-center distance vector
between the two particles labeled as 1 and 2, and xi, i = 1, 2,
are their orientations with |xi| = 1. The contact distance
Rs(r̂12,x1,x2) depends on the orientations of both particles
and on the direction of the center-to-center distance vector,
which is expressed by the unit vector r̂12 := r12/|r12|. In eqn (1),
we have subdivided the contributions beyond the contact
distance |r12| Z Rs into two parts: UGB(r12,x1,x2) is the well-
known Gay–Berne potential,33,34 which incorporates an attrac-
tive van der Waals-like interaction between molecules and
which can be understood as a generalization of the Lennard-
Jones pair potential between spherical particles to ellipsoidal
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particles:

UGB r12;x1;x2ð Þ ¼ 4e r̂12;x1;x2ð Þ

� 1þ r12j j
R
� s r̂12;x1;x2ð Þ

� ��12"

� 1þ r12j j
R
� s r̂12;x1;x2ð Þ

� ��6#
(2)

with

s r̂12;x1;x2ð Þ ¼ 1� w
2

r̂12 � x1 þ x2ð Þð Þ2

1þ wx1 � x2

 "

þ r̂12 � x1 � x2ð Þð Þ2

1� wx1 � x2

!# (3)

and

e r̂12;x1;x2ð Þ ¼ e0 1� wx1 � x2ð Þ2
� ��1=2

� 1� w0

2

r̂12 � x1 þ x2ð Þð Þ2

1þ w0x1 � x2

 "

þ r̂12 � x1 � x2ð Þð Þ2

1� w0x1 � x2

!#
:

(4)

The contact distance Rs(r̂12,x1,x2) and the direction- and
orientation-dependent interaction strength e(r̂12,x1,x2) are
both parametrically dependent on the length-to-breadth ratio

L/R via the auxiliary function w = ((L/R)2 � 1)/((L/R)2 + 1).
Additionally, e(r̂12,x1,x2) can be tuned via w0 = ((eR/eL)1/2 � 1)/
((eR/eL)1/2 + 1), where eR/eL is called the anisotropy parameter,
defined in terms of the ratio of eR, which is the depth of the
potential minimum for parallel particles positioned side by
side (r̂12�x1 = r̂12�x2 = 0), and eL, which is the depth of the
potential minimum for parallel particles positioned end to end
(r̂12�x1 = r̂12�x2 = 1). The energy scale of the Gay–Berne pair
interaction is set by e0. Thus, the Gay–Berne pair potential
has four independent free parameters: e0, R, L/R, and eR/eL.
Note that in the case of spherical particles, i.e., for L = R, the
Gay–Berne pair potential (eqn (2)) reduces to the well-known
isotropic Lennard-Jones pair potential if, additionally, the
Gay–Berne anisotropy parameter equals unity, i.e., eR/eL = 1,
because then s(r̂12,x1,x2) = 1 and e(r̂12,x1,x2) = e0.

The second contribution Ues(r12,x1,x2) in eqn (1) is the
electrostatic repulsion of ILC molecules. Within the scope of
the present study, the counterions are not modeled explicitly.
They will be considered to be much smaller in size than the
ILC molecules such that they can be treated as a continuous
background. On the level of linear response, this background
gives rise to the screening of the pure Coulomb potential
between two charged sites on a length scale given by the Debye
screening length lD such, that the effective electrostatic
interaction of the ILC molecules is given by

Ues r12;x1;x2ð Þ ¼ g
exp � r12 þD x1 þ x2ð Þj j

lD

� �
r12 þD x1 þ x2ð Þj j

2
664

þ
exp � r12 þD x1 � x2ð Þj j

lD

� �
r12 þD x1 � x2ð Þj j

þ
exp � r12 �D x1 þ x2ð Þj j

lD

� �
r12 �D x1 þ x2ð Þj j

þ
exp � r12 �D x1 � x2ð Þj j

lD

� �
r12 �D x1 � x2ð Þj j

3
775:

(5)

The charges q are located symmetrically on the long axis of the
ILC molecules at a distance D from the geometrical center of
the particles (compare Fig. 1). The prefactor g = q2/(4pe) of
dimension [energy] � [length] characterizes the electrostatic
energy scale, where e denotes the permittivity. In principle, the
Debye screening length

lD /
ffiffiffiffiffi
T

rc

s
(6)

is a function of temperature T and of the number density rc of
the counter ions. Thus, it depends on the thermodynamic state
of the fluid. However, in the present model lD is taken to be
a constant parameter. In order to compare results, obtained
within this model, with data from actual physical systems, one

Fig. 1 Cross-sectional view of two ILC molecules in the plane spanned by
the orientations xi, i = 1, 2, of their long axis. The particles are treated as
rigid prolate ellipsoids, characterized by their length-to-breadth ratio
L/R Z 1. Their orientations are fully described by the direction of their long
axis xi, i = 1, 2; r12 is the center-to-center distance vector. The charges of
the ILC molecules (blue dots) are located on the long axis at a distance D
from their geometrical center. The counterions are not modeled explicitly,
but they are implicitly accounted for in terms of a background, giving rise to
the screening of the charges of the ILC molecules.
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could measure the value of the Debye screening length experi-
mentally and tune the model parameter lD accordingly.

In Fig. 2 we illustrate the full pair potential (eqn (1)) beyond
the contact distance for certain choices of the parameters. The
two top panels, (a) and (b), show the pure Gay–Berne potential
(uncharged liquid crystals), which is predominantly attractive
in the space outside the overlap volume (salmon-colored area).
The shape of this overlap volume changes by varying the particle
orientations as well as by changing the length-to-breadth ratio
L/R. However, these dependences are not apparent from Fig. 2,
because L/R = 4 and the particle orientations xi are kept fixed for
all panels. In panel (b) the anisotropy parameter eR/eL = 4 is chosen
to be two times larger than for panel (a) (eR/eL = 2). Thus, the ratio
of the well depth at the tails and at the sides is increased. The two
bottom panels, (c) and (d), show the same choices for the Gay–
Berne parameters as for panel (a), but the electrostatic repulsion of
the charged groups on the molecules, illustrated by blue dots, is
included (g/(Re0) = 0.25). In panel (c) the loci of the two charges of
the particles coincide at their centers (i.e., D/R = 0) while in panel
(d) they are located near the tips (D/R = 1.8). For both cases with
charge, the effective interaction range is significantly increased
compared with the uncharged case and is governed by the Debye
screening length, chosen as lD/R = 5.

It is worth mentioning, that the present model cannot be
considered as a quantitatively valid description of any realistic

ionic liquid crystal system. A screened electrostatic pair inter-
action of the Yukawa form (eqn (5)) is the extreme case of the
effective pair potential between ions in a (dilute) electrolyte at
high temperatures. Nonetheless, for the purpose of the present
theoretical study, which is concerned with the basic micro-
scopic mechanisms and the generic molecular properties pre-
sent in ILC systems, the employed model is appropriate as it
incorporates the following key properties of ILCs: first, a
sufficiently anisotropic shape (prolate) of the particles, i.e., they
can be considered as (calamitic) mesogenes. In this context, an
assessment of the bulk phase behavior, depending on the
length-to-breadth ratio of the particles, is provided in ref. 11.
In particular, the relevance of a sufficiently anisotropic shape
(i.e., L/R 4 2) for observing genuine smectic phases is dis-
cussed. Second, the ionic properties of ILCs are incorporated
such that they reflect the main feature of ionic fluids, i.e., the
effective interaction of the ionic compounds via a screened
electrostatic pair interaction. Although the chosen functional
form given by eqn (5) cannot be considered as a quantitatively
reliable representation, it still accounts for the fact that the
actual ion–ion pair interaction in an ionic fluid is indeed short-
ranged, rather than long-ranged, as it is the case for the bare
Coulomb interaction.

In conclusion, eqn (5) is characterized by an effective
interaction strength g/R (which will be numerically expressed
as the relative interaction strength g/(Re0) compared to the
interaction strength e0 of the Gay–Berne potential), an effective
interaction range lD, and an effective location D of the charge
sites inside the coions. In order to represent specific ILC
molecules by a particular set of parameters of the present
model, one would tune the independent model parameters,
i.e., L/R, eR/eL, g/(Re0), D/R, and lD/R such that the resulting total
pair potential U(r12,x1,x2)/e0 (compare eqn (1) and Fig. 2)
resembles (qualitatively) the actual pair potential of the con-
sidered ILC molecules. In this regard, it is worth mentioning
that in principle comparisons of our effective theory with
particle simulations can be made, related to the study by
Saielli et al.,35 who performed molecular dynamics (MD) simu-
lations for a mixture of (ellipsoidal) Gay–Berne and (spherical)
Lennard-Jones particles. Additionally, both species carry charges
and therefore resemble cations and anions, respectively. Our ad
hoc pair potential (eqn (1)) of the coions can be compared with the
effective interaction, which can be determined as the logarithm of
the particle–particle distribution function of the elongated cations
in the MD simulations.

We note, that the choices L/R = 4 and eR/eL = 2, which are
used throughout our analysis, are comparable to those used in
previous studies (see, e.g., ref. 10, 11, 35 and 36) for similar
kinds of particles. While these values of the Gay–Berne para-
meters give rise to the formation of smectic phases, the
occurrence of nematic phases is typically observed for much
larger values of L/R and eR/eL.37

2.2 Density functional theory

The degrees of freedom of the particles (compare Section 2.1)
are fully described by the positions r of their centers and the

Fig. 2 Contour-plots of the pair potential U for |r12| Z Rs in the x–z-plane
for four cases of particles with fixed length-to-breadth ratio L/R = 4 and fixed
orientations. In each panel the centers of both particles lie in the plane y = 0.
In order to illustrate the orientations of the ellipsoids, they have been
included in the plots at contact with relative direction r̂12 = x̂. The set of
points at contact in the x–z-plane is illustrated by the black curve, and the
centers of the particles are shown by small black dots. Panel (a): uncharged
liquid crystal with eR/eL = 2. Panel (b): uncharged liquid crystal with eR/eL = 4.
With this choice the anisotropy of the potential is increased slightly. Panel (c):
ILC with eR/eL = 2, D/R = 0, lD/R = 5, g/(Re0) = 0.25. Panel (d): ILC with
eR/eL = 2, D/R = 1.8, lD/R = 5, g/(Re0) = 0.25. In (c) and (d) the loci of the
charges are indicated as blue dots. The salmon-colored area is the excluded
volume for given orientations of the two particles.
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orientations x of their long axes. Thus, within density functional
theory, an appropriate variational grand potential functional bO[r]
of position- and orientation-dependent number density profiles
r(r,x) has to be found; the equilibrium density profile minimizes
the functional. The grand potential functional for uniaxial
particles, in the absence of external fields, can generically be
expressed as

bO r½ � ¼
ð
V

d3r

ð
S

d2orðr;xÞ ln 4pL3rðr;xÞ
� �	

� 1þ bmð Þ� þ bF r½ �;
(7)

where the integration domains V and S denote the system
volume and the full solid angle, respectively. The first term in
eqn (7) is the purely entropic free energy contribution of non-
interacting uniaxial particles, where b = 1/(kBT) denotes the
inverse thermal energy, m the chemical potential, and L the
thermal de Broglie wavelength.

The last term is the excess free energy bF[r] in units of kBT,
which incorporates the effects of the inter-particle interactions.
Minimizing eqn (7) leads to the Euler–Lagrange equation,
which implicitly determines the equilibrium density profile
r(r,x):

rðr;xÞ ¼
exp bmþ cð1Þ r;x; ½r�ð Þ
	 


4pL3
; (8)

where

cð1Þ r;x; ½r�ð Þ ¼ �dbF½r�
dr

(9)

is the one-particle direct correlation function. It is fully deter-
mined by the excess free energy functional bF[r].

The excess free energy functional is the characterizing quantity
of the underlying many-body problem. However, in general it is
not known exactly so that one has to adopt appropriate approxi-
mations of it. Following the approach of our previous study11

concerning the bulk phase behavior of ILCs, in the spirit of ref. 38
a weighted density expression for bF[r] is considered:

bF½r� ¼ 1

2

ð
V

d3r

ð
S

d2orðr;xÞbc r;x; ½�r�ð Þ; (10)

where bc(r,x,[�r]) denotes the effective one-particle potential.
It is a functional of the so-called projected density �r(r,x):

�rðr;x; ½r�Þ ¼ 1

4p
Q0ðr; ½r�Þ þQ1ðr; ½r�Þ cos 2pðr � n̂Þ=dð Þ½

þQ2ðr; ½r�Þ cos 4pðr � n̂Þ=dð Þ

þ 5P2ðx � n̂Þ Q3ðr; ½r�Þð

þQ4ðr; ½r�Þ cos 2pðr � n̂Þ=dð Þ

þQ5ðr; ½r�Þ cos 4pðr � n̂Þ=dð Þ;

(11)

where P2(y) = (3y2� 1)/2 is the Legendre polynomial of degree 2.
We point out that �r(r,x) represents an expansion of the density
profile r(r,x) in terms of a second-order Fourier, and a
second-order Legendre series, respectively. Thus, the coefficients
Qi(r) are the corresponding expansion coefficients, which will

be defined below. It is worth mentioning, that although the
projected density �r(r,x) might take negative values, this does not
imply an unphysical behavior as the actual density r(r,x) is
determined from the Euler–Lagrange equation (i.e., eqn (8)) and
thus is strictly positive. The following three types of bulk phases
can be studied within this particular framework:11 first, isotropic
liquids with Q0 = const0 and Qi = 0 for i 4 0. Second, nematic
liquids with Qi = consti, if i = 0, 3, and Qi = 0 otherwise. Third,
smectic-A phases with Qi = consti for i A {0,. . .,5}. While for
isotropic and nematic liquids the system is translationally
invariant in all spatial directions, in the case of smectic-A phases
the system is periodic in the direction of the smectic layer
normal n̂ with periodicity d, which is a multiple of the smectic
layer spacing. For smectic-A phases the director is parallel to the
smectic layer normal n̂ and therefore the occurrence of rotatio-
nally symmetric distributions of the orientations x around n̂,
incorporated by the dependence on x�n̂ in eqn (11), are plau-
sible. We note that odd Fourier-modes in the projected density
�r(r,x) vanish for bulk smectic-A phases, if the coordinate system
is chosen such that the origin is located at the center of one of
the smectic layers due to the mirror symmetry of smectic layers
around their center. This is a direct consequence of the under-
lying point symmetry of the particles considered here (see Fig. 1).
Considering additional terms, corresponding to the odd modes
in the second-order Fourier expansion of the density r(r,x),
would only give rise to a shift of the location of the bulk smectic
layers. Although for systems with interfaces the odd modes in
general do not vanish, here we neglect these contributions
completely. The implications of additionally considering the
odd terms (up to second order) are discussed in Appendix A.
Both approaches are weighted-density-like approximations of
the exact free energy functional. A priori, it is not obvious which
one leads to better results, because considering more terms of
the Fourier series leads only to a more accurate representation of
r(r,x) by the projected density �r(r,x). However, this does not
imply that the resulting free energy functional bF[�r] is closer to
its exact form, because independent of the choice for �r(r,x) it
relies on the Parsons–Lee approach for its reference part and on
the so-called modified mean-field approximation for the excess
part (see below). Nevertheless, our approach of considering in
eqn (11) only the even modes up to second order captures the
three types of bulk phases L, N, as well as SA, SAW, which are
relevant for the present study in the same way as the full second-
order Fourier expansion.

The effective one-particle potential bc(r,x) consists of two
contributions. The first one incorporates the hard-core inter-
actions via the well-studied Parsons–Lee functional,39,40

bcPLðr;x; ½�r�Þ ¼ �
ð
V

d3r0
ð
S

d2o0�rðr0;o0Þ

�JðQ0ðrÞÞ þJðQ0ðr0ÞÞ
2

fMðr� r0;x;o0Þ;

(12)

where fM(r � r0, x, x0) is the Mayer f-function41 of the hard core
pair interaction potential and J(Q0) modifies the corresponding
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original Onsager free energy functional (i.e., the second-order virial
approximation) such that the Carnahan–Starling equation of state40

is reproduced for spheres, i.e., for L = R:42, 43

J Q0ð Þ ¼
1� 3

4
Z0 Q0ð Þ

1� Z0 Q0ð Þð Þ2
; (13)

where Z0(Q0) = Q0LR2p/6 (for Q0 see eqn (11)) denotes the mean
packing fraction within one (bulk) smectic layer. It is proportional
to the coefficient Q0, which gives the mean density within such a
smectic layer (see below). The original Onsager functional is
recovered in eqn (12) by replacing J(Q0) by Q0.

The second contribution to the effective one-particle
potential bc[�r] takes into account the interactions beyond the
contact distance (see the case |r12| Z Rs in eqn (1)) within the
modified mean-field approximation,44 which is a variant of the
extended random phase approximation (ERPA):45

bcERPAðr;x; ½�r�Þ ¼
ð
V

d3r0
ð
S

d2o0 �rðr0;o0Þ

� bUðr� r0;x;o0Þð1þ fMðr� r0;x;o0ÞÞ:
(14)

The present study is devoted to the analysis of free interfaces
which are formed between coexisting bulk phases. In particular,
the planar interfaces between the isotropic liquid L and the two
different types of smectic-A phases (SA or SAW, see Section 3) will
be considered, for which the interface normal is expected to be
parallel to the z-direction (see Fig. 3). Due to the isotropy of the
liquid phase L, the direction of the smectic layer normal

n̂(a) := sin(a)x̂ + cos(a)ẑ (15)

can be chosen to lay in the x–z-plane. Its orientation is fully
determined by the tilt angle a. For a = 0 the smectic layer
normal n̂ = ẑ points into the z-direction, like the interface
normal, while for a = p/2 it points into the x-direction and thus
it is perpendicular to the interface normal. The interfacial
systems considered here are translationally invariant in the
y-direction and show a periodic structure in the x-direction with
a periodicity dx = d/sin(a) (compare Fig. 3) where d is a multiple
of the smectic layer spacing (we note that the value of d is
determined by the corresponding bulk density distribution
which minimizes the grand potential functional, i.e., maxi-
mizes the bulk pressure (see Section 2.2.2 in ref. 11). It turns
out that, for the SAW phase d equals the smectic layer spacing,
while for the SA phase it equals two times the layer spacing,
because for the SA phase one obtains bulk solutions r(0)(r,x)
with Q1 = Q4 = 0, (see, cf., eqn (11), (16) and (17)). Thus the
periodicity d along the layer normal n̂ is twice the smectic layer
spacing, i.e., the distance between neighboring layers). For
a = 0, dx diverges and the system is translationally invariant
in the x-direction, too.

As mentioned above, the coefficients Qi(r) in eqn (11)
arise from expanding r(r,x) in a second-order Legendre- and

Fourier-series:11

Qiðr; ½r�Þ ¼
1

Vd

ð
V

d3r0
ð
S

d2o0rðr0;o0Þwiðr; r0;o0Þ (16)

with

w0 ¼Tðr� r0Þ;

w1 ¼ 2Tðr� r0Þ cos 2pðr0 � n̂Þ=dð Þ;

w2 ¼ 2Tðr� r0Þ cos 4pðr0 � n̂Þ=dð Þ;

w3 ¼Tðr� r0ÞP2ðo0 � n̂Þ;

w4 ¼ 2Tðr� r0ÞP2ðo0 � n̂Þ cos 2pðr0 � n̂Þ=dð Þ;

w5 ¼ 2Tðr� r0ÞP2ðo0 � n̂Þ cos 4pðr0 � n̂Þ=dð Þ;

(17)

Fig. 3 Sketch of the interface structure under consideration. Consider
a planar interface, illustrated by the horizontal red line, between the
isotropic bulk liquid L, imposed as the boundary condition at z - �N,
and the smectic-A phase SA (or SAW), imposed as the boundary condition at
z - +N. Thus, the interface normal (red vertical arrow) points into the
z-direction. At the top, the tails of four layers of particles of the (ordinary)
SA phase are visible, which are well aligned with the smectic layer normal
n̂ := sin(a)x̂ + cos(a)ẑ. In the bulk SA phase, the system is periodic in the
direction of the smectic layer normal n̂ with periodicity d which is a
multiple of the smectic layer spacing. For the SA phase d turns out to be
two times the distance between neighboring smectic layers (see Section
2.2 below eqn (15)). Thus, for a given tilt angle a between the interface
normal and the smectic layer normal n̂, the system is periodic in
x-direction with periodicity dx = d/sin(a). Note that the interface structure
is translationally invariant in the y-direction for all angles 0 r a r p/2. For
a = 0 the system exhibits in addition translational invariance in the
x-direction.
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where

Tðr� r0Þ ¼
1; r� r0 2Vd

0; else
:

(
(18)

T(r � r0) is a cut-off function which defines the integration
domain Vd: ¼

Ð
Vd3r0Tðr� r0Þ around position r. For 0 o a r

p/2 the considered interfaces between the isotropic liquid L and
the smectic-A phases SA or SAW exhibit periodic structures in
the x-direction with periodicity dx = d/sin(a). Here, Vd is a slice
of length dx in x-direction with a vanishing extension in
z-direction centered at position r, i.e., T(r � r0) = Y(dx/2 �
|x � x0|)d(z � z0) where Y(x) and d(x) are the Heaviside step
function and the Dirac delta function, respectively. The index d
of the integration domain Vd indicates that Vd corresponds
to a region which is specified by the periodicity d. Due to the
translational invariance in y-direction the extension of the
integration domain Vd can be chosen arbitrarily in the
y-direction. Due to the periodicity of r(r,x) in the x-direction,
this choice of the integration domain Vd leads to coefficients
Qi(z) (eqn (16)) which depend only on z, i.e., on the coordinate
parallel to the interface normal.

For 0 o a r p/2 one could also consider an integration
domain which has a non-vanishing extent in z-direction.
However, such a choice has at least two disadvantages: first,
unlike dx, which corresponds to the periodicity of the system
in x-direction, for 0 o a r p/2 there is no obvious choice for
the extent of Vd parallel to the interface normal. Additionally,
there is no unique choice for the geometrical shape of the
integration domains; besides using a rectangular form, one
could also use any other (two-dimensional) geometrical object
as integration domain Vd. In this sense the slice of length dx

perpendicular to the interface normal is a simple but also
consistent choice. Second, this choice renders the evaluation
numerically less demanding, because it requires only a one-
dimensional integration (exploiting the translational invar-
iance in y-direction), instead of evaluating a two-dimensional
integral. We note, that an infinite extent of the integration
domain parallel to the interface normal leads to coefficients Qi

which are independent of the position r and therefore cannot
be used to obtain interface profiles.

If a = 0, i.e., the smectic layer normal n̂ = ẑ is parallel to the
interface normal, dx diverges and the system is translationally
invariant in x- and y-direction. In this case, the integration
domain Vd has an extent of length d in z-direction, i.e.,
T(r � r0) = Y(d/2 � |z � z0|) with arbitrary extent in the lateral
dimensions x and y. As before, the coefficients Qi(z) depend
only on the z-coordinate. It is worth mentioning, that for all tilt
angles 0 r a r p/2 the correct (constant) bulk values of the
coefficients Qi are recovered, although for 0 o a o p/2 the
orientation of the integration domain Vd (recall that Vd is a
slice of width dx in x-direction for all a A (0,p/2]) changes with
respect to the direction of the smectic layer normal n̂(a).
However, because the integration domain covers a full period
dx in x-direction, it gives the same values for the coefficients Qi

in the bulk phases, as for evaluating the coefficients Qi with an

integration domain parallel to the smectic layer normal n̂,
which is the case for a = 0 and p/2.

Finally, the one-particle direct correlation function c(1)(r,x,[r])
can be derived by considering eqn (9) which leads to the following
(modified) expression for c(1)(r,x,[r]) (compare eqn (21) in ref. 11):

cð1Þ r;x; ½r�ð Þ ¼ �bcðr;x; ½�r�Þ

þ 1

2Vd

ð
V

d3r0
ð
S

d2o0�rðr0;o0Þ@Q0
JðQ0ðr0ÞÞTðr�r0Þ

�
ð
V

d3r00
ð
S

d2o00�rðr00;o00ÞfMðr0 �r00;o0;o00Þ:

(19)

We note that in eqn (19)
dQ0ðr0Þ
d�rðr;xÞ has been replaced by

dQ0ðr0Þ
drðr;xÞ ¼

Tðr� r0Þ
Vd

. This replacement, i.e., the equation

dQ0ðr0Þ
d�rðr;xÞ ¼

dQ0ðr0Þ
drðr;xÞ, is valid exactly only for bulk phases. In

general, these two functional derivatives are related via
dQ0ðr0Þ
d�rðr;xÞ ¼

Ð
Vd3r00

Ð
Sd2o00

dQ0ðr0Þ
drðr00;o00Þ

drðr00;o00Þ
d�rðr;xÞ , which, however,

cannot be calculated analytically. Determining
drðr00;o00Þ
d�rðr;xÞ requires

the functional derivative of the Euler–Lagrange equation (i.e.,

eqn (8)) which would in turn produce terms containing
dQ0ðr0Þ
d�rðr;xÞ.

Nevertheless, the derivation of eqn (19) (following from eqn (21) in
ref. 11) incorporates a modification of the exact one-particle direct
correlation function such that the density profile r(r,x) is replaced

by the projected density �r(r,x). In this respect, replacing
dQ0ðr0Þ
d�rðr;xÞ

by
dQ0ðr0Þ
drðr;xÞ ¼

Tðr� r0Þ
Vd

(which follows from eqn (16)–(18)) is

consistent with our approach, as it also implies an exchange of
r(r,x) and �r(r,x). Moreover, the exchange renders the correct
bulk limit of the interface profile r(r,x) at the boundaries, i.e.,
z - �N.

Eqn (8) has been solved numerically (utilizing a Picard
scheme with retardation) by using eqn (19) as well as the
(constant) bulk values of the coefficients Qi,L = Qi(z - �N)
in the isotropic liquid phase L and Qi,S = Qi(z - N) in the
smectic-A phase (SA or SAW)) at coexistence (T,m) = (Tcoex,mcoex).
The structural properties and the orientational order at the free
interface are analyzed in terms of the interface profiles of the
packing fraction

ZðrÞ ¼ p
6
LR2nðrÞ ¼ p

6
LR2

ð
S

d2orðr;xÞ (20)

with the number density nðrÞ: ¼
Ð
Sd2orðr;xÞ, and in terms of

the orientational order parameter

S2ðrÞ: ¼
ð
S

d2of ðr;xÞP2ðx � n̂Þ; (21)

f (r,x) := r(r,x)/n(r) describes the orientational distribution.
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2.3 Gibbs dividing surface

The position zZ of the interface is determined by the density
profile r(r,x) for which we have adopted the notion of the
Gibbs dividing surface:41

hZ zZ
� �

: ¼
ðzZ
�1

dz0 Z0ðr0Þ � Z0;L
� �

þ
ð1
zZ

dz0 Z0ðr0Þ � Z0;SA

� �
¼ 0;

(22)

where Z0(r) = Q0(r)LR2p/6 is the mean packing fraction at
position r. The quantities Z0,L = Z(z - �N) and Z0,SA = Z(z - N)
are the bulk values of Z0(r) in the isotropic liquid phase L and
the smectic-A phase SA (or SAW), respectively. The interface
position zZ in eqn (22) corresponds to the location of a step-like
profile such that the number of particles in excess and in deficit of
the bulk values is the same on both sides of the interface. Taking
the derivative of the left-hand side hZ(z) of eqn (22) with respect
to z leads to hZ0(z = zZ) := Z0,SA

� Z0,L which is a constant. Therefore
hZ(z) = (Z0,SA

� Z0,L)z + hZ(0) is a linear function and one has to
evaluate hZ(0) only once in order to obtain

zZ = �hZ(0)/(Z0,SA
� Z0,L), (23)

using eqn (22), i.e., hZ(zZ) = 0. While zZ can be interpreted as the
location of the transition in the structure from the isotropic
liquid L to the smectic-A phase SA (or SAW), replacing Z by S2 in
eqn (22) defines a position

zS2
= �hS2

(0)/(S20,SA
� S20,L), (24)

which corresponds to the transition in the orientational order
from one phase to the other.

Note, that instead of using the mean packing fraction Z0 or the
mean orientational order parameter S20 in eqn (22), for determin-
ing the interface positions, in principle, one could also use the
profiles Z(r) and S2(r) directly. However, the disadvantage of this
latter approach is that in the smectic-A bulk phase SA (or SAW) the
profiles Z(r) and S2(r) are still functions of the position r (via
the projection r�n̂ onto the layer normal n̂). Typically, this prevents
the use of the latter generalized eqn (23) and (24) for determining
zZ and zS2

. Instead, one has to solve eqn (22) numerically, which
requires many iterations depending on the desired accuracy.

Nevertheless, in the particular case a = p/2 the interface
normal and the smectic layer normal are perpendicular. Due to
the translational invariance of the smectic phases perpendi-
cular to their layer normal, here the density profile Z(z - N)
and the orientational order parameter profile S2(z -N) do not
depend on z for z - N in the smectic bulk, but they depend
only on the x-coordinate. Thus, for a = p/2 one can define
interface contours z̃Z(x) and z̃S2

(x), analogously to zZ and zS2
:

~hm ~zmðxÞð Þ: ¼
ð~zmðxÞ

�1
dz0 mðr0Þ �mLð Þ

þ
ð1
zmðxÞ

dz0 mðr0Þ �mSA

� �
¼ 0;

~zmðxÞ ¼ �~hmð0Þ
.

mSAðxÞ �mL

� �
;

(25)

where m A {Z,S2}.

2.4 Interfacial tension

The interfacial tension G is a measure of the excess amount of
work needed to form an interface between coexisting bulk
phases.41 Accordingly, it can be calculated by determining the
increase in the grand potential bO[r] of the interface system in
excess of the bulk grand potential bO0 := �bpV which is given
by the bulk pressure p (see eqn (26) in ref. 11) times the system
volume V:

G�ðaÞ: ¼ bGðaÞ ¼ bOð½r�; aÞ þ bpcoexV
A

; (26)

where A is the cross-sectional area of the system in lateral
directions to the interface normal. Hence, G*(a) has the dimen-
sion 1/area. The pressure pcoex := p(Tcoex,mcoex,d) at coexistence
(T,m) = (Tcoex,mcoex) is the same in the isotropic liquid L and the
smectic-A phase SA or SAW with the equilibrium layer spacing d.
The equilibrium tilt angle aeq minimizes the interfacial tension
G*(a = aeq) (see Section 3.4).

3 Results

In this section we present results for free interfaces formed
between the isotropic liquid L and the smectic-A phase SA or
SAW. The discussion focuses on two kinds of ionic liquid
crystals (ILCs) which are described by the pair interaction
potential U(r12,x1,x2) (eqn (1)), introduced in Section 2.1: first,
ILCs with charges in the center, i.e., D = 0 (see Fig. 1 and
eqn (5)), and second, ILCs with charges at the tips, i.e.,
D/R = 1.8. In particular the structural and orientational proper-
ties of the interface are discussed in terms of the packing
fraction profile Z(r) and the orientational order parameter
profile S2(r) for various relative orientations between the inter-
face normal and the smectic layer normal, i.e., for different tilt
angles a (see Fig. 3). All results presented here have been
obtained via the density functional approach described in
Section 2.2.

3.1 Interface normal parallel to the smectic layer normal
(a = 0)

First, we consider the case that the interface normal is parallel
to the normal of the smectic layers, i.e., a = 0 (see Fig. 3). Both
point into the z-direction and due to translational invariance in
the x- and y-directions, the packing fraction Z(z) and the
orientational order parameter S2(z) are functions solely of the
spatial coordinate z. For the case of an ionic liquid crystal with
L/R = 4, eR/eL = 2, g/(Re0) = 0.045, lD/R = 5, and D = 0, i.e., the
charges are localized in the center of the molecule, the bulk
phase behavior is shown in the T*–Z0-phase diagrams of
Fig. 4(a) where T* = kT/e0 and Z0 = Q0LR2p/6 are the reduced
temperature and the mean packing fraction, respectively.
Within the considered temperature range T* A [0.9,1.65] solely
a first-order phase transition from the isotropic liquid phase L
to the ordinary smectic-A phase SA occurs. The SA phase is
characterized by a layer structure with a smectic layer spacing
d/R E 4.3, which is comparable to the particle length L/R = 4.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
A

pr
il 

20
19

. D
ow

nl
oa

de
d 

on
 1

0/
17

/2
02

5 
8:

58
:2

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9sm00062c


This journal is©The Royal Society of Chemistry 2019 Soft Matter, 2019, 15, 4109--4126 | 4117

Within the smectic layers the particles are well aligned with the
smectic layer normal n̂. The blue lines in Fig. 4(a) correspond
to L–SA-coexistence and the light blue area in between the
coexistence lines represents the two-phase region.

The L–SA-interface is shown in Fig. 5 for T* = 1.3. In the
phase diagram in Fig. 4(a) the corresponding two coexisting
bulk states are marked by black dots (	). Panels (a) and (b) show
the packing fraction profile Z(z) along the interface normal and
the orientational order parameter profile S2(x), respectively.
The black dashed vertical line in panel (a) marks the position
zZ of the Gibbs dividing surface, which is defined by eqn (23).
Correspondingly, the black dashed vertical line in panel (b)
marks the position zS2

(eqn (24)). Apparently, the two interface
positions zZ and zS2

, which are related to the interfacial transi-
tion in the structure and in the orientational order, respectively,
differ from each other. In Fig. 6, these differences zZ � zS2

are
plotted as function of the reduced temperature T* for three
different kinds of liquid-crystalline systems. The violet curve
corresponds to ILCs with all charges concentrated in the
molecular centers, i.e., D = 0, while the green curve shows data
points for D/R = 1.8. The blue curve corresponds to a system
of ordinary (uncharged) liquid crystals (OLCs) described by
L/R = 4, eR/eL = 2, and g/(Re0) = 0. The phase diagram for OLCs
is not shown here; it is presented in Fig. 4(a) of ref. 11. Within
the considered temperature ranges, in all three cases the
differences are at most as large as the length of the particle

diameter R, which in turn is much smaller than the smectic
layer spacing d/R E 4.3 which is comparable to the particle
length L, because the particles within the smectic layers are well
aligned with the z-direction, indicated by S2(z) 4 0.8 in the
centers of the smectic layers. Thus, the small size of the differ-
ences shows that in these cases the transition in the orienta-
tional order and in the fluid structure go along with each other.
As soon as the smectic layer structure dies out, the orientational
order vanishes as well.

While for ILCs with charges in their center, within the
considered temperature range, only L–SA-coexistence is obser-
vable (see Fig. 4(a)). For ILCs with the charges at the tips, such
as in the case L/R = 4, eR/eL = 2, g/(Re0) = 0.045, lD/R = 5, and
D/R = 1.8, the bulk phase behavior changes significantly at low
temperatures, i.e., for T* o 1.23. The bulk phase diagram in
Fig. 4(b) shows that in this case the distinct smectic-A phase
SAW occurs for intermediate mean packing fraction Z0. The SAW

phase is characterized by an alternating layer structure of
smectic layers with a majority of particles being oriented
parallel to the smectic layer normal n̂ and a minority of

Fig. 4 Bulk phase diagrams for (a) ionic liquid crystals with L/R = 4, eR/eL =
2, g/(Re0) = 0.045, lD/R = 5, and D = 0 and (b) with L/R = 4, eR/eL = 2,
g/(Re0) = 0.045, lD/R = 5, and D/R = 1.8. For D = 0, i.e., the charges being
concentrated in the center of the molecules, solely a first-order phase
transition from the isotropic liquid phase L to the ordinary smectic-A phase
SA occurs at sufficiently high mean packing fractions Z0. The ordinary
smectic-A phase SA is characterized by a layer structure with smectic layer
spacing d/R E 4.3 \ L/R = 4 comparable with the particle length L. The
particles in the layers are well aligned with the layer normal n̂. In panel (b),
i.e., for D/R = 1.8 (the charges being located at the tips of the molecules),
another smectic-A structure, referred to as the SAW phase can be observed
at low reduced temperatures T*. The SAW phase exhibits an alternating
structure, consisting of primary layers of particles being parallel to the layer
normal and secondary layers in which the particles prefer to be perpendi-
cular to it. This leads to an increased layer spacing d/R Z 7.5. The black
dotted line in panel (b) marks the triple point at T* E 1.23 for which the
isotropic liquid L, the ordinary smectic-A phase SA, and the SAW phase are
in three-phase-coexistence. A detailed description of the structural prop-
erties of the smectic-A phases SA and SAW, including illustrations of their
microstructure, are provided in ref. 11. The black dots (	) in panel (a),
respectively the red dots ( ) in (b), mark the coexisting bulk states at the
reduced temperature T* = 1.3, respectively 0.9, imposed as boundary
conditions for the free interfaces shown in Fig. 5 and 7–9.

Fig. 5 The L–SA-interface profile of the packing fraction Z(z), panel (a),
and the orientational order parameter S2(z), panel (b), are shown for an
ionic liquid crystal with L/R = 4, eR/eL = 2, g/(Re0) = 0.045, lD/R = 5, and D =
0, i.e., the charges are concentrated in the center of the molecules. The
free interface between the isotropic liquid L (imposed as boundary con-
dition for z - �N) and the ordinary smectic-A phase SA (i.e., z - N) is
considered for the reduced temperature T* = 1.3. The corresponding
coexisting bulk states are marked by the black dots (	) in the phase diagram
in Fig. 4(a). The tilt angle is a = 0, i.e., the smectic layer normal n̂ = ẑ is
parallel to the interface normal (see Fig. 3). For z/R 4 0 the last layers of
the SA phase are visible, in which the particles are still well aligned with the
z-axis, indicated by large values of the orientational order parameter
S2(z/R) 4 0.8 within these layers. For z/R o 0 the layer structure of the
density dies out rapidly and the orientational order vanishes as well.
Ultimately, the isotropic bulk limit will be approached for z - �N.
However, already for z/R o �10 the profiles have de facto reached their
bulk limits in the isotropic liquid L. The black dashed lines refer to the
interface positions zZ and zS2

, respectively, calculated via eqn (23) and (24).
The difference (zZ � zS2

)/R E 2.45 � 1.66 = 0.79 between the two interface
positions is considerably smaller than the smectic layer spacing d/R E
4.28 \ L/R = 4. Therefore the orientational order of the SA phase vanishes
within the last smectic layer while approaching the isotropic liquid L.
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particles localized in secondary layers which prefer orientations
perpendicular to the smectic layer normal. Due to this alter-
nating layer structure the smectic layer spacing d/R E 7.5 is
increased for the SAW phase. A detailed discussion of the
structural and orientational properties of this new and peculiar
smectic-A phase, in particular concerning the bulk density and
the orientational order parameters profiles, is given in ref. 11.

In Fig. 7 the L–SAW-interface profiles Z(z) and S2(z) are shown
for a = 0 and T* = 0.9. In the phase diagram in Fig. 4(b) the
corresponding coexisting bulk states are marked by red dots ( ).
On the right hand side of Fig. 7 the alternating layer structure
of the bulk SAW phase is evident. In the main layers the majority
of the particles (Z(z) 4 2) has orientations parallel to the z-axis
(S2(z) 4 0.8) and in the secondary layers, formed by less of
them (Z(z) E 0.6), the particles prefer orientations perpendi-
cular to the z-axis (S2(z) o 0). For the L–SAW-interface the
difference (zZ � zS2

)/R E 2.6 of the two interface positions is
increased compared to the L–SA-interface (see Fig. 6), because
the smectic layer spacing d/R Z 7.5 in the SAW phase is
enlarged, too. As before, the orientational order directly vani-
shes with the disappearance of the layer structure. Furthermore,
the inset in Fig. 6 shows that (zZ � zS2

)/R decreases upon lowering

the temperature. Thus the difference zZ � zS2
becomes smaller

relative to the layer spacing d, such that the direct vanishing of the

orientational order associated with the disappearance of the
layer structure is observable for the whole temperature range
considered here.

3.2 Interface normal perpendicular to the smectic layer
normal (a = p/2)

For a = p/2 the interface normal and the smectic layer normal
are perpendicular to each other. The smectic layer normal
points into the x-direction and the interface normal into the
z-direction (see Fig. 3). The associated L–SA-interface at T* = 1.3
for an ILC system with the charges concentrated at the center,
described by the parameter set L/R = 4, eR/eL = 2, g/(Re0) = 0.045,
lD/R = 5, and D = 0, is shown in Fig. 8. The corresponding bulk
phases are given by the state points marked by black dots (	) in
the phase diagram in Fig. 4(a). Panel (a) shows the packing
fraction Z(x,z) and (b) the orientational order parameter S2(x,z).
The red areas at the top of Fig. 8(a) show the tails of four
smectic layers of the SA phase located at x/R = �d/(2R) E �2.14
and x/R = �3d/(2R) E �6.42 where d/R E 4.28 is the smectic
layer spacing. The particles are well aligned with the smectic
layer normal n̂ = x̂ indicated by large values of the orientational
order parameter S2(x,z) 4 0.8 in the layers.

The black dashed lines in Fig. 8 show the interface positions
zZ and zS2

calculated from eqn (23) and (24), while the white
dotted lines show the interface contours z̃Z(x) and z̃S2

(x)
obtained from eqn (25). The contour lines z̃Z(x) and z̃S2

(x) at
the centers of the tails of the smectic layers, e.g., at x/R E 2.14,
are very close to zZ and zS2

, respectively. This suggests that the
two distinct definitions of the interface positions, i.e., using
either eqn (23) and (24) or eqn (25), are consistent with each
other, because the majority of the particles in the smectic phase

Fig. 6 The difference (zZ � zS2
)/R between the Gibbs dividing surface

position zZ (eqn (23)), and the surface position zS2
(eqn (24)), which

corresponds to the transition of the orientational order at the interface,
are shown for three cases. First, an ordinary (uncharged) liquid crystal
(OLC; blue curve); second, ILCs with charges in their center, i.e., D = 0
(violet curve); and, third, ILCs with charges at the tips, i.e., D/R = 1.8 (green
curve). Here, the smectic layer normal n̂ = ẑ is parallel to the interface
normal, i.e., a = 0. In all cases studied, the differences (zZ � zS2

)/R are
smaller than the smectic layer spacing d \ L, which for the SA phase is
comparable to the particle length L/R = 4. Thus, the loss of orientational
order occurs within the last smectic layer before approaching the isotropic
liquid L. The inset shows data for the L–SAW-interface, which are acces-
sible for D/R = 1.8 at sufficiently low temperatures T*. Although the
difference (zZ � zS2

)/R is enlarged for 0.7 o T* r 0.9, it is still considerably
smaller than the layer spacing d/R E 7.5 and decreases rapidly upon
decreasing the temperature T*. Hence, for a = 0, the orientational order of
the smectic-A phase, either SA or SAW, vanishes directly with the disap-
pearance of the layer structure at the interface.

Fig. 7 For a = 0, the L–SAW-interface profiles Z(z) and S2(z) are shown for
ILCs with charges at the tips (L/R = 4, eR/eL = 2, g/(Re0) = 0.045, lD/R = 5,
and D/R = 1.8) at the reduced temperature T* = 0.9 (see the red dots ( ) in
Fig. 4(b)). For z -�N the isotropic liquid bulk L is approached whereas for
z -N the SAW bulk is attained. The difference (zZ � zS2

)/R E 6.31 � 3.72 =
2.59 between the two interface positions is larger than the one of the
L–SA-interface (compare Fig. 5 and 6) but it is still smaller than the smectic
layer spacing d/R = 7.5. Therefore the orientational order of the SAW phase
also vanishes within the range of the last smectic layer at the interface.
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are located close to the centers of the smectic layers. In Fig. 8(a)
the packing fraction interface contour z̃Z(x) exhibits disconti-
nuities for lateral positions x̆; at which the smectic bulk
packing fraction ZSA(x̆) := Z(x̆, z - N) takes the same value
ZL = Z(x̆, z - �N) as in the isotropic liquid L, i.e., ZSA(x̆) = ZL.
Thus, the numerical calculation of the Gibbs dividing
surface via eqn (25) leads to a divergence due to the vanishing
denominator. This can be considered as an artifact, which,
however, occurs only at the particular lateral positions x̆. Never-
theless, the benefit of considering z̃Z(x) and z̃S2

(x) as interface
positions is their dependence on the lateral coordinate x. In
particular, for the case of the L–SAW-interface it is necessary to
consider z̃Z(x) and z̃S2

(x) in order to study the interface at the
main layers and at the secondary layers separately (see below).

Interestingly, if the layer normal and the interface normal
are perpendicular, one observes a significant difference (zZ � zS2

)/
R E 0.72 � (�1.76) = 2.48 between the interface position zZ,
corresponding to the structural transition, and zS2

corresponding
to the transition in the orientational order between the coexisting
phases. Hence, the alignment of the particles with the x-axis
persists a few particle diameters deeper into the liquid phase L
than the layer structure of the SA phase is maintained – unlike in
the case a = 0, i.e., in which the smectic layer normal is parallel to
the interface normal, for which the orientational order directly
vanishes when the smectic layers disappear (see Section 3.1).

We note, that the vanishing of the orientational order significantly
after (upon approaching the interface from the orientational
ordered phase) the structural transition associated with the
density profile, has already been observed previously18 in the
case of the interface between an isotropic liquid and a plastic-
triangular crystal (PTC).

For the type of ILCs with the charges at the tips, at low
temperatures the new wide smectic-A phase SAW can be
observed (see Fig. 4(b)). It is characterized by an alternating
structure of layers in which the particles are predominantly
parallel to the layer normal n̂ = x̂ (like in the SA phase) and
layers of particles which are preferentially perpendicular to the
layer normal. The free interface formed between the isotropic
liquid L and the SAW phase for T* = 0.9 and a = p/2 is shown in
Fig. 9. The red regions in Fig. 9(a) show the layers of particles
(at x = 0 and x/R E �d/R = �7.5) being parallel to the layer
normal, while in between (at x/R E �d/(2R) = �3.75) in light
blue color the secondary layers are visible. The dark blue color
at x/R E �d/(2R) = �3.75 in panel (b) shows that the orienta-
tional order parameter S2(x,z) is negative at the location of the
secondary layers, because there the particles are preferentially
perpendicular to the layer normal. The interface at the parallel
layers behaves very much like the L–SA interface, as can be inferred
from the (white) interface contours z̃Z(x/R = 0, �7.5)/R E 0.81 and

Fig. 8 The L–SA-interface profiles Z(x,z), panel (a), and S2(x,z), panel (b),
are shown for T* = 1.3 (see the black dots (	) in Fig. 4(a)) and a = p/2.
Accordingly, the smectic layer normal n̂ = x̂ and the interface normal
(parallel to the z-axis) are perpendicular. Here, ILCs with charges at the
center are considered, described by the parameter set L/R = 4, eR/eL = 2,
g/(Re0) = 0.045, lD/R = 5, and D = 0. For z - �N the isotropic bulk liquid L
and for z - N the bulk of the SA phase is approached. The decaying red
stripes at the upper part of these plots show the tails of the smectic layers
located at x/R E 0, �d/R, �2d/R where d/R E 4.28 is the smectic layer
spacing. The black dashed lines mark the interface positions zZ and zS2

calculated via eqn (23) and (24), while the white dotted lines mark the
interface contours z̃Z(x) and z̃S2

(x) calculated via eqn (25). The difference
(zZ � zS2

)/R E 0.58 � (�1.51) = 2.09 is larger than the particle diameter R,
which is the relevant geometrical property of the particles at this interface,
because for a = p/2 the particles in the SA layers are well aligned with the
x-axis and therefore they are oriented perpendicular to the direction of the
interface normal. The orientational order of the smectic-A phase persists
up to a few particle diameters into the liquid phase, unlike the case a = 0, in
which the disappearance of the layer structure causes a direct vanishing of
the orientational order within the last layer (see Fig. 5–7).

Fig. 9 The interface profiles Z(x,z) and S2(x,z) for T* = 0.9 and a = p/2.
Here the L–SAW interface (see the red dots ( ) in Fig. 4(b)) for an ILC with
the charges at the tips (L/R = 4, eR/eL = 2, g/(Re0) = 0.045, lD/R = 5, and
D/R = 1.8) is considered. The thin red areas in panel (a) for lateral positions
x/R = 0, �d/R = �7.5 show the tails of the smectic layers where the
particles prefer an orientation parallel to the smectic layer normal n̂ = x̂.
This is indicated by the large value of S2(x,z) 4 0.8 within these layers. In panel
(a) the secondary layers of the SAW phase are shown as light blue areas in panel
(a) located at x/R = �d/(2R) = �3.75. There, the orientational order parameter
S2(x,z), shown in panel (b), is negative. The black dashed lines mark the interface

positions zZ and zS2
calculated via eqn (23) and (24), while the white dotted lines

mark the interface contours z̃Z(x) and z̃S2
(x), which have been calculated via

eqn (25). The differences (zZ � zS2
)/R E 1.0 � (�2.3) = 3.3, respectively (z̃Z(x) �

z̃S2
(x))/R E 0.81� (�1.83) = 2.64 at the lateral positions x/R E 0,�7.5, exhibit a

persisting orientational order for the main layers, similar to the findings for the
L–SA interface (compare Fig. 8). Interestingly, at the secondary layers (x/R =
�d/(2R) = �3.75) the orientational order vanishes ahead of the disappearance

of the layer structure, i.e., z̃S2
(x/R = �3.75)/R E 3.39 4 �0.34 E z̃Z(x/R =

�3.75)/R. In order to guide the eye, the magenta dots ( ) mark the positions
(x/R, z̃Z/R) E (3.75, �0.34) and (x/R, z̃S2

/R) E (3.75, 3.39).
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z̃S2
(x/R = 0, �7.5)/R E �1.83 which show that the orientational

ordering of the SAW phase persists into the liquid phase L for a few
particle diameters. This is also apparent from the interface posi-
tions zZ/R E 1.0 and zS2

/R E �2.3, depicted by the black dashed
lines in Fig. 9. Conversely, at lateral positions x/R E d/(2R) = �3.75
associated with the centers of the intermediate layers, it turns out
that the orientational order undergoes the transition before the
layer structure vanishes if one approaches the interface from the
SAW side (z̃S2

(x/R = �3.75)/R E 3.39 and z̃Z(x/R = �3.75)/R E �0.34;
in order to guide the eye the magenta dots ( ) in Fig. 9 mark these
positions). This behavior is opposite to the above one and is
presumably related to the fact, that the secondary layers consist
of particles being preferentially perpendicular to the layer normal;
unlike the particles in the main layers of the SAW phase or the
particles in the SA layers, these particles do not align with the layer
normal n̂ = x̂. Instead they are avoiding an orientation parallel to it.
While the transition across the L–SA interface – from alignment
with the layer normal towards an isotropic orientational distribu-
tion – results in an increase of the effective particle diameter in the
y- and z-direction, for the secondary SAW layers the effective
diameter is decreased from the SAW phase towards the isotropic
liquid L. In Fig. 9 there are discontinuities in the (white) interface
contour lines z̃Z(x) and z̃S2

(x), as in Fig. 8. These discontinuities
occur at lateral positions x̆ at which the packing fraction Z(x̆, z -

�N) or the orientational order parameter S2(x̆, z - �N) take the
same value in the isotropic bulk, i.e., for z - �N, as in the SAW

bulk, i.e., for z - N.

3.3 Asymptotic behavior

In this section we discuss how the interface profiles of the packing
fraction Z(r) and the orientational order parameter S2(r) attain
their respective values ZL and S2,L in the bulk liquid L. In Fig. 10
the asymptotic behavior is discussed in terms of ln|Z(x,z) � ZL|
and ln|S2(x,z)� S2,L| for a = p/2 and T* = 10, considering ILCs with
charges in the center, i.e., D = 0 (panels (a) and (b)), and with
charges at the tips, i.e., D/R = 1.8 (panels (c) and (d)). In order to
elucidate the view angle on these 3-dimensional logarithmic plots,
the interface profiles Z(x,z) and S2(x,z) are shown in addition as
contour plots (see Fig. 8) at the base of the respective plot.

Interestingly, while for D = 0 the periodic structure of the
profiles Z(x,z) and S2(x,z) in x-direction is clearly apparent also in
the decays ln|Z(x,z) � ZL| and ln|S2(x,z) � S2,L| far away from the
L–SA-interface (z/R o �20 in Fig. 10(a) and (b)), for D/R = 1.8
(panels (c) and (d)) the decays vary only little as function of x. This
distinct behavior can be a signature of the respective molecular
charge distributions, because if the charges are localized at the
centers of the molecules, due to the layer structure in the SA phase
the charges are also localized at the centers of the smectic layers,
while for D/R = 1.8 the charges are less localized along the lateral
direction x. Close to the interface (z/R 4 �20) the structure is
very similar in both cases and, as will be discussed later, it is the
hard-core repulsion which is the dominant contribution here.

Turning the view parallel to the x-axis, one obtains projected
representations of the logarithmic plots in Fig. 10, which are
shown in Fig. 11 keeping the order of panels as in Fig. 10.

Hence, Fig. 11(a) and (b) correspond to the case D = 0 presenting
ln|Z(x,z) � ZL| and ln|S2(x,z) � S2,L|, respectively. Similarly,
Fig. 11(c) and (d) show the case D/R = 1.8. In both cases, at large
distances, i.e., z/R o �20, the decay of the density profiles is
dominated by the electrostatic contribution Ues to the total
interaction potential U (see Fig. 11(a) and (c)). Accordingly, the
decay of the envelope is determined by the Debye screening
length lD/R = 5, highlighted by the orange lines in Fig. 11. It is
worth mentioning that a DFT study46 of the asymptotic behavior
of the liquid–vapor interface has yielded, unlike the present
findings, a decay length lb larger than the Debye screening length
lD for a hard sphere system with additional Yukawa interaction.
While in the present study the Yukawa potential is purely
repulsive, in ref. 46 using an attractive Yukawa potential is
indispensable, because a sufficiently strong attraction is needed
for liquid–vapor coexistence to occur.

Interestingly, the asymptotic behavior of the orientational
order parameter at far distances, i.e., for z/R o �60, differs
from the electrostatic decay and another regime (highlighted by

Fig. 10 L–SA interface profiles of Z(x,z) and S2(x,z) for T* = 10 and a = p/2.
Accordingly, the smectic layer normal n̂ = x̂ and the interface normal
(parallel to the z-axis) are perpendicular. Panels (a) and (b) show the
logarithmic deviations ln|Z(x,z) � ZL| and ln|S2(x,z) � S2,L| of the packing
fraction and the orientational order parameter from their bulk values in the
isotropic liquid L for an ILC with the charges concentrated at the center of
the molecule, i.e., for D = 0. Panels (c) and (d) show ln|Z(x,z) �ZL| and
ln|S2(x,z) � S2,L| for an ILC with the charges at the tips, i.e., for D/R = 1.8.
Note that on the base of each plot the interface profiles Z(x,z) and S2(x,z)
are shown in order to elucidate the viewing angle on the interface. The
local height of the manifold above the base corresponds to the given color
code. Interestingly, for D = 0 the periodic structure is still apparent even far
away from the L–SA-interface, i.e., z/R o �20, unlike the case D/R = 1.8,
for which the profiles are rather flat in lateral direction x. This can be
related to the strong localization of charges at the centers of the smectic
layers for D = 0, pronouncing the periodic structure, while for D/R = 1.8
the charge sites are spread and less localized along the x-direction.
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blue lines in Fig. 11) with a larger decay length xGB/R E 10 sets in.
This longer-ranged decay is due to the Gay–Berne interaction UGB

which is verified by calculating the interface profile for an ordinary
liquid crystal (OLC) without charges (compare the insets of panels (a)
and (b) of Fig. 11). For the OLC, at far distances, i.e., z/R o�30, the
same large decay length xGB/R E 10 is observed. However, the
amplitudes of the decay of the packing fraction and of the
orientational order parameter differ significantly. (The blue
line in panel (a) intersects the ordinate at ln|Z � ZL| E �25,
whereas the blue line in (b) intersects the ordinate at
ln|S2 � S2,L| E �20.) For D = 0, it turns out that for the
orientational order parameter the crossover from the electro-
static decay towards the Gay–Berne decay occurs at z/R E �67
(this position is marked by the red arrow in Fig. 11(b)), whereas
for the case D/R = 1.8 the crossover occurs at z/R E �45 (see the
red arrow in Fig. 11(d)). Ultimately, the larger Gay–Berne decay
length xGB/R E 10 will also become apparent in the decay
profile of the packing fraction. However, due to the smaller
amplitude of the Gay–Berne decay of the density compared with
the decay of the orientational order parameter (compare the
insets in Fig. 11(a) and (b)), in the present case the crossover
occurs further away from the interface (in Fig. 11(a) the inter-
section of the orange line and the blue line is located at z/R E
�121 (not visible) and in Fig. 11(c) at z/R E �97 (also not
visible)). However, at very far distances z/R o �80, the magni-
tudes ln|Z � ZL| t �25 are very small and cannot be resolved
numerically. For this reason, in Fig. 11(a) and (c) crossovers
from the electrostatic regime to the Gay–Berne regime are
not shown.

We note that, although the Gay–Berne potential UGB decays
algebraically p(r12/R)�6 (see eqn (2)), here the Gay–Berne decay
is exponential, because solving the Euler–Lagrange equation in
eqn (8) requires the evaluation of the ERPA contribution bcERPA

of the effective one particle potential bc (see eqn (14) and (19)).
The numerical calculation of this integral (which extends over
the whole volume V of the system) requires a truncation in
terms of a cut-off distance of the integral which leads to an
exponential decay of this contribution, instead of a power law
decay p(z/R)�3,46–48 as it is expected for the full Gay–Berne
potential UGB. (The exponent 3 arises because the asymptotic
behavior of an interfacial density profile, generated by long-
ranged forces, varies proportional to the corresponding (total)
potential, which acts on a test particle at a distance z from the
interface and which is due to the pair interaction between the
particles in one of the two coexisting phases (which are
separated by the considered interface) and the test particle.
Thus, via an integration of the Gay–Berne pair interaction,
which decays p(r12/R)�6, over a half-space, one obtains the
corresponding total potential decaying p(z/R)�3.47–49)

For z/R - �N the algebraic decay of the Gay–Berne
interaction potential always dominates the exponential decay
due to the screened electrostatic interaction, independent of
the relative strength of the electrostatic and the Gay–Berne
interaction potential. A variation of their relative strength g/(Re0)
would only lead to a shift of the location of the corresponding
crossovers in the density and the order parameter profiles (see the
red arrows in Fig. 11) caused by altering the amplitudes of the
respective decays of the two interactions.

Fig. 11 The same quantities as shown in Fig. 10. Panels (a) and (b)
correspond to the case D = 0 presenting ln|Z(x,z) � ZL| and ln|S2(x,z) �
S2,L|, respectively, whereas panels (c) and (d) correspond to the case D/R =
1.8. However, here the direction of view is parallel to the x-axis so that the
manifold from Fig. 10 is projected onto the plane spanned by the vertical
axis and the z axis. Away from the interface, i.e., for z/R o �20, the decay
length for ln|Z(x,z) �ZL| can be identified as the Debye screening length
lD/R = 5 for both cases (a) D = 0 and (c) D/R = 1.8. From the inset in panel (a),
which shows ln|Z(x,z) � ZL| for the corresponding (uncharged) ordinary liquid
crystal with L/R = 4 and eR/eL = 2, it is apparent that the contributions due to
the Gay–Berne potential (the asymptotics of which is indicated by the blue
line) and due to the hard-core interaction (the asymptotics of which is
depicted by the black line) are much weaker than the (screened) electrostatic
contribution and do not play a role within the range of ln|Z(x,z) � ZL|
considered here. (In order to guide the eye, the blue and black lines are also
shown in the main plots. Apparently, in (a) and (c) the blue and black lines are
far below the respective profiles.) However, for ln|S2(x,z)� S2,L|, i.e., for panels
(b) and (d), one observes crossovers – indicated by the intersection of the
orange and blue lines at z/R E �67 in (b) and z/R E �45 in (d) (compare the
red arrows in the respective plots) – from the electrostatic regime towards
the decay governed by the Gay–Berne contribution with decay length
xGB/R E10. Such crossovers occur within the considered range z/R A
[�80,0], because for the orientational order parameter the amplitude of the
decay, due to the Gay–Berne interaction, is larger than for the packing
fraction (compare the intersections of the blue lines with the ordinates in
panels (a) and (b)). Due to the hard-core interaction, for z/R 4�20 the decay
length xPL/R E 1.9 (Parsons–Lee, black lines) is visible for the ordinary liquid
crystal in the insets of (a) and (b) as well as for ln|S2(x,z) � S2,L| of the two
considered ILCs. (Due to the small amplitudes of the hard-core contributions
to ln|Z(x,z) � ZL|, for the ILC considered here, this decay has not been
observed.) In order to confirm, that the decay length xPL/R E 1.9 is indeed
due to the hard-core interaction, the insets of the panels (c) and (d) show
ln|Z(x,z) � ZL| and ln|S2(x,z) � S2,L| of the pure hard-core system (bc := bcPL).
Interestingly, ln|Z(x,z) � ZL| and ln|S2(x,z) � S2,L| behave very similarly close to
the interface, i.e., z/R 4 �10, for all three kinds of systems studied here. This
suggests that the structure and the orientational properties close to the
interface are governed by the hard-core interaction which enters into
the present DFT approach (see Sections 2.1 and 2.2).
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Close to the interface, i.e., for �20 o z/R o �5, in the insets
of Fig. 11 one can observe an exponential decay with a decay
length xPL/R E 1.9 (depicted by the black lines) which arises
from the pure hard-core Parsons–Lee contribution bcPL. Thus
xPL can be identified as the isotropic-liquid bulk correlation
length of the pure hard-core system. Interestingly, while the
hard-core correlation length xPL is observable in OLCs – within
both the Z and the S2 profiles (at distances z/R A [�20,�5] the
respective decays closely follow the black lines which depict the
hard-core decay in the insets of Fig. 11(a) and (b)), for ILCs this
decay is visible only within the S2 profile. Only for the S2 profile
the amplitude of the hard-core decay is large enough, such that
the hard-core correlation length xPL is observable before the
electrostatic decay becomes dominant. The insets in Fig. 11(c)
and (d) show the interface profiles calculated for the pure hard-
core system (bc := bcPL) in order to verify that the decay close to
the interface, i.e., for �20 o z/R o �5, is governed by the hard-
core interaction.

Finally, it is worth mentioning that for all cases shown in
Fig. 11, the structural and orientational properties close to the
interface, i.e., for z/R 4 �10, agree very well. Thus, it is the
hard-core interaction which determines the structural and
orientational properties close to the interface, while the elec-
trostatic and the Gay–Berne contributions dominate further
away from the interface. At intermediate distances electro-
statics dominates the decay of the interface profiles whereas
far away from the interface ultimately the attractive Gay–Berne
interaction dominates. Furthermore, the positions of the cross-
overs between these regimes are distinct for the packing frac-
tion profile and the orientational order parameter profile.

3.4 Tilted interfaces

In this section we discuss the dependence of the structural and
orientational properties of the liquid–smectic-interface on the
tilt angle a. In Fig. 12 the L–SA-interface profiles Z(x,z) and
S2(x,z) are shown for the reduced temperature T* = 1.3 (see the
black dots (	) in Fig. 4(a)) and a = p/4. Here, we consider
the case of ILCs with the charges localized in the center (L/R = 4,
eR/eL = 2, g/(Re0) = 0.045, lD/R = 5, and D = 0). Like in the case
a = p/2, (see Section 3.2) i.e., the interface normal and the
smectic layer normal n̂ = x̂ are perpendicular, a persisting
orientational order can be observed at the interface: the struc-
tural transition occurs at zZ/R E 5.56, whereas the transition in
the orientational order between the two phases takes place at
zS2

/R E 2.79 which is a few diameters deeper in the isotropic
liquid.

In Fig. 13 the interfacial tension G*(a) given by eqn (26) and
the distance zZ � zS2

between the interface positions associated
with the mean packing fraction Z0(x) and the mean orienta-
tional order parameter S20(x) are shown as function of the tilt
angle a. In Fig. 13(a) the case of the L–SA-interface for ILCs with
the charges at their center is considered for T* = 1. Both the
interfacial tension G*(a) (black dots, 	) and the distance zZ � zS2

(orange dots, ) exhibit a global minimum at a = 0 and a second,
local minimum at a = p/2. Thus, the equilibrium tilt angle aeq =

0 corresponds to the configuration in which the interface
normal and the smectic layer normal n̂ = ẑ are parallel, whereas
the corresponding perpendicular orientation a = p/2 is meta-
stable. This increase in the interfacial tension G* below
a = p/2 suggests that the configuration, in which the interface
normal and the layer normal are orthogonal, should be obser-
vable without resorting to any external stabilizing field which
could be provided, e.g., by a suitably structured substrate. This
metastability of the tilt angle a = p/2 can be checked also via
computer simulations. Interestingly, the increase of the inter-
facial tension below a = p/2 is accompanied by an increase in
the distance zZ � zS2

, suggesting that maintaining the local
orientational order in the isotropic liquid beyond the smectic
layers costs free energy. Consistently, in the case aeq = 0, for
which the orientational order vanishes directly with the dis-
appearance of the smectic layers, the cost in free energy is
lowest. Apparently, for a = 0 the interfacial tension G*(a = 0) E
0.006 is significantly smaller than for all other angles a shown
in Fig. 13(a). For technical reasons we did not study small tilt
angles a 4 0 and hence cannot comment on the functional
form of G*(a) for 0 o ao p/6 in the case D/R = 0 or for 0 o ao
p/4 in the case D/R = 1.8. This is indicated by connecting the
data points at a = 0 and p/6 by dashed lines. (For the same
reason, in (b) the data points at a = 0 and p/4 are connected by
dashed lines.) It has been pointed out in Section 2.2, that due to
the crossover at the tilt angle a = 0 from a periodic system
towards one which is translationally invariant in lateral direc-
tion x, the integration domain Vd for evaluating the coeffi-
cients Qi(r) (see eqn (16)) is not continuously evolving at a = 0.
For a 4 0 it is a slice of length dx = d/sin(a) in x-direction, while
for a = 0 it is the subsystem of length d in z-direction at position
r. (For a = 0 the extent in x- and y-direction is arbitrary due to
the translational invariance in lateral direction.) In order to
describe a continuous variation of the interfacial tension G*(a)

Fig. 12 The L–SA interface profiles Z(x,z) (eqn (20)) and S2(x,z) (eqn (21))
for a = p/4 and T* = 1.3 are shown. Here, an ILC with charges localized at
its center is considered (L/R = 4, eR/eL = 2, g/(Re0) = 0.045, lD/R = 5, and
D = 0). For z - �N the isotropic liquid bulk L is approached and for
z - N the bulk of the SA phase is attained, i.e., the interface normal is
parallel to the z-axis. The red stripes at the top of the contour plots show
the tails of the smectic layers. The black dashed lines mark the interface
positions zZ/R E 5.56 and zS2

/R E 2.79 calculated via eqn (23) and (24).
Similar to the case a = p/2 (see Fig. 8), to a certain extent the orientational
order persists into the liquid phase L.
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for all tilt angles a A [0,p/2], one thus needs to consider a
different approach, which does not rely on a projected density
and thereby on the direction of the bulk smectic layer normal n̂
throughout the whole interface structure. Nonetheless, our
above approach still allows one to compare the interfacial
tension G*(a) for the extreme cases a = 0 and p/2, thus predicting
which one of the two is preferred. Furthermore, our approach
provides an understanding of the local increase in G*(a) below
a = p/2, as one observes an increasing distance zZ � zS2

between
the transition in the structural and the orientational order at the
interface.

Fig. 13(b) shows data for the L–SAW-interface at T* = 0.9 for
ILCs with charges located at the tips. Around a = p/2 the
interfacial tension (black squares, ’) is a rather flat function
of a taking values around G* E 0.07. The slight variations in G*
for aA [p/4,p/2] might be caused by the numerical evaluation of
eqn (8) which has to be done separately for each tilt angle a.
Consistently, the distance zZ � zS2

(orange squares, ) does not
vary much as function of the tilt angle a. As above, the
equilibrium tilt angle aeq = 0 corresponds to the configuration

in which the interface normal and the smectic layer normal
n̂ = ẑ are parallel.

Finally, in Fig. 14, we show the contour plot of the L–SAW-
interface for a = p/3 and T* = 0.9 for an ILC system with
D/R = 1.8, illustrating the structure of this type of interface.

4 Summary and conclusions

Free interfaces in systems composed of ionic liquid crystals
(ILCs) have been studied within density functional theory (see
Section 2.2). In particular, the discussion has been focused on
two kinds of ionic liquid crystals: first, ILCs with the charges
localized at the center of the molecules, i.e., D = 0 (see Fig. 1
and 2), and, second, ILCs with the charges at the tips of the
molecules, i.e., D/R = 1.8. All other model parameters, i.e.,
L/R = 4, eR/eL = 2, g/(Re0) = 0.045, lD/R = 5, are identical in both
cases. Therefore the two kinds differ solely by the charge
distribution within the molecules.

For D = 0 coexistence between the isotropic liquid L and the
ordinary smectic-A phase SA can be observed at a sufficiently
large mean packing fraction Z0 (see Fig. 4(a)). The SA phase is
characterized by a layered structure in the direction of the
smectic layer normal n̂ with a smectic layer spacing d E L
comparable to the particle length L. Within the smectic layers
the particles are well aligned with the smectic layer normal. The
phase behavior of ILCs is altered by varying the molecular
charge distribution, as can be inferred from comparing the
case D = 0 (i.e., charges at the center) and D/R = 1.8 (i.e., charges
at the tips, see Fig. 4(b)). At sufficiently low temperatures a new
smectic-A phase has been observed, which is referred to as the
SAW phase.11 The SAW phase shows an alternating structure of
layers with the majority of the particles being oriented parallel
to the smectic layer normal n̂ and the minority of the particles
localized in secondary layers which prefer orientations
perpendicular to n̂. Due to the alternating layer structure, the

Fig. 13 The (reduced) interfacial tension G*(a) (eqn (26), black line) and
the distance zZ � zS2

between the transition in the structural and the
orientational order (orange line) as function of the tilt angle a. In panel (a)
the L–SA interface at T* = 1 is considered for ILCs with their charges
localized at the center (L/R = 4, eR/eL = 2, g/(Re0) = 0.045, lD/R = 5, and
D = 0 (see Fig. 4(a)). There are two minima: the global minimum at the
equilibrium tilt angle aeq = 0 (i.e., interface normal and smectic layer
normal are parallel) and a local minimum at a = p/2 which shows that the
orthogonal orientation of the smectic layer normal and the interface
normal is a metastable configuration. The increase of the interfacial
tension below a = p/2 is accompanied by an increase of the distance
zZ � zS2

. This suggests that maintaining to a certain extent the local
orientational order in the isotropic liquid beyond the smectic layers costs
free energy. For technical reasons we did not study small tilt angles a 4 0.
Hence we cannot comment on the functional form of G*(a) for 0 o a o
p/6 in the case D/R = 0 or for 0 o a o p/4 in the case D/R = 1.8. This is
indicated by connecting the data points at a = 0 and p/6 by dashed lines in
(a) (see the discussion in the main text of Section 3.4). In panel (b) the
L–SAW interface, which is accessible for ILCs with their charges at the tips
(L/R = 4, eR/eL = 2, g/(Re0) = 0.045, lD/R = 5, and D/R = 1.8), is considered
for T* = 0.9 (see Fig. 4(b)). Also in this case the equilibrium tilt angle aeq = 0
corresponds to the parallel orientation of the interface normal and the
layer normal. Below a = p/2, as function of a the interfacial tension is rather
flat, taking the value G* E 0.07. Thus, for the L–SAW interface the
perpendicular orientation of the interface normal and of the smectic layer
normal corresponds to a labile configuration. (Analogously to panel (a), the
data points at a = 0 and p/4 in (b) are connected by a dashed line.) We note
that G*(a) is symmetric around a = p/2, due to the mirror-symmetry of the
particles.

Fig. 14 Same as Fig. 12. Here, the L–SAW interface profiles Z(x,z) (eqn (20))
and S2(x,z) (eqn (21)) are shown for a = p/3 and T* = 0.9. To this end, an
ionic liquid crystal with charges at the tips is considered (L/R = 4, eR/eL = 2,
g/(Re0) = 0.045, lD/R = 5, and D/R = 1.8). For z - �N the isotropic liquid
bulk L is approached and for z - N the bulk of the SAW phase, i.e., the
interface normal is parallel to the z-axis. The transition in the structure
occurs at zZ/R E 2.28 and the transition in the orientational order does so
at zS2

/R E �0.68.
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smectic layer spacing d/R E 7.5 in the SAW phase is increased
compared with the spacing in the SA phase.

For a parallel orientation of the smectic layer normal n̂ = ẑ
and the L–SA-interface normal, i.e., for a = 0 (see Fig. 3), it
turns out that the interface locations zZ and zS2

, associated
with the transition in the structural and in the orientational
order, respectively, are very close to each other (see Fig. 5). In
fact, Fig. 6 shows that for the whole temperature range
considered here, the difference zZ � zS2

o d in the two
interface positions is smaller than the smectic layer spacing
d. Hence, for a = 0 the orientational order vanishes within the
last smectic layer at the L–SA-interface. Concerning the interface
positions, Fig. 6 demonstrates that ILCs with D/R = 1.8 and
ordinary (uncharged) liquid crystals with L/R = 4 and eR/eL = 2
exhibit qualitatively the same results. Considering the L–SAW-
interface (see Fig. 7) one observes an increase in zZ � zS2

, but it
remains significantly smaller than the smectic layer spacing
d/R E 7.5. Thus, for a = 0 it turns out that the loss of orienta-
tional order coincides with the disappearance of the layer struc-
ture of the respective smectic-A phase at the interface towards
the isotropic liquid. This holds for all parameter values
studied here.

Interestingly, for a = p/2, i.e., changing the relative orienta-
tion of the smectic layer normal n̂ = x̂ and the interface normal
such that they are perpendicular to each other, leads to
qualitative changes in the interfacial properties: a periodic
structure of the interface in lateral direction x can be
observed, which is a direct consequence of the periodicity in
the bulk smectic-A phase with the smectic layer spacing d (see
Fig. 3, 8, and 9). For the L–SA-interface (see Fig. 8) one observes
considerable differences (zZ � zS2

)/R \ 2 between the interface
positions. Thus, the (nearly) parallel orientations of particles
in the SA layers persists a few particle diameters R into the
liquid phase L, unlike the case a = 0, for which the orienta-
tional order vanishes directly with the breakdown of the SA

layer structure at the interface, i.e., within the last smectic
layer. Due to the periodicity in (lateral) x-direction, in the case
a = p/2 one indeed observes a qualitative change in the
structure of the L–SAW-interface compared to the L–SA-inter-
face. While at the tails of the SAW main layers the interface also
features an orientational order which continues further into
the liquid phase L than the layer structure ((z̃Z(x) � z̃S2

(x))/
R E 2.6). For the secondary layers it is the layer structure that
persists deeper into the L phase than the orientational order
((z̃Z(x) � z̃S2

(x))/R E �3.73). The opposite behavior at the main,
respectively secondary, layers is presumably driven by the
orientational properties of the respective kinds of layers: in
the main layers the particles are well aligned with the smectic
layer normal n̂ = x̂ and therefore show an effective diameter in
the y�z-plane which is comparable to the particle diameter R.
However, in the secondary layers (here with S2(x,z) o 0) the
particles avoid orientations parallel to the x-axis, giving rise to
an considerably larger effective radius. Upon approaching the
liquid phase L, this effective radius increases for the main
layers of the SAW phase, whereas it decreases for the secondary
layers.

In Section 3.3 the asymptotic behavior of the interface
profiles has been studied. In particular, in Fig. 10 and 11 the
L–SA-interface for a = p/2 has been considered for the two ILC
systems with D/R = 0 and 1.8. For D = 0, i.e., with the charges
being localized at the center, the periodic structure of the
interface is apparent from the quantities ln|Z(x,z) � ZL| and
ln|S2(x,z) � S2,L|, showing the logarithmic deviations of the
profiles Z(x,z) and S2(x,z) from their respective liquid bulk
values ZL and S2,L (Fig. 11(a) and (b)), which can be resolved
even at far distances z/R o �20 from the L–SA-interface.
Conversely, for D/R = 1.8, i.e., the charges being fixed at the
tips, far from the interface ln|Z(x,z) � ZL| and ln|S2(x,z) � S2,L|
vary only marginally as function of the lateral coordinate x.
While for D = 0 the charges are strongly localized at the centers
of the smectic layers, thus promoting the periodic structure, for
D/R = 1.8 the charges are less localized and more distributed
along the x-direction.

The asymptotic decays of the interface profiles towards the
isotropic liquid L show an interesting and rich behavior.
We have found three distinct spatial regimes, which are
associated with the three contributions to the underlying
pair potential (see eqn (1)). Although the presence of charges
is the distinctive feature of ILCs, the (screened) electrostatic
contribution to the interaction (eqn (5)) governs the asympto-
tic decay only at intermediate distances from the interface (see
Fig. 11). In this regime, the decay length is given by the Debye
screening length, here lD/R = 5. Ultimately, it is the attractive
Gay–Berne contribution to the interaction (eqn (2)) which
dominates the outermost asymptotic behavior; for the system
studied here a considerably large decay length xGB/R E 10 is
observed, which is due to the truncated power law decay of the
GB potential. Close to the interface, the hard-core interaction,
which leads to the Parsons–Lee contribution to the DFT
expression (eqn (12)), dominates the profiles Z(x,z) and
S2(x,z). The corresponding decay length xPL/R E 1.9 is com-
parable to the particle diameter R. This is plausible, because
for the case considered here the tilt angle is a = p/2, i.e., the
smectic layer normal is perpendicular to the interface normal,
and thus the particles in the SA layers are oriented preferen-
tially perpendicular to the interface normal as well. Interest-
ingly, the crossovers between these three different regimes
occur at distances characteristic for the packing fraction Z(x,z)
and the orientational order parameter S2(x,z). While for both
types of ILCs considered in Fig. 11 all three decay lengths
xPL, xGB, and lD are apparent from ln|S2(x,z) � S2,L|, from
ln|Z(x,z) � ZL| only the decay length lD can be inferred within
the considered range z/R 4 �80. This situation is caused by
the relative magnitudes of the respective decay amplitudes:
for the packing fraction profile the decay amplitudes due to
the Gay–Berne and the hard-core interaction are too small,
compared to the corresponding amplitude due to the electro-
static interaction, to be observable.

Since the structural and orientational properties directly at
the interface position are determined by the hard-core inter-
action, i.e., the Parsons–Lee contribution bcPL (eqn (12)), to the
effective one-particle potential bc, close to the interface
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the profiles for ordinary liquid crystals (OLCs) and ILCs with
the same length-to-breadth ratio L/R are very similar. In parti-
cular, this includes the interface positions zZ and zS2

(see Fig. 6)
associated with the transition in the structural and orienta-
tional order, respectively. Nevertheless the asymptotic behavior,
as discussed above, is distinct for the different kinds of
particles (hard ellipsoids, OLCs, and ILCs) and shows a rich
phenomenology, specifically for ILCs, due to the cross-overs
between the distinct spatial regimes corresponding to the
various contributions to the pair potential. Additionally, the
bulk phase behavior is crucially affected by the type of particles,
because only for the ILCs with charges at the tips, the phase
SAW is observed.

Finally, the dependence of the structural and orientational
properties of liquid–smectic interfaces on the tilt angle a
between the interface normal and the smectic layer normal
has been discussed. For the L–SA-interface (see Fig. 13(a)),
it turns out, that the parallel orientation of the interface
normal and of the smectic layer normal is the one in thermal
equilibrium, i.e., aeq = 0. The perpendicular orientation a = p/2
is metastable. Interestingly, the increase in the interfacial
tension below a = p/2 is accompanied by an increase in the
distance zZ � zS2

, suggesting that maintaining the local orien-
tational order beyond the smectic layers towards the isotropic
liquid costs free energy. Consistently, in the case aeq = 0,
for which the orientational order vanishes directly with the
disappearance of the smectic layers, the cost of free energy for
forming the interface is lowest. For the L–SAW-interface (see
Fig. 13(b)) again the equilibrium tilt angle aeq = 0 corresponds
to the parallel orientation of the interface and smectic layer
normal. However, in this case, around a = p/2, the interfacial
tension G*(a) varies only weakly so that here the perpendicular
orientation is labile. Additional contributions to the surface
tensions might arise from elastic deformations of the director
field, i.e., spatial variations of the director n̂ := n̂(r), or
deviations from a rotational-symmetric distribution of particle
orientations around the director, i.e., f (r,x) a f (r, n̂�x). These
contributions are neglected by our approach. Elastic effects can
be considered through an explicit dependence of the free energy
functional on the director field n(r), i.e., via an elastic energy
contribution.50 Alternatively, giving up the assumption of a
rotational symmetric distribution of orientations around a par-
ticular axis (and thereby enforcing a prescribed homogeneous
director field) would also allow one to study the deformations of
the director field. However, incorporating these effects would
lead to a drastic increase of the computational effort.

Lastly, we emphasize that although here we have focused
solely on free interfaces between coexisting bulk phases of ILCs,
the DFT framework in Section 2.2 can be extended to inhomo-
geneous systems of ILCs exposed, e.g., to external fields or
ILC–electrolytes in contact with an electrode.
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Appendix A Implications of the presence
of odd Fourier modes in �q(r,x)

In this appendix the implications are discussed of considering
the occurrence of odd Fourier modes up to second-order ones
within the projected density �r(r,x). Including these terms,
�r(r,x) takes the following modified form:

�rðr;x; ½r�Þ ¼ 1

4p
Q0ðr; ½r�Þ þQ1ðr; ½r�Þ cos 2pðr � n̂Þ=dð Þ½

þQ2ðr; ½r�Þ cos 4pðr � n̂Þ=dð Þ

þ 5P2ðx � n̂Þ Q3ðr; ½r�Þð

þQ4ðr; ½r�Þ cos 2pðr � n̂Þ=dð Þ

þQ5ðr; ½r�Þ cos 4pðr � n̂Þ=dð ÞÞ

þQ6ðr; ½r�Þ sin 2pðr � n̂Þ=dð Þ

þQ7ðr; ½r�Þ sin 4pðr � n̂Þ=dð Þ

þ 5P2ðx � n̂Þ Q8ðr; ½r�Þ sin 2pðr � n̂Þ=dð Þð

þQ9ðr; ½r�Þ sin 4pðr � n̂Þ=dð ÞÞ�:

(27)

This expression differs from eqn (11) by the (odd Fourier-)
terms corresponding to the coefficients Qi(r) with i A [6,. . .,9]:

Qiðr; ½r�Þ ¼
1

Vd

ð
V

d3r0
ð
S

d2o0rðr0;o0Þwiðr; r0;o0Þ; (28)

where

w6 ¼ 2Tðr� r0Þ sin 2pðr0 � n̂Þ=dð Þ;

w7 ¼ 2Tðr� r0Þ sin 4pðr0 � n̂Þ=dð Þ;

w8 ¼ 2Tðr� r0ÞP2ðo0 � n̂Þ sin 2pðr0 � n̂Þ=dð Þ;

w9 ¼ 2Tðr� r0ÞP2ðo0 � n̂Þ sin 4pðr0 � n̂Þ=dð Þ:

Fig. 15 Same as Fig. 14. Here, the L–SAW interface profiles Z(x,z) (eqn (20))
and S2(x,z) (eqn (21)) are calculated for a = p/3 and T* = 0.9 by using the
projected density containing odd Fourier-modes up to second order. The
profiles are qualitatively equivalent to those obtained without using the
odd modes in the projected density �r(r,x) (see eqn (11)). In agreement with
the results shown in Fig. 14 one observes an orientational order (within the
main layers of the SAW phase) persisting up to a few particle diameter R into
the liquid phase ((zZ � zS2

)/R = 0.24 � (�2.23) = 2.47).
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The coefficients Qi with i = 6,. . .,9 vanish for the considered bulk
phases, because smectic-A phases exhibit mirror-symmetry with
respect to the layer center. In general, at interfaces they do not
vanish. In order to compare the corresponding interface profiles

ZðrÞ ¼ p
6
LR2

Ð
S
d2orðr;xÞ and S2ðrÞ ¼

Ð
S
d2of ðr;xÞP2ðx � n̂Þ

(see eqn (20) and (21), respectively; S is the full solid angle) obtained
from solving the Euler–Lagrange equation, i.e., eqn (8), by using the
projected density without the odd terms given by eqn (11) and the
projected density containing these terms, i.e., by using eqn (28), the
case a = p/3 (see eqn (15)) and the L–SAW-interface shown in Fig. 14
are considered again. In Fig. 15 the two respective profiles are shown
by using eqn (27): for both Z(r) and S2(r) there are no qualitative
differences compared with Fig. 14. The interface positions zZ/RE0.24
and zS2

/R E �2.23 are shifted in z-direction compared to the results
shown in Fig. 14. But their distance (zZ� zS2

)/R E 2.47 is comparable
to the previous results ((zZ � zS2

)/R E 2.96 in Fig. 14). Hence, in
qualitative agreement with the results shown in Fig. 14 one observes a
persisting orientational order (within the main layers of the SAW

phase) up to a few particle diameters R into the liquid phase.
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