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Magnetically-actuated artificial cilium: a simple
theoretical model†

Fanlong Meng, ab Daiki Matsunaga,ac Julia M. Yeomansa and
Ramin Golestanian *ab

We propose a theoretical model for a magnetically-actuated artificial cilium in a fluid environment and

investigate its dynamical behaviour, using both analytical calculations and numerical simulations. The

cilium consists of a spherical soft magnet, a spherical hard magnet, and an elastic spring that connects

the two magnetic components. Under a rotating magnetic field, the cilium exhibits a transition from

phase-locking at low frequencies to phase-slipping at higher frequencies. We study the dynamics of the

magnetic cilium in the vicinity of a wall by incorporating its hydrodynamic influence, and examine the

efficiency of the actuated cilium in pumping viscous fluids. This cilium model can be helpful in a variety

of applications such as transport and mixing of viscous solutions at small scales and fabricating

microswimmers.

1 Introduction

Motile cilia, frequently observed on the surfaces of micro-
organisms1,2 and in mammalian tubes,3,4 constitute an important
class of bio-machines at the micro/nano-scales. Each biological
cilium usually consists of bio-motors as the actuator and an elastic
axoneme, and cilia can achieve various functions by beating, for
example, liquid transportation such as mucus removal in animal
tracheas and self-propulsion of microorganisms.

Corresponding to these natural examples, fabrication of
artificial cilia,5–10 especially magnetic ones, has received increasing
attention in the past ten years. They have been applied for fluid
transport,11–16 as flagella of microswimmers,17–20 as solution
stirrers,21,22 or as micromechanical sensors.23 Magnetic cilia are
always actuated by an external magnetic field, and their filaments
can be fabricated in various forms. Currently in experiments,
there are two popular filament designs: superparamagnetic
chained beads or rods,5,11–15,17,18,23,24 and ferromagnetic rods
or plates.16,19–22,25 These two types of filaments present different
challenges: for example, the complexity in the magnetic dipole–
dipole interaction in superparamagnetic chained beads or rods
renders analytical predictions and precise control difficult;
ferromagnetic rods or plates are usually fabricated with rigid
materials, which are less tunable than natural cilia, which
consist of elastic filaments. Most of the existing theoretical
analyses of the above-mentioned experiments with magnetic
artificial cilia are numerical6,11,26 or phenomenological,13,24 and
a simple theoretical model that incorporates the key ingredients
and provides an intuitive understanding of how a magnetic
cilium would behave under an external magnetic field is still
lacking.

In the beating cycle of a cilium, there is usually a power
stroke for generating flow and a recovery stroke bringing back
the cilium to its starting configuration. As a result, the cilium
moves in a quasi-circular trajectory, rather than performing a
1D oscillation. This acts as an essential element for pumping
fluids, and by calculating the flow field induced by the force
acting on the cilium in the vicinity of a substrate, one can study
how the beating pattern determines the pump performance of a
cilium.27–29 Moreover, cilia of different microorganisms beat
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with different patterns, and it is of interest to determine how
this influences their swimming trajectories.30–33 However,
the complexity in the irregular trajectories of natural cilia
makes them difficult to replicate in artificial fabrications,
and the absence of external control renders limitation in
applications.

A microswimmer can be used as a cilium by pinning its head
or tail. Inspired by this idea, and a magnetic microswimmer
proposed by Ogrin et al.,34,35 we propose a model of a magnetic
cilium based on the microswimmer model. This consists of a
soft magnet sphere (with a magnetic moment of fixed magnitude
and a direction following the magnetic field), a hard magnet
sphere (with a magnetic moment of both fixed amplitude and
direction, i.e. a permanent magnet in its body frame), and a
connecting elastic spring. Very importantly, this simple
model is more amenable to analytical treatment than other
cilium models. Besides the fact that the motion of the cilium
can be controlled by an external magnetic field, the existence
of the magnetic dipole–dipole interaction between the
hard and the soft magnets, and the elastic spring can make
it promising to tune and optimize the pump performance of
such a cilium.

Therefore, here we will study how such a system consisting
of a soft magnet, a hard magnet and an elastic spring connecting
the two spheres (shortened as a ‘soft-hard’ magnetic cilium)
responds to an external magnetic field. We will consider its
kinetic modes without a wall and its pump performance for
fluid transport when it is attached to a wall.

2 Dynamics of the simple
magnetic cilium

The model cilium is shown in Fig. 1(a). It consists of a soft
magnet bead of radius rs, a hard magnet bead of radius rh, and
an elastic spring of equilibrium length c0 and spring constant

k; the elastic spring connects the two magnetic spheres. The
position of the soft magnet is fixed (although it is free to rotate),
and rs = 0 for simplicity. The magnetization of the soft magnet
relaxes to the equilibrium orientation as defined by the external
magnetic field on a time scale that is considerably shorter than
the other relevant time scales in the system. For simplicity, we
will only consider the stretch and the compression of the elastic
spring, rather than other deformation modes such as bending
or twisting.

Therefore, we assume that the magnetic moment of the soft
magnet, denoted as ms, has a fixed ms, and its direction follows
the external magnetic field (similar to paramagnetic materials).
The hard magnet is treated as a permanent ferromagnet,
and thus its magnetic moment, mh, has fixed amplitude and
direction in its body frame. In an external magnetic field B
whose direction does not match that of mh, then there will be a
magnetic torque acting on the hard magnet. In this case, the
cilium will rotate with the magnetic field. Note that there is no
torque acting on the soft magnet. Such magnetism-elasticity
coupling is also applied in many swimmer designs.36–39

Consider an actuation protocol in the form of an external
magnetic field B that is rotating counterclockwise in the y–z
plane [shown in Fig. 1(a)], with angular velocity o and ampli-
tude B, i.e., B = B(0,cosfb,sinfb) where fb(t) = ot. We set the
origin to be the location of the pinned point (i.e. the centre of
the soft magnet sphere). Denoting the angle between the main
axis of the cilium and the y axis as fc(t), and the length of the
spring as c(t), the location of the hard magnet sphere is given as
(c + rh)(0,cosfc,sinfc). We define the radial unit vector along
the direction of the cilium, er = (0,cosfc,sinfc), and the
tangential unit vector, ef = (0,�sinfc,cosfc), in the perpendicular
direction.

Let us assume that there is a fixed angle, D0, between mh and
er, i.e., the magnetic moment of the hard magnet sphere is:
mh = mh(0,cos(fc + D0),sin(fc + D0)). The magnetic moment of
the soft magnet sphere is ms = ms(0,cosfb,sinfb), as its direction
always follows that of the magnetic field. We assume that
the magnetic field induced by the hard magnet sphere at the
location of the soft magnet sphere is much weaker than
the external magnetic field, namely m0mh/c0

3 { B, where m0 is
the magnetic permeability of a vacuum. By assuming the magnetic
moments are point-like and located at the centre of each sphere
for simplicity, we can write the following expression for the energy
of the magnetic cilium, taking into account the elastic and
magnetic contributions

E ¼ k

2
‘� ‘0ð Þ2�mh �B �

m0
4p ‘þ rhð Þ3

3 mh � erð Þ ms � erð ÞÞ �mh �ms½ �;

(1)

which can be expressed as

E ¼ k

2
‘� ‘0ð Þ2�mh B cosðD� D0Þ þ

m0ms

4p ‘þ rhð Þ3

"

� 2 cosD0 cosD� sinD0 sinDð Þ�;

(2)
Fig. 1 (a) A magnetic cilium consisting of a spherical soft magnet (red), a
spherical hard magnet (grey) and a bridging elastic spring, and its motion
under a rotating magnetic field; (b) a cilia carpet for fluid transport; and (c)
cilia applied as solution stirrers.
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where D = fb � fc is defined as the phase difference between
the magnetic field and the cilium. In eqn (2), the first term
represents the elastic energy of the spring, the second term
represents the magnetic energy due to the external magnetic
field, and the third term represents the magnetic dipole–dipole
interaction between the soft and the hard magnet spheres. The
energy of the cilium can be rescaled and expressed in terms of
two dimensionless parameters, K = kc0

2/(mhB) and G = m0ms/
(4pc0

3B), as

E

mhB
¼ K

2

‘� ‘0
‘0

� �2

� cos D� D0ð Þ

� G‘03

‘þ rhð Þ3
2 cosD0 cosD� sinD0 sinDð Þ:

(3)

Here, K compares the elastic energy of the cilium and the
magnetic energy induced by the external magnetic field, and
G measures the relative significance of the magnetic dipole–
dipole interaction and the interaction with the external magnetic
field. We note that the model contains only two degrees of
freedom, and this makes it amenable to analytical treatments.
In comparison, other models for artificial cilia in the form of
extensible11 or non-extensible13,24 chains of super-paramagnetic
beads are relatively more complex and do not lend themselves to
such comprehensive analyses.

Using the energy expression, we can calculate the forces
acting on the hard magnet along the radial and the tangential
directions, as

F‘ ¼ �
@E

@‘
; (4)

Ff ¼ �
1

‘þ rhð Þ
@E

@fc

: (5)

For a magnetic cilium that is actuated in a fluid of viscosity Z,
we can invoke the over-damped limit (since the Reynolds
number is zero) and use the above forces to write the governing
dynamical equations, by balancing the forces with the corres-
ponding viscous friction along the radial and tangential directions.
This yields

_‘ ¼ F‘=z‘; (6)

(c + rh) _fc = Ff/zf, (7)

where

zc = 6pZrh, (8)

zf = 2pZrh[3 + 4rh
2/(c + rh)2]. (9)

Note that for zf, the rotation of the hard sphere is taken into
consideration in addition to its translational motion along
the tangent direction. We will not consider the hydrodynamic
interaction between the elastic spring and the surrounding
fluid for simplicity. Such an approximation is common in modelling
microfluidic devices, such as, for example, micro-swimmers40

and cilia.27

The dynamical equations in terms of the cilium length c,
and the phase difference between the magnetic field and the
cilium, D, are given as follows

_‘ ¼ �1
t

K ‘� ‘0ð Þ þ 3G‘05

‘þ rhð Þ4
2 cosD0 cosD� sinD0 sinDð Þ

" #
;

_D ¼ o� 3‘0
2

t 3 ‘þ rhð Þ2þ4rh2
h i

� sin D� D0ð Þ þ G‘03

‘þ rhð Þ3
2 cosD0 sinDþ sinD0 cosDð Þ

" #
;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(10)

where t = 6pZc0
2rh/(mhB) is a characteristic relaxation time

scale. The dynamics of the magnetic cilium can now be studied
using the above equations.

We now discuss the different dynamical modes that the
cilium can exhibit, and how the transition between them can be
tuned using the frequency of the rotating magnetic field. In
Fig. 2, the dynamical trajectories of the cilium are shown
for three different values of o (see also videos in the ESI,†
Movies S1 and S2). We have chosen D0 = 0.0 (i.e. the direction of
the magnetic moment of the hard magnet is along the main
axis of the cilium).

If the frequency of the rotating magnetic field is relatively
low (see the black and red curves in Fig. 2), the phase difference
D and the spring length c will go through an initial transient
regime and then relax to equilibrium values, which can be

obtained by solving _‘ ¼ 0 and _D ¼ 0. In the stationary state, the
cilium rotates with the magnetic field with a fixed phase
difference D and a fixed length c. This is the phase-locked
mode. In the two examples given in Fig. 2, where ot = 0.1 and
0.2, the cilium follows the magnetic field with a small phase
lag. Moreover, in both cases, the magnetic dipole–dipole inter-
action between the soft and the hard magnet spheres is
predominantly attractive, leading to a net contraction of the
length of the spring.

The behaviour of the cilium changes if the frequency of the
magnetic field is above a threshold value oc, which depends on

Fig. 2 Evolution of (a) the phase difference between the magnetic field
and the cilium D and (b) the length of the spring c with time, under an
external magnetic field with angular velocities ot = 0.1 (black), 0.2 (red),
and 0.5 (blue). Other parameters are K = 1.0, G = 0.1, rh/c0 = 0.5, and
D0 = 0.0, and initial conditions correspond to D = 0.0 and c/c0 = 1.0.
Videos are shown in the ESI† as Movies_S1 and S2.
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the parameters of the system as will be discussed later. As
shown in Fig. 2, the cilium cannot relax to a stationary state
anymore and will continue to undergo a cyclic motion that is
out of synchrony with respect to the external magnetic field.
In particular, there will be a continuous phase slip that
will introduce alternating cycles of phase-lag and phase-lead
between the cilium and the external magnetic field. The length
of the spring c and D will also oscillate around a reference
value. In this mode, the trajectory of the cilium exhibits a
periodic ‘saw-like’ pattern.

To help understand the transition, we can look at the large K
limit, in which the deformation of the spring can be neglected
because c/c0 = 1 + O(1/K). Freezing the elongation degree of
freedom (by setting c = c0) reduces the problem into a single-
variable dynamical system, which takes the form

_D ¼ o�
3‘0

2 1þ 2G‘03
.
‘0 þ rhð Þ3

h i
t 3 ‘0 þ rhð Þ2þ4rh2
h i sinD; (11)

for the simple case where D0 = 0. It is now manifest that
eqn (11) can only admit a stationary solution for D if the
following criterion is satisfied

o � oc ¼
3‘0

2 1þ 2G‘03
.
‘0 þ rhð Þ3

h i
t 3 ‘0 þ rhð Þ2þ4rh2
h i ; (12)

corresponding to phase locking between the cilium and the

external magnetic field. When o 4 oc, eqn (11) shows that _D is
always strictly positive, albeit oscillating between a maximum
and a minimum value, and therefore there will be a continuous
phase slip between the cilium and the magnetic field. One can
observe from eqn (12) that oc increases linearly with G in the
limit of large K, which suggests that phase locking is facilitated
by the magnetic dipole–dipole interaction. The dependence on
G is more complex for finite values of D0.

For finite values of K, the transition frequency oc has similar
generic dependence on G and D0. In Fig. 3, a 3D phase diagram
in the space of (G, D0, ot) is shown. The phase diagram
is obtained by solving eqn (10) numerically. The transition
frequency oc is found to be a periodic function of D0 with

period p because of the symmetry in the magnetic dipole–
dipole interaction (eqn (10)), and its oscillating amplitude
increases with increasing G. The dependence of the transition
frequency on these parameters provides helpful guidelines for
the design and fabrication of magnetic cilia for specific appli-
cations. Such a mode transition was experimentally observed by
Frka-Petesic et al. for a system of a paramagnetic rod driven by
a rotating magnetic field,41 and also in other magnetic systems,
such as nano- and micro-swimmers composed of a magnetic
spherical head and a non-magnetic helical tail.42,43

The behaviour of the soft-hard magnetic cilium in the
stationary state can be explored in more detail by analyzing
the fixed point structure of eqn (10); the results are shown in
Fig. 4. We observe that for G = 0, the fixed point corresponds to
c = c0 and a fixed-point value for D that is independent of the
value of D0 while depending on rh and ot; for rh/c0 = 0.5, and
ot = 0.1 we obtain D E D0 + 0.048 � 2p. In other words, in this
case D � D0 and c in the stationary state are independent of D0.
For non-vanishing G, we find that in the stationary state D � D0

and the length of the spring c depend on D0 as shown in Fig. 4(a)
and (b). Control over the stationary state values for these
quantities will provide the ability to optimize the performance
of such an actuated magnetic cilium in practical applications.
One such application, which we will discuss later, is the transport
of fluid in channels.

3 3-dimensional motion

It has been shown that a magnetic cilium can move in either a
locked-in mode or a saw-like mode if its motion is constrained
in 2D space. This becomes different when the motion of the
cilium is generalized to 3D [sketched in Fig. 5(a)]. For simpli-
city, we concentrate on the case where the magnetic moment
lies in the same direction as the cilium, i.e., D0 = 0. Under a
magnetic field B = B(sin ybcosfb,sin ybsinfb,cos yb), the energy
of the cilium with the hard magnet located at (l + rh) �
(sin yccosfc,sin ycsinfc,cos yc) can be expressed as,

E

mhB
¼ K

2

‘� ‘0
‘0

� �2

� 1þ 2G‘03

‘þ rhð Þ3

" #

� sin yb sin yc cos fb � fcð Þ þ cos yb cos yc½ �:

(13)
Fig. 3 Dynamic modes of the cilium as a function of (G, D0, ot). Other
parameters are K = 1.0 and rh/c0 = 0.5.

Fig. 4 Dependence of (a) the phase difference between the magnetic
field and the cilium, D, and (b) the spring length c, on the orientation of the
hard magnet moment D0 in the stationary state for different values of G.
Other parameters are K = 1.0, rh/c0 = 0.5, and ot = 0.1.
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Therefore, the forces acting on the hard magnet in the
radial, zenith and azimuthal direction of the cilium are,

f‘ ¼ �
@E

@‘
¼ �mhB� K

‘� ‘0
‘02

� ��

þ 6G‘03

‘þ rhð Þ4
sin yb sin yc cosðfb � fcÞ þ cos yb cos yc½ �

)
;

fy ¼ �
1

‘þ rh

@E

@yc
¼ mhB

ð‘þ rhÞ

� 1þ 2G‘03

ð‘þ rhÞ3

� �
sin yb cos yc cosðfb � fcÞ � cos yb sin yc½ �;

ff ¼ �
1

ð‘þ rhÞ sin yc
@E

@fc

¼ mhB

ð‘þ rhÞ
1þ 2G‘03

‘þ rhð Þ3

" #

� sin yb sin fb � fcð Þ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(14)

The time evolution of the spring length, c, and the orientational
angles of the cilium, (yc,fc), can be obtained by solving

_‘ ¼ f‘

z‘
; _yc ¼

1

‘

fy

zf
;

and _fb � _fc ¼ o� 1

‘ sin yc

ff

zf
;

(15)

respectively.
Under a magnetic field with fixed yb and increasing azimuthal

angle fb = ot, two cases are discussed: (i) with the constraint that
the polar angle of the cilium is kept equal to that of the magnetic
field, i.e., yc = yb, and (ii) without the constraint on the polar
angle of the cilium, i.e., yc can change flexibly with time.

As discussed above, for a magnetic cilium moving in 2D
space, the cilium will rotate with the magnetic field with a finite
phase lag, when the frequency of the rotating magnetic field is
small. A similar phenomenon is also observed in the 3D case.

For the case (i) of yc = yb = p/3, if the frequency of the
magnetic field is low, ot = 0.1, the azimuthal angle of the

cilium fc increases linearly with time, t, i.e., the cilium moves
in a locked-in mode [black dashed line in Fig. 5(b)]. If, however,
the frequency of the magnetic field is high, ot = 0.5, fc

increases and decreases alternately with time, i.e., it moves in
a saw-like mode [black solid line in Fig. 5(b)].

However, the cilium moves differently in case (ii), where yc is not
necessarily equal to yb. Under a magnetic field with either low
frequency or high frequency, the cilium always moves in a locked-in
mode [red lines in Fig. 5(b)]. The polar angle of the cilium in the
stationary state ysta

c is almost the same as that of the magnetic field
if the frequency of the magnetic field is low, for example if ot = 0.1,
then ysta

c = 1.04 C yb = p/3 (o1% difference between ysta
c and yb). If

the frequency of the magnetic field is high, then ysta
c is smaller

(larger) than the polar angle of the magnetic field for yb o p/2
(yb 4 p/2), for example in Fig. 5(b) if ot = 0.5, then ysta

c = 0.76 (28%
difference between ysta

c and yb). Corresponding videos showing the
motion of the cilium can be seen in the ESI† (Movies_S3–S6). As
shown in Fig. 5(c), the cilium tends to move towards the north
(south) pole of the sphere if the polar angle of the magnetic field is
smaller (larger) than p/2 in case (ii). Note that there is a singularity
point in Fig. 5(c), located at yb = p/2, where the cilium can move in a
saw-like mode under a magnetic field with high frequency. How-
ever, the fixed point is not stable, and the cilium can move towards
the north (south) pole if there is any perturbation in yc. So we can
just treat the cilium as always moving in a locked-in mode in 3D
space if yc is not constrained.

In ref. 24, Coq et al. studied the dynamics of chained
superparamagnetic beads in 3-dimensional space. For yc not
constrained (case (ii) in our work), they reported two dynamical
regimes. When the polar angle of the rotating magnetic field
was smaller than a critical value (magic angle), yb o 551, and
the frequency was low, then the polar angle of the cilium was
almost the same as that of the magnetic field and the polar
angle of the cilium decreased with increasing frequency of the
magnetic field, matching our results. However, for yb 4 551,
if the frequency of the magnetic field was high, they observed a
saw-like motion of the cilium with both oscillating yc and fc, which
differs from our cilium model. This is not surprising because of the
different construction of the cilium considered in ref. 24.

Fig. 5 (a) Sketch of the 3D motion of a soft-hard magnet cilium under an external magnetic field. (b) Evolution of the azimuthal angle of a cilium in case
(i) (coloured black) and case (ii) (coloured red), under a rotating magnetic field of fixed polar angle yb = p/3 and angular velocity ot = 0.1 (dashed) or ot =
0.5 (solid); (c) relationship between yc and yb in case (ii), under a rotating magnetic field with various angular velocities. Other parameters used are K = 1.0,
G = 0.1, D0 = 0.0, and rh/c0 = 0.5.
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4 Dynamics of the magnetic cilium in
the vicinity of a wall

In any practical experimental setup, cilia will be placed near
boundaries. For example, in biological systems, cilia are always
attached to substrates, when performing their mechanical
function either for swimming or fluid transport. The presence
of a wall breaks the symmetry, and will allow the dynamical
system to experience an additional periodic influence through
hydrodynamic effects. Therefore, it will be important to examine
the hydrodynamic effect of the boundary on the dynamics and
performance of our model cilium.

In this work, we adopt a no-slip boundary condition at the
wall. Suppose that there is a wall in the z = 0 plane, and the soft
magnet is pinned at a distance h0 from the wall. For simplicity,
we assume that the motion of the cilium is constrained within
the y–z plane. The height of the hard magnet, which can be
described in terms of the dynamical variables as h(t) = h0 +
c(t)sinfc(t), controls the hydrodynamic interaction of the
cilium with the wall. Within our formulation, the dynamical
equations will be modified to (see the ESI†)

_‘ ¼ 1� 9

16

rh 1þ sinfc
2

� �
h0 þ ‘ sinfc

� �� �
F‘

z‘

� �

� 9

16

rh sinfc cosfc

h0 þ ‘ sinfc

� �
Ff

zf

� �
;

(16)

ð‘þ rhÞ _fc ¼�
9

16

rh sinfc cosfc

h0 þ ‘ sinfc

� �
F‘

zf

� �

þ 1� 9

16

rh 1þ cosfc
2

� �
h0 þ ‘ sinfc

� �
1

1þ 4rh
2

3ð‘þ rhÞ2

2
6664

3
7775 Ff

zf

� �

(17)

due to the presence of the wall, to leading order in rh/h. Note
that the presence of the wall does not affect the energy of the
magnetic cilium, and consequently the forces.

In Fig. 6, examples of how the cilium moves under a rotating
magnetic field are provided, for various values of the height of

the pinned soft magnet h0. As discussed in the previous section,
both the spring length, c, and the phase difference between the
cilium and the magnetic field, D, are constants in the stationary
states for the case without the wall. However, the presence of the
wall introduces oscillations in both c and D as shown in Fig. 6.
We observe that the amplitudes of the oscillations increase if
the cilium is pinned closer to the wall, as the symmetry breaking
friction terms in eqn (16) and (17) become more pronounced.

5 Fluid transport by the magnetic cilium

Cilia can be used in microfluidic applications, as the actuation
mechanism can lead to a net transfer of force to the fluid, and
hence, fluid transport. Here, we discuss the performance of our
model cilium as a pump. A description of the problem that is
consistent with the previous sections can be achieved by
treating the hard magnet as a point force and evaluating the
hydrodynamic flow field everywhere in the space bound by the
surface using the Blake tensor.44

Within this description, a point force F acting on the
hard magnet at r = (x,y,z) will produce a velocity field at any
other point r0 = (X,Y,Z) that depends linearly on the force as

vðr0Þ ¼ 1

8pZ
Gðr0; rÞ � F, via the Blake tensor G(r0;r) that includes

information about an image force at R = (x,y,�z). The explicit
form of the Blake tensor is as follows44

Gijðr0; rÞ ¼
dij
jr0 � rj þ

ðr0i � riÞðr0 j � rjÞ
jr0 � rj3

� dij
jr0 � Rj �

ðr0 i � RiÞðr0 j � RjÞ
jr0 � Rj3

þ 2zðdjadak � djzdzkÞ �
@

@ðr0k � RkÞ

� zðr0i � RiÞ
jr0 � Rj3 �

diz
jr0 � Rj

�
� ðr

0
i � RiÞðr0z � RzÞ
jr0 � Rj3

(18)

where i,j,k = x,y,z and a = x,y. Eqn (18) includes contributions
from Stokeslets of the original point force and the image point
force, a stresslet and a source-dipole.

Fig. 6 Time evolution of (a) the spring length and (b) the phase difference under an external magnetic field in cases with different h0. (c) An example of
the flow field induced by the cilium. Parameters are K = 1.0, G = 0.1, D0 = 0.0, rh/c0 = 0.5, and ot = 0.1.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
M

ar
ch

 2
01

9.
 D

ow
nl

oa
de

d 
on

 7
/3

1/
20

24
 9

:2
6:

43
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8sm02561d


3870 | Soft Matter, 2019, 15, 3864--3871 This journal is©The Royal Society of Chemistry 2019

We use the volume flow rate27,45,46 in the y direction, which
measures the flux through a half-plane perpendicular to the
direction of pumping, to characterize the performance of a
cilium as a pump at time t,

QðtÞ ¼ 1

pZ
zðtÞFyðtÞ: (19)

By inserting Fy = Fc cosfc � Ff sinfc and assuming the cilia are
planted with surface density r, a dimensionless pump performance
parameter S can be obtained by integrating the volume flow rate
Q(t) over a period of the actuating magnetic field 2p/o per area,
i.e.,

S ¼ r
Z‘0

ð2p=o
0

dtzðtÞ F‘ cosfc � Ff sinfc

	 

: (20)

We have studied the dependence of the pump performance on
the relevant parameters; the results are shown in Fig. 7. One can
multiply S by 2po to obtain the pumping performance of the
cilium per unit time.

The pumping performance of such a magnetic cilium can be
controlled by changing D0 and G; see Fig. 7(a). At low frequencies
the best pump performance is obtained when D0 - p/2; in this case
the length of the cilium is at its maximum due to the predominantly
repulsive magnetic dipole–dipole interaction between the soft and
the hard magnets (the two magnetic moments are perpendicular to
the direction of the spring), and the tangential velocity of the hard
magnet is also at its maximum. Conversely, the weakest pump
performance is obtained when D0 - 0, because both the tangential
velocity and the length of the cilium are at their minimum values
(due to the attractive dipole–dipole interaction). When the frequency
of the magnetic field o is finite but smaller than the threshold oc

the cilium will follow the magnetic field with a finite phase
difference, and the system will exhibit optimal pumping at a given
value of D0.

When the system is phase-locked at low frequencies, the
performance increases with the frequency up to the value of oc,
and then exhibits a dramatic drop just above this threshold, as
shown in Fig. 7(b). This is a manifestation of the transition
between phase locking and phase slip. The performance of the
pump will thus be affected very strongly for frequencies near
the threshold value if the value of oc is modified due to changes

in G and D0. Therefore, the magnetic interactions between the
spheres and the elastic spring provide additional possibilities
for controlling the pumping performance of our model cilium.

6 Conclusion

We propose a model magnetic artificial cilium, consisting of two
magnetic spheres, one a soft magnet and one a hard magnet,
connected by a spring. The simplicity of the model makes it
amenable to a thorough analysis and the possibility of strong
control as a function of the parameters of the system. When
actuated by a rotating magnetic field, the cilium exhibits two
distinct phases with a sharp tunable transition between them.
The existence of a wall breaks the symmetry and induces
additional oscillations in the length of the cilium and its
orientation. The performance of the actuated cilium as a micro-
fluidic pump is also investigated. The model can be generalized
to include intrinsic anisotropy by using ellipsoidal colloids. Such
a simple model of magnetically actuated cilia can serve as a
promising starting point for engineering complex emergent
properties in arrays of cilia, and help to understand their collective
behaviour upon hydrodynamic coupling.26,27,47–50
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