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Self-assembly of soft matter, such as droplets or colloids, has become a promising scheme to engineer
novel materials, model living matter, and explore non-equilibrium statistical mechanics. In this article,
we present detailed numerical simulations of few non-Brownian droplets in various flow conditions,
specifically, focusing on their self-assembly within a short distance in a three-dimensional (3D)
microfluidic channel, cf. [Shen et al, Adv. Sci., 2016, 3(6), 1600012]. Contrary to quasi two-dimensional
(g2D) systems, where dipolar interaction is the key mechanism for droplet rearrangement, droplets in 3D
confinement produce much less disturbance to the underlying flow, thus experiencing weaker dipolar
interactions. Using confined simple shear and Poiseuille flows as reference flows, we show that the
droplet dynamics is mostly affected by the shear-induced cross-stream migration, which favors chain
structures if the droplets are under an attractive depletion force. For more compact clusters, such as
three droplets in a triangular shape, our results suggest that an inhomogeneous cross-sectional inflow
profile is further required. Overall, the accelerated self-assembly of a small-size droplet cluster results
from the combined effects of strong depletion forces, confinement-mediated shear alignments, and
fine-tuned inflow conditions. The deterministic nature of the flow-assisted self-assembly implies the
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possibility of large throughputs, though calibration of all different effects to directly produce large

rsc.li/soft-matter-journal droplet crystals is generally difficult.
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1 Introduction

Recent advances in colloidal science have generated a growing
interest in the fabrication of functional materials, especially
those possessing photonic band gaps.'™ Colloids - particles or
droplets of (sub-)micron scale - are manipulated with high
precision to self-organize into controlled patterns, which then
form a library of basic building blocks for more complex
structures.® Conceivably, such direct assembly is also the most
efficient mechanism for material synthesis. Colloidal self-
assembly has thus become a promising scheme to engineer
novel materials, mimicking the machinery of nature.”
Currently, there are many strategies to synthesize colloidal
building blocks, e.g. creating a short-range depletion potential
in a microwell,® exploiting shape/surface anisotropy of the
colloids,®® using patterned substrates as templates,'® or even
jamming droplets with a micro-mixer."* Among these, flow-assisted
self-assembly seems especially appealing, since the microfluidic
droplets are driven by an external flow rather than Brownian
motions, reducing the range of assembly time from days down
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to seconds (cf the experiment of McMullen et al'?

example). With the potential of being optimized and applied
in parallel, microfluidics appears to be the fastest pathway
towards photonic material generation.

Following this approach, Shen et al.” recently demonstrated
the generation and self-assembly of droplet strings into a rich
variety of (non-)compact structures, including chains, triangles,
diamonds, crosses, etc. in a simple microfluidic device (see
Fig. 1). Unlike most previous studies,"**® where droplets under
strong confinement interact via dipolar flows,'*° these droplets
are smaller than the smallest dimension of the microfluidic
channel. Specifically, the droplets are tens to hundreds microns
in diameter, while the channel height is about three times larger.
As a consequence, typical quasi two-dimensional (q2D) arguments
do not apply, and the dynamics is fully three-dimensional (3D).
In the latter case, the complete Navier-Stokes (or Stokes) equations
have to be solved to obtain a correct physical understanding of the
system,# wherein prior simulations mainly focus on the deforma-
tion and migration of a single drop, or an evenly spaced array
of drops.”*?* Interestingly, assuming a tunable far-field dipolar
interaction, Shen et al.’ could however model the droplet motions
up to a “semiquantitative” level, reproducing the sophisticated

as an

# A notable exception is the dynamics of two droplets in unbounded linear flows
solved analytically by Batchelor and Green.*!
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Fig. 1 (a) Photo of a microfluidic channel placed above a desktop micro-
scope. (b) Schematic of the channel geometry and generation of the
droplet clusters. The main channel has a typical dimension of (50 um x
600 pm x 5000 pm) in height, width, and length; hence, it can be
considered as a Hele-Shaw cell. (c) Bottom view of the droplet self-
assembly observed from the microscope. Pictures courtesy of Dr Joshua
Ricouvier. For more details, see Shen et al.®

self-assembly observed in experiments. This apparent contradiction
motivates us to pursue a detailed numerical study of the relatively
fast droplet self-assembly in order to investigate the interactions in
their microfluidic channel.

In the following, we first present a numerical methodology for the
dynamics of two viscous fluids, including a hydrodynamic model for
the near-field depletion force, a localized attractive force between
suspending droplets. Applying this methodology, we then show
results of extensive simulations of two to ten droplets in quiescent,
shear-, and pressure-driven channel flows, each of which isolating an
individual effect contributing to the self-assembly. Here, the focus is
on the clustering and droplet interactions within a short distance
from their initial release rather than the production of the droplets,
which has been studied previously.>® Our aim is to elucidate the
physical picture of the hydrodynamic interactions, potentially
improving the design of more efficient microfluidic systems.

2 Models and methods

2.1 Hydrodynamic model
The dynamics of two immiscible, Newtonian fluids in incom-
pressible flows is governed by the Navier-Stokes equations

(1a)
ou

! B ' T 8
E—Q—u-vll*_pRe( Vp+ V- [w(Vu+ Vu )})+Fr, (1b)

i

Vu=0,

where u, p, g, p; and u; denote the non-dimensional velocity,
pressure, unit gravitational vector, density, and dynamic visc-
osity, respectively. Eqn (2) is written for each fluid component, i
(= 1 for the carrier fluid, 2 for the droplet), requiring a pressure
boundary condition across the fluid interface

K

PP = (2)

with x being the mean curvature (the contribution due to the
viscosity difference is neglected assuming matching viscosity®®).
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So far, we have introduced three non-dimensional numbers:
Re, Ca, and Fr, denoting the Reynolds, Capillary, and Froude
numbers, separately. Choosing fluid 1 as the reference phase,
they are defined as

where U, L, p4, fi1, 6, and ¢ denote the reference dimensional
velocity, length, density, dynamic viscosity, surface tension,
and gravitational acceleration. Following the experiments in
Shen et al.,” typical values of the reference velocity and length
are U ~ 100 um s " and [ ~ 100 um, leading to Re ~ 10~
Ca ~ 107°, and Fr ~ 107 for oil-water systems. Therefore,
inertial (but not gravitational) effects are negligible and the
droplets shall remain mostly spherical. In the simulations that
we are going to present, however, these numbers are enlarged
within reasonable physical limits also to reduce the computation
time. Specifically, Re has been increased up to 10 in most cases
except those in Section 3.2 (where Re = 1) and those in Section 3.3.2
(where Re = 0.1); Ca is in the order of 107°~10"> depending on the
Re; whereas Fr = 0.025 if gravity is enabled (otherwise o0).
In general, the Reynolds number cannot be arbitrarily
increased as it is proportional to the fluid inertia. The reason
we can increase it here is essentially due to the uniformity of
the underlying flow. In this case, the mere effect of further
reducing the Re is stretching the time scale, making the
computations significantly longer. We have tested all cases at
smaller Re’s to ensure that the differences are negligible in the
case of fully developed Couette and Poiseuille flows. This is
discussed in more details in Appendix A.

Finally, we note that the surface tension can also vary due to
temperature or surfactant concentration gradients, leading to
Marangoni stress along the surface. The detailed chemistry is
rather complex;”” in the present paper, we assume constant and
uniform surface tension ¢ to reduce the number of the governing
parameters.

2.2 Depletion theory

Droplets suspended in an ambient fluid dissolved by surfactant
molecules typically experience an attractive depletion force. The
first model to describe such interaction was proposed by
Asakura and Oosawa,?® who assumed the surfactant micelles
to be non-interacting hard spheres. As sketched in Fig. 2, a
suspension of such small spheres around the large colloidal
droplets creates an osmotic pressure on the droplet surface.
When the distance between two droplets is less than the
diameter of the surfactant micelles, the pressure defect due
to the exclusion of the micelles pulls the drops even closer,
corresponding to an attractive force. Integrating this force with
respect to the inter-droplet distance r leads to a potential energy

0 if r <2R
U(r) =< —posVex 1If 2R <1 < 2R+ 2rg (4)
0 otherwise,

This journal is © The Royal Society of Chemistry 2019
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Fig. 2 Depletion of surfactant micelles of radius rs between larger colloi-
dal droplets of radius R, separated by distance r. The dashed lines around
larger spheres represent the region from which the centers of small
spheres are excluded. They overlap when r < 2R + 2r. Inset: A zoom-in
sketch of two droplets near contact.

where V. is the excluded volume and p,s is the osmotic
pressure. For spherical droplets, V.« can be calculated analytically
_ 4n(R+ r)? 3r r

Verlr) = ——5 1_4(R+l’s)+16(R+Vs)3 o

where R and r; are, respectively, the radii of the big and small
spheres. The osmotic pressure is given as

Pos = NkT, (6)

where n is the number density of the small spheres, k the
Boltzmann constant, and T the temperature. The negative sign
in eqn (4) corresponds to the tendency of the system to reduce
its potential energy as the overlap increases. This is equivalent
to increasing the total entropy of the small spheres, and
it provides a physical description of the depletion force even
when the droplets are deformable, or when p,s cannot be
expressed by the van’t Hoff’s formula (eqn (6)).>

Based on the above theory, we consider the depletion
potential in the hydrodynamic model by adding an osmotic
pressure, p/(r'), near the overlap region (' being the normalized
distance to the droplet surface, see Fig. 2). Specifically, we write
p’ as a Taylor-series expansion from ' = r;

/ /
P =+ (1) o)

T's

with a constant Op'/o(r'/rs) satisfying the original depletion
force acting on one droplet, i.e.

oA = j )= /r))ds. (8)

where A, is the effective area of the overlap Q. Note that, in this
formulation, we do not require p,s to be a thermodynamic
pressure; instead, its strength can be defined by a non-
dimensional number

Pos
II = 9
L (©)
which normalizes p,s by the Laplace pressure due to surface
tension. Doing so, the osmotic pressure varies continuously
within the overlap and depends linearly on r’. An expansion
of the osmotic pressure with the distance corresponds to a
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Fig. 3 (left) Two droplets approaching in a quiescent flow, and (right)
close-up of the flows in the gap due to the depletion force.

gradient of the micelle concentration near the gap; and if
the micelle is much smaller than the droplet, as it is in
the microfluidic device of interest,’ the gradient will be
very sharp. Conversely, when the distance to the surface
varies slowly, such as in the gap of a squeezed droplet and a
flat wall, a uniform pressure will be recovered. In essence,
what we propose here is a method to model the osmotic
pressure as an equivalent mechanical pressure such that
a favorable pressure gradient from the center of the
overlap region generates an outflow, pulling the droplets
towards each other. This is clearly illustrated in Fig. 3, where
two droplets approach each other due to the locally induced
depletion flow.

2.3 Numerical methods

The above governing equations are solved numerically using
the interface-correction level set/ghost fluid method (ICLS/
GFM).?° The equations are discretized in space by the finite
volume method, and integrated in time using the second-order
Adam-Bashforth scheme. Combining several computational
techniques, including the fast pressure correction method,**
the GFM,** and the fast Fourier transform (FFT),** discontinuous
quantities are treated sharply at high efficiency. For the detailed
algorithm and validations, we refer to Ge et al.*® The source code
is also publicly available on GitHub.**

3 Results

In the following, we present simulation results of droplet
motions in three types of flows: quiescent, shear-, and
pressure-driven channel flows. In the last case, both Poiseuille
flows and a non-uniform channel flow are considered. The
purpose of using different flow types is to disentangle the
effects of the depletion force, the droplet-droplet hydro-
dynamic interaction, and the droplet-flow interaction. The
simpler cases can be seen as model problems towards under-
standing of the more complex motions of droplet ensembles in
realistic microfluidic devices.

3.1 Approaching droplets in quiescent flows

3.1.1 2 and 3 droplets. The simplest case of droplet self-
assembly is identical drops approaching in quiescent flows,
i.e. no external flow motions. In such a case, the remaining
fluid parameters can be grouped into two non-dimensional
numbers, (i) the Laplace number La = 6p4(2R)/fi;*, where R is
the droplet radius; and (ii) the osmotic-to-Laplace pressure

Soft Matter, 2019, 15, 3451-3460 | 3453
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Fig. 4 Minimal distance between the droplet surfaces as function of time
in the presence of depletion forces proportional to IT = 1/8 (solid line) and
IT = 1/2 (dashed line). Simulation of (a) two droplets and (b) three droplets
suspended in an initially quiescent fluid. Due to symmetry, only the
minimal distance is plotted.

ratio IT = p,¢/p.§ La relates surface tension to the viscous stress,
which can also be expressed as La = Re/Ca. II indicates the
magnitude of the uniform osmotic pressure p,s due to deple-
tion of the surfactant micelles, scaled by a reference Laplace
pressure p due to surface tension (¢f. eqn (9)). In the following,
we assume La = 2000 and IT = 1/8 or 1/2, corresponding to the
limit Ca « Re « 1 and conditions above the critical micelle
concentrations (CMC, see dimensional analysis below) as in the
experiments.”

The approach of two and three droplets is illustrated in
Fig. 4, where the minimal distance between the droplet surfaces
dmin, normalized by the surfactant micelle radius 7, is shown
as a function of time. Here, time is re-scaled by the factor
T, = 5/(RII) to account for the size contrast of the droplet and
the surfactant micelle, thus indicating an inverse scaling of the
approaching time with the osmotic pressure for inertialess
droplets, i.e. T oc IT . Indeed, for both IT = 1/8 and 1/2, our
results show that d,i, approaches the limit of the grid spacing
att & T,. The smooth approach in both cases and the collapse
of the distance curves thus verify our modeling of the near field
chemical interaction, consistent with an attracting depletion force.

We note that Ty, is not a physical time scale (it is dimension-
less). One possible definition for the depletion time scale is
T = Fyiiy/(RPos), which can be rewritten as T,Ca?, with a
convection time scale 7 = 2R/U in the range of 0.1 to 1 s typically.
By substitution of usual values of colloidal systems, e.g.
Fo=1nm, ji; =10 > kg m ' s™!, R =10 um, and j,s = 100 Pa
(corresponding to surfactant micelles concentration of 5 CMC,
see Shen,*® p. 112), the estimated time scale is 1 ns. Although 7,
can be amplified by increasing the viscosity of the suspending
fluid or reducing the micelles concentration, its magnitude is
so small that the approaching can be considered instanta-
neous. Therefore, in practical microfluidic devices such as
those in Shen et al.,> one cannot expect to detect the dynamical
approaching process due to depletion forces. The droplets will
appear either bound or separated, depending on the surfactant
concentration and flow conditions.

§ The density and viscosity ratios between the drop and the carrier fluids are
assumed to be unity. See Appendix A for the detailed numerical setup.
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Fig. 5 Packing of N droplets due to the near field depletion force. (a and
b)N=4,(c)N=5WN=6N=7 fN=8 (@ N=9,(hN=10.

3.1.2 4 to 10 droplets. To further demonstrate the effect of
the depletion force, we “virtually”” assemble four to ten droplets
under various initial configurations to form stable clusters as
illustrated in Fig. 5. These clusters can be either 2D or 3D,
exhibiting different levels/kinds of symmetry. In our simula-
tions, the shape of the cluster is solely determined by the initial
droplet arrangement, in the absence of any disturbance or
other driving forces. Permitting disturbances, such as vibra-
tions or thermal noises, would eventually lead to the formation
of “rigid clusters”, i.e. clusters that cannot be reshaped by a
small amount of inter-droplet displacement. Analytically,
the number of possible rigid clusters grows rapidly with the
number of droplets (N). For example, there is only one possible
rigid cluster for N = 4, while there are 259 possibilities for
N =10, for packing of 3N — 6 contacts.*® For brevity, we only
illustrate two examples for N = 4 (including one planar cluster)
and one example for N = 5 to 10 in Fig. 5.

We remind that the specific coordinates of the sphere
packings bear no more significance than other possibilities in
our simulations. They are arbitrarily chosen to illustrate the
self-assembly due to the near field attraction. This is not the
case for trapped equilibrium clusters, where less symmetric
geometries are found to be favored by the entropic depletion
force.>*” Nor is it similar to colloidal particles interacting
via short-range attractive, long-range repulsive potentials,
where complex phase transitions emerge depending on the
competition of the interactions.’®*° Here, the self-assembly is
microfluidic-based, driven by the hydrodynamics rather than
the minimization of free energy over long periods. We examine
the effect of the flow next.

3.2 Sticky droplets in shear-driven channel flows

When the droplets are carried by an external flow, their
interactions are undoubtedly affected by the flow conditions,
droplet-flow interactions and flow-induced droplet-droplet
interactions.*® To study these additional effects, we consider
an elementary flow field, the wall-bounded simple shear flow,
defined as (w,v,w) = (0,j2,0) for z € [—L,/2,L,/2]. Here, v is the
only non-zero velocity component, its magnitude varies linearly
with the z coordinate, and 7 is the shear rate (see Fig. 6a). The
presence of droplets will locally modify this flow field, which we
sustain by enforcing opposite motions of two moving plates at
z==+L,/2.

This journal is © The Royal Society of Chemistry 2019
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Fig. 6 Stable configuration of a droplet pair in the simple shear flow.
(a) Spherical diagram of the initial (blue dots) and final (red dots) positions
of the second droplet in the reference frame of the first droplet. The blue
arcs mark the border of the first quadrant where nine initial positions are
considered. The undisturbed flow is a simple shear in the yz plane.
(b) Steady-state polar angle, 0., corresponding to the cases in Table 1.
The average value is 79 deg (dashed line). The stable azimuthal angle is
identically O.

Dating back to Taylor,"" the deformation and motion of
single or multiple droplet(s)/particle(s) have been studied
extensively in simple shear flows.>"*>*° In the case of spherical
particles/droplets, previously identified interaction modes
include closed trajectories (particles rotate around each other
in the vorticity plane), open-and-symmetric trajectories
(particles return to their original z positions after passing each
other), and swapping trajectories (particles exchange the z
position after a binary encounter). The first two modes are
generic features of a dilute suspension of particles or non-
deforming/non-coalescing droplets, while the last mode
arises when the particles are under relatively large geometric
confinement. Conceivably, adding a near-field depletion force
shall not alter these three modes as it is only activated at nearly
touching, when the particles are already in a bound pair.
What is yet to be explored, however, is when the gap between
the two confining plates is smaller than the sum of the particle
diameters (i.e. L,/D < 2), thus disabling the occurrence of the
Batchelor-Green type of closed orbit.

Fig. 6(a) illustrates various initial conditions of two touching
droplets, corresponding to the nine cases listed in Table 1,
at L,/D = 1.5. Specifically, the initial positions of the second
droplet is given in the spherical coordinates centered at the
first one, where all cases are located in one quadrant-sphere as
we do not distinguish between the two droplets (the rest are
equivalent due to symmetry). Contrary to the less confined

This journal is © The Royal Society of Chemistry 2019

View Article Online
Paper
Table 1 Initial polar (0) and azimuthal (¢) angles of the second droplet in

the reference frame of the first droplet. 6 and ¢ are measured from the
z- and x-axes, respectively (see Fig. 6(a))

Case # 1 2 3 4 5 6 7 8 9
0 (deg) 70 70 70 89 8 89 91 110 110
¢ (deg) 90 45 0 9 45 0 9 90 0

conditions where a bound pair would rotate indefinitely relative
to each other under shear,>"*> Fig. 6 shows that the droplets
tend to reside in the vorticity plane (i.e. the yz plane) with a
stable polar angle 6, = 79 deg. This is true even if the two
droplets are not initially in the same vorticity plane (case 2, 3, 5,
6, 9), or if the second droplet is in the lower hemisphere relative
to the first one (case 7, 8, 9). Particularly, in cases 8 and 9, the
droplet pair first rotates clockwise, then slides along the wall,
before finally reaching the stable orientation (see ESL,t Video 1).
The anomalous trajectory is a clear evidence of the influence of
the walls, which, together with the attractive depletion force,
break the symmetry of the droplet binary interactions.

The above results suggest that, for two droplets subject to an
attractive depletion force in strongly confined simple shear
flows, only one configuration is dynamically stable. It further
implies that, for multiple droplets (N > 2) traveling in a
pressure-driven channel with H/D < 4 (H being the channel
height, see Section 3.3), a chain-like structure oriented in the
flow direction is expected. We remark that the precise configu-
ration of the droplet cluster may depend on the flow conditions
and the level of confinement (see Appendix B for further
discussion); however, the qualitative picture of the pairwise
interaction shall remain unchanged, provided that the number
of contact is N — 1. As this is often the case before a compact
cluster is formed, we proceed to examine the droplet self-
assembly in pressure-driven flows.

3.3 Droplet clusters in pressure-driven channel flows

In the following, clusters of three or four droplets are initialized
to be in contact (N — 1 contacts for N droplets) and are released
into different regions of a microfluidic channel to study
their transport behavior. The production of these droplets is
omitted, as the step-emulsifier is typically much smaller than
the size of the channel, allowing for separation of the two
processes.”>*> We note that, although the droplets are already
in a cluster initially, their relative rearrangement is still impor-
tant as it determines the cluster morphology in the final state.
The latter results primarily from the droplet-flow interaction
and has direct consequence on the photonic properties of the
droplet lattice, as we will discuss in details below.

3.3.1 Uniform region (the Poiseuille flow). First, we con-
sider droplet clusters in a Poiseuille flow; that is, we place the
droplets in a channel whose undisturbed velocity is given as
(u,v,w) = (0,62z/H(1 — z/H),0), with the channel height H = 3D.
As in the simple shear flow, the droplets are neutrally buoyant,
and x, y, z denote the spanwise, streamwise, and wall-normal
directions, respectively. Enforcing periodic boundary conditions
in both x and y directions, the flow can be computed efficiently

Soft Matter, 2019, 15, 3451-3460 | 3455
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Fig. 7 Three droplets in the Poiseuille flow. (a) Top (upper panels) and
side (lower panels) views of the droplet positions. The droplets are colored
differently only for visualization purposes. Left: Without any depletion
force (scattered droplets). Middle: With depletion force (forming a chain).
Right: With depletion force (forming a triangle due to a different initial
configuration). (b) Phase diagram showing the final configuration of three
droplets under depletion force. Ogpen and Ogic denote the initial opening
and the direction angles (see inset for illustration). Interpolating the results
for Oopen € [90,150] (shaded region), chain is clearly the predominant
structure as shown in the probability distribution.

using FFT, approximating the flow field far from the edges of the
Hele-Shaw channel (see Fig. 1b).

As a control case, we simulate three droplets initially located
near the bottom of the channel without any depletion forces.
This is shown in the first column of Fig. 7a, where the top and
bottom panels illustrate the top and side views of the channel
(see Fig. 1). The two snapshots are separated by 13.5 convection
time units (i.e. 7). Clearly, the droplets quickly scatter as carried
by the flow. In a previous work, we theoretically predicted the
emergence of singlets and pairs of a dilute particle suspension
due to weak particle-particle interactions.*® This example
illustrates the separation of a droplet cluster, enhanced by
their initial proximity already at N = 3, supporting our theore-
tical predictions.

In contrast, when the droplets are bound by a strong
depletion force, the same initial condition can lead to a
chain structure oriented in the flow direction, see the second
column of Fig. 7a. Inspection of the side view reveals the
apparent reason: the leading droplets migrate towards the
middle of the channel due to the shear, thus experiencing
faster flows; the attractive depletion force prevents the cluster
from separating into singlets and pairs, yielding the eventual
droplet string parallel to the stream. We propose that this
shear-induced alignment mechanism is fundamentally due to
the confinement-mediated pairwise interaction discussed
in the previous section. The difference is that the Poiseuille
flow has no simple analytical solution in the presence of
droplets (hence the two cannot be compared exactly), and the

3456 | Soft Matter, 2019, 15, 3451-3460

View Article Online

Soft Matter

b
2
&

-
o

N
w
=

<

»
o

e USRI
I
o

Inflow

o

— e
—
—

Fig. 8 Cross-section of the channel inlet and magnitude of the initial
velocity field at the central plane without droplets. The flow is injected
from the step-emulsifier (red rectangle), where the droplets (not shown)
are produced, into the channel (cf. Fig. 1b). The velocity is normalized such
that |v| = 1 corresponds to the bulk flow velocity averaged over the entire
channel.

confinement requirement is halved due to the symmetry of the
parabolic velocity profile.

To further test the robustness of the shear-alignment
mechanism, we consider multiple initial configurations of the
triplet in the same flow. As sketched in Fig. 7b, three touching
droplets whose centers are in the same xy plane can be
completely described by two angles: 0,pcn, denoting the open-
ing angle of the triplet, and 0g;, denoting the angle between
the bisector of the triplet and the direction of the undisturbed
flow. For identical droplets, admissible angles are Ogpen €
[60,180] deg, and 04, € [0,180] deg. Extensive tests show that
the chain structure is far more favorable than the closed
triangular cluster in Poiseuille flows (see Fig. 7b). One case of
the triangle cluster is visualized in the third column of Fig. 7a,
where two droplets initially on the sides migrate towards the
center, eventually leading to the closure of the open chain. In
the vast majority of the cases, however, a straight droplet string
aligned with the flow is observed, even if they are close to a
triangle initially (note the small O,pe, cases in Fig. 7b).

The above results confirm that the chain-like structure is
indeed the predominant configuration of droplets bound by
short-range depletion forces in the Poiseuille flow. Experi-
mentally, this corresponds to strong diluting flows at the
channel inlet, where long droplet strings are also observed
further downstream (see Shen,* p. 137). More importantly,
our simulations suggest that aligning of the droplets is a 3D
shear-induced effect mediated by the confinement. The cross-
stream migration of the droplets happens within a much
shorter time span than any tangential rearrangement due to
the dipolar interactions (¢f Diamant*® and Fouxon et al.“°).
This is one key difference between our 3D microfluidic channel
and other 2D devices.

3.3.2 Entry region (with a non-uniform inflow). So far, we
have showed (i) the self-assembly of two to ten droplets in
quiescent flows, (ii) the alignment of a droplet pair in confined
simple shear flows, and (iii) the chaining (or, sometimes
clustering) of a triplet in the Poiseuille flow. Of these, (i) is
caused solely by the near-field depletion force, and provides the
necessary condition for (ii) and (iii); (ii) and (iii) are closely

This journal is © The Royal Society of Chemistry 2019
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Fig. 9 Clustering of three droplets in a channel with a non-uniform
inflow. (@ and b) Show the top (upper panel) and side (lower panel) view
of the droplet positions under two initial conditions at different times. The
framed boxes depicts the actual computational domain (see Fig. 8),
in comparison to the Poiseuille channel in Fig. 7. The color contours
illustrate the velocity magnitude in two planes orthogonal to the viewing
direction, where the color legend is the same as in Fig. 8.

related, and in principle can be generalized to clusters of
N > 3. In addition, we have distinguished our 3D channel
from typical q2D ones. The remaining question is what makes
the droplets self-assemble into compact clusters within short
distances (i.e. ~((10D)9) as seen in the experiment of
Shen et al.?®

To answer this question, we perform series of simulations of
a triplet/quadruplet cluster in a non-uniform channel, similar
to the actual entry region of the microfluidic channel (see
Fig. 1). Fig. 8 illustrates the cross-sectional design of the
channel inlet and the obtained velocity distribution in the
central plane. Specifically, the computational domain has a
size of (L,/D,L,/D,L,/D) = (4.5,6,3) or (4.5,8,3) depending on the
cases, and the ratio of the inflow area to the entire cross-section
is Ain/Awt = 1/32, resulting in a highly non-uniform velocity
profile. Near the inlet, the peak velocity reaches 46 times the
average bulk velocity, then quickly smoothens downstream.
To utilise the efficient FFT solver, we again use periodic
boundary condition in the spanwise (x) direction, mimicking
the effect of diluting flows on the sides. The droplet-to-carrier-
fluid density ratio is p,/p; = 1.8, corresponding to silicone oil
in water. The rest of the governing parameters are Re = 0.1,
Ca = 0.025, Fr = 0.0027, and II = 1.

Fig. 9 and 10 demonstrate four representative cases of the
self-assembly of three and four droplets, respectively, within
a distance of ~10D from their initial release. Specifically,
the droplets in Fig. 9(a) are initialized with Oypen = 120 deg
and 0Ogi,. = 90 deg. According to Fig. 7(b), this triplet would
become a chain in the Poiseuille flow. Here, due to the rapid

€ Dipolar interactions under similar confinement require at least (/(100D)
distance to see any clustering effect, see Fouxon et al.*
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Fig. 10 Clustering of four droplets in a channel with a non-uniform
inflow. The organization of the plots is similar to Fig. 9.

expansion of the flow immediately after the inlet, the trailing
droplet undergoes a upward motion to the high velocity region;
and if the velocity gained during this sprint is large enough, as
in Fig. 9(a), the droplets will soon form a triangle; otherwise,
the cluster will at least form a V-shape pointing upstream, as
shown in the example of Fig. 9(b). In the latter cases, the final
shape of the cluster can be estimated by its orientation relative
to the flow (i.e. Ogpen and Ogir). Instead of simulating a full
evolution of the clustering process (which may require a very
large simulation domain and long time), one can simply read
the last (Ogpen, Oairc) in the phase diagram of Fig. 7(b). In the
case discussed above (Fig. 9(b)), we verified that a triangular
cluster is eventually obtained (see ESI,T Video 2).

Similar observations are made for four droplets, for which
we show two examples of clustering into diamond shapes in
Fig. 10. Here, the initial conditions are similar to those in
Fig. 9, only a fourth droplet is appended to the droplet string at
a slightly lower vertical position (due to gravity). Note that the
vertical coordinates of the droplets as they move downstream
are in opposite orders (cf the middle panels of Fig. 7a).
Consequently, the trailing droplets travel faster than the frontal
ones, leading to the rapid closure of the cluster into more
compact shapes.

The above examples clearly illustrate the direct effect of the
non-uniform inflow. If properly matched with the initial droplet
configuration, the droplets can form a compact structure within a
much shorter distance than by the long-range dipolar interaction.
And if the near-field depletion force is strong enough, the
obtained compact cluster will stay bound further downstream.
On the other hand, if the initial non-uniform inflow fails to bring
the droplets sufficiently close within its range of influence,
i.e. before viscous diffusion smoothens the initial velocity
gradients (typically ~10D), the shear-induced cross-stream
migration can break the clustering of the droplets, eventually
leading to chain-like structures. This inflow effect, often
neglected in theoretical models,” is what we propose to be
the key reason for the accelerated droplet assembly.
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Finally, we remark that the simulated inlet configuration is
only one simplified version of the experimental microfluidic
channel. To fully reproduce the condition in the actual setup is
unrealistic due to the size contrast of the different inlets;
however, it is perhaps also unnecessary as the qualitative
features of the clustering do not depend on the fine details at
the device level. Depending on the governing parameters and
the specific operating conditions, it is possible to optimize the
geometry of the microfluidic device to achieve higher through-
puts of compact droplet clusters at the outlet; however, in
practice, tuning of the geometry and inflow conditions may
still involve trial and error, since the final self-assembly results
from the combination of all 3D effects with no simple para-
metric dependence. This is possibly the bottleneck of upscaling
the current microfluidic strategy to directly create large photonic
crystals.

4 Summary and outlook

Motivated by the recent experiment of flow-assisted droplet
assembly® and its potential application for photonic material
synthesis, we present a numerical study of finite numbers of
non-Brownian droplets in a 3D microfluidic channel. The newly
developed numerical methodology® allows for direct simula-
tions of the two-fluid Navier-Stokes equations, and can account
for the short-range attractive depletion force between the drops
in a sharp fashion.

Under this framework, we considered three types of flows
with increasing complexity: quiescent, confined simple shear,
and pressure-driven channel flows. The case of quiescent flows
allows us to disentangle the effect of the depletion force from
that of the flow. The simulation of two to three droplets shows
that the approaching time is inversely proportional to the
osmotic number II, a ratio between the surfactant-induced
osmotic pressure and the Laplace pressure. We further
assembled four to ten droplets using an arbitrary enumeration
of the corresponding sphere packing. Without any external
driving motion or noise, the obtained structure is purely
determined by the closest neighbors in the initial state. This
seemingly obvious result lays the basis for our subsequent
reasoning.

As we place a droplet pair in the confined simple shear flow,
the geometric obstruction combined with the depletion force
results in a single steady configuration within the shear plane.
The specific value of the alignment angle depends on the level
of confinement and the shear rate; for nearly spherical drops
between moving plates separated by L,/D = 1.5, we find the
stable polar angle of the pair to be ., & 79 deg. This alignment
arises from the bifurcation of the relative trajectories of two
droplets constrained by short-range attractive depletion forces.
We expect the phenomenon to persist also for more than two
drops, at least in the initial state where pairwise interaction
dominates.

The dynamics of droplet clusters in the channel flow
depends strongly on the homogeneity of the velocity profile.
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Using the reference Poiseuille flow, we find that the chain-like
structure is far more favorable than the triangular cluster
despite the latter is mechanically more stable. This is in contrast
to 2D systems where dipolar interactions provide the tangential
motion destabilizing the droplet string. When the channel height
is larger than the droplet diameter, as it is the case here, the
dipolar flow becomes insignificant and the shear-induced cross-
stream migration is a genuine 3D effect.

To fully understand the fast self-assembly observed in the
experiment,” we also simulated three and four droplets near a
step-emulsifier that is much smaller than the bulk channel.
Under suitable initial conditions, the triplet/quadruplet indeed
forms a more compact cluster from a chain. The nearly reversed
inter-droplet motions comparing to the Poiseuille case clearly
highlight the effect of the inhomogeneous flow. For practical
microfluidic devices aiming for large throughputs, geometric
optimization and fine tuning of the flow condition appear to be
the key.

The above depicts the complete physical picture of depletion/
hydrodynamic interactions of few non-Brownian droplets in a
3D microfluidic channel. Correctly identifying these mechanisms
may help experimentalists design microfluidic chips not only for
the fabrication of photonic metamaterials, but also other func-
tionalities in general. We note that, although it remains a
challenge to directly produce large, defect-free photonic crystals
(typically of diamond-like structures) using the current micro-
fluidic setup, alternative strategies have been recently proposed
to indirectly assembly droplet lattices composed of smaller
clusters,”” or creating hyperuniform droplet ensembles using a
similar microfluidic device.""*® The latter is an active on-going
research area, and we hope our findings provide additional
guidelines to rationalize the design procedure of these miniature
devices.
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Appendix
A Numerical setup

The simulations are performed in rectangular Cartesian
domains with periodic and/or inflow-outflow boundary condi-
tions in two directions and wall boundary condition (i.e. no
slip/no penetration) in the third direction. The streamwise and
spanwise dimensions of the computational box are at least
three times bigger than the initial diameter of the droplet to
prevent possible long-range interactions caused by the image
droplet. The droplets are resolved by 32 grid points per
diameter (i.e. Ax = 1/32) to ensure that the interface curvature
and the pressure jump are accurately computed, see Ge et al.*°
for detailed verification.

As mentioned earlier, the numerical values of Re and Ca are
artificially increased to facilitate faster simulations over a larger
parameter space. Specifically, we set Re = 10, Ca = 0.005 in

This journal is © The Royal Society of Chemistry 2019
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Fig. 11 Stable polar angle of two droplets in a shear-driven channel at
different Reynolds numbers and confinement, cf. Section 3.2. The dashed
line corresponds to 0., = 79 deg.

Sections 3.1 and 3.3.1; Re = 1, Ca = 0.0025 in Section 3.2; and Re
= 0.1, Ca = 0.025 in Section 3.3.2. Fr is effectively oo by setting
the density ratio equal to unity in all cases except in Section
3.3.2, where it is 0.025. The viscosity ratio is always 1.

In Section 3.1, the suspending fluid has no underlying
velocity, so the actual droplet Reynolds number should be
rescaled by the ratio of the average approaching speed and
the mean velocity of the channel. || In the case of two droplets,
this factor is 1/64 as one droplet moves the distance of Ax
within ¢ = 2, as comparing to a displacement of 2 within ¢ = 2.
The rescaled Reynolds is then Re, ~ 0.16.

In Section 3.2, we reduce Re to 1 as the flow is shear-driven,
thus the fluid inertia is expected to play a role. Testing various Re,
as shown in Fig. 11, we observe that the stable polar angle
approaches the same value for Re < 1 under the confinement of
L,/D = 1.5, justifying the use of Re = 1. For L,/D = 3, however, Re < 1
must be used to obtain the true closed orbit of the two bounding
pair (i.e. the obtained 0, in that case is an artifact of the inertia).

In Section 3.3.1, we increase Re to 10 as the cross-stream
migration in Poiseuille flow is a fairly robust phenomenon, only
weakly dependent on the Reynolds number in the sense that a
lower Re imposes a longer time scale. Since we are interested in
the final shape of the droplet cluster - a qualitative result rather
than the detail dynamics - Re = 10 is used to speed up the
simulations (the computational time step is roughly inversely
proportional to Re).

Finally, in Section 3.3.2 where the entry region of the
microfluidic channel is considered, we set the lowest Reynolds
number to mimic the actual flow environment. Here, the
Capillary number is amplified to 0.025, larger than in the
previous cases but still well within the low Capillary limit.
As a visual proof, the droplets shown in Fig. 9 all remain nearly
spherical during the convection. Further reducing Ca shall have
no effect but refine the sphericity of the drops.

B Confinement-mediated interaction

For unbounded simple shear flows, we know that a pair of
spherical particles/droplets can undergo either closed orbits or

|| We keep the same definition of the Reynolds number due to bookkeeping
reasons in the numerical code.
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Fig. 12 Relative trajectories of the second sphere in the vorticity plane of
the simple-shear channel under confinement L,/D = 1.5. The pair is not
constrained by any depletion force. The shaded region denotes locations
inaccessible to the second droplet if it is perfectly spherical. Overlap of the
trajectories with the shades is a result of the small droplet deformation.
The red dot corresponds to the polar angle of 79 deg, cf. Fig. 6.

open-and-symmetric trajectories.>"*> With moderate confinements,

swapping trajectories are also possible.*® In Section 3.2, we show
that strong geometric confinements combined with an attractive
depletion force lead to pair alignments in the vorticity plane;
particularly, the obtained stable polar angle is 0,, = 79 deg for
L/D = 1.5. Below, we provide further evidence to support the
symmetry-breaking argument and give a qualitative explanation
of the observed 6,.

In Fig. 11, we obtain non-converging values of 6, at L,/D = 3.
Under this confinement, the binding droplets in the low-
Reynolds-number limit exhibit cyclic motions as if they are
unconfined (see ESLt Video 3). Clearly, the center-to-center
depletion force does not play any role since the hydrodynamic
stresses already keep the droplet together; the droplets deform
slightly, but are essentially spherical. As we double the confinement,
i.e. reducing L,/D by half, Fig. 12 illustrates the relative trajectories in
the absence of depletion forces (see also ESL,T Videos 4 and 5). Here,
only a quadrant of the plane in the vicinity of the first droplet is
shown due to symmetry. Comparing to less confined conditions, the
droplet pair displays only passing and swapping trajectories, while
the Batchelor-Green type of closed orbit is completely suppressed
(¢f Fig. 3 in ref. 46). Arguably, such a result is obvious as the droplets
cannot simply rotate in the same vorticity plane, whereas 3D
rotations would violate either time-reversal or mirror symmetry.**
Regardless the reason, the results demonstrate that droplets cannot
stay together indefinitely due solely to the hydrodynamic interac-
tions. More importantly, plotting the position corresponding to the
angle of 79 deg (the red dot in Fig. 12) in the trajectory map clearly
rationalizes the existence of a stable polar angle: the second droplet
would travel in either direction above or below the saddle point;
with a radial depletion force, only at 0., = 79 deg can it stay
dynamically stable.
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