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We propose an efficient method to simulate light propagation in lossless and non-scattering uniaxial
birefringent media, based on a standard ray-tracing technique supplemented by a newly-derived
transport equation for the electric field amplitude along a ray and a tailored interpolation algorithm for
the reconstruction of the electromagnetic fields. We show that this algorithm is accurate in comparison
to a full solution of Maxwell's equations when the permittivity tensor of the birefringent medium
typically varies over a length much bigger than the wavelength. We demonstrate the usefulness of our

Received 4th December 2018, code for soft matter by comparing experimental images of liquid crystal droplets with simulated bright-

Accepted 21st March 2019 field optical micrographs, and conclude that our method is more general than the usual Jones method,
DOI: 10.1039/c8sm02448k which is only valid under polarised illumination conditions. We also point out other possible applications

of our method, including liquid crystal based flat element design and diffraction pattern calculations for
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1 Introduction

Liquid crystal (LC) phases are always associated with an orien-
tational order: the molecules inside a mesoscopic volume are
oriented around the same direction n, called the director.?
Because of this orientational order, LCs have an anisotropic
permittivity tensor at optical frequencies, i.e. they are birefringent
fluids. Together with the easy reorientation of n under external
electric fields, this fundamental optical property is at the core
of the most successful technological applications of LCs®
(LC displays, phase retarders, spatial light modulators...), in
which light propagates through simple director fields manipu-
lated with external voltages.

In the past ten years, major developments in the field of soft
matter have unlocked the possibility to create and control even
more complex birefringent structures useful for advanced light
applications: without being exhaustive, one can mention tunable
LC microresonators,” laser-directed patterns of cholesteric
fingers allowing one to generate optical phase singularities,’
photoaligned chiral superstructures with application to diffrac-
tion gratings and lasing,® and beam shaping using LC micro-
optical elements with engineered Pancharatnam-Berry phases.’
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ical method presented in this article will be publicly disseminated mid-2019 as
part of a general platform for light propagation in LCs. See DOI: 10.1039/
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Having access to the orientational field of these complex
birefringent structures is essential for a better theoretical
understanding of these systems and for the design of new
optical devices. If the birefringent structure under consideration
is quasi two-dimensional (Langmuir layers, smectic films...),
one can use standard polarised light microscopy techniques to
fully reconstruct the director field:® by illuminating the sample
with polarised light and collecting with a camera the reflected or
transmitted light though a lens and an analyser, one can
generally find a link between the measured intensity and the
local orientation of the director. The images measured with such
techniques are called polarised optical micrographs (POMs),
a term which also encompasses images measured in other
polarised microscopy setups (only one polariser or analyzer,
presence of a half-wave or quarter-wave plate. . .).

If the birefringent structure under consideration is fully
three-dimensional, the POMs generally depend on the focal
setting of the microscope and one cannot directly measure n
using these simple microscopy techniques. To fully reconstruct
the three dimensional director field, three possibilities can be
envisioned: either a direct experimental measurement using
tomography techniques (fluorescence confocal polarised
microscopy’ or multiphoton imaging techniques'®), a numerical
simulation with a minimization of the free energy of the
system,"™'? or a hybrid experimental/numerical method recently
developed by Posnjak et al.'® The first and third possibilities
have the advantage of being iz situ measurements, but also have
a major limitation: the birefringence of the LC must be very
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small in order to avoid optical artefacts. The second possibility
does not suffer from such a limitation, but necessitates accurate
values of the material constants present in the expression of the
free energy.

In any case, one should always try to validate the recon-
structed director field by simulating what it would look like
under a real microscope and comparing the simulated images
with the experimental POMs of the structure under considera-
tion. The most widely adopted method to simulate POMs is the
Jones method:? in this method, the polarisation state of light is
represented by a vector of size 2 which is propagated in one
direction through the birefringent medium using 2-by-2 trans-
fer matrices depending on the given director field. However,
this method suffers from two important limitations: first, the
sample is assumed to be illuminated by a single plane wave,
although this is generally not the case under a real micro-
scope;'* second, light does not propagate in a straight line
inside birefringent media, but can be deflected due to the
spatial variation of n.'® The first limitation implies that the
Jones method is unable to predict the effect of the numerical
aperture and focusing optics of the microscope on the POMs,
and the second limitation implies that the Jones method
cannot simulate bright-field optical micrographs (BFOM)
obtained when the sample is observed with unpolarised light
without any polariser or analyser.}

Although the first limitation can be easily addressed by
using a generalised Jones method," the situation concerning
the second issue is more complicated. The finite-difference
time-domain method can be used to directly solve Maxwell’s
equations in a birefringent medium,"® but this approach can be
computationally very intensive for large 3D domains. More
efficient ray-tracing methods'>'” have been extensively studied
in anisotropic media, but all studies in the literature either
focus on simple 2D geometries'®'® or do not propose a recon-
struction of the electromagnetic field amplitudes.’®*" Beam
propagation®” and eikonal methods*® have also been used to
fully calculate the electromagnetic fields inside complex 3D
birefringent systems, but these approaches are not very efficient
if one want to compute light transmission in samples sur-
rounded by thick isotropic layers such as glass plates: since
light is deflected by the birefringent medium, one would need a
prohibitively large computational domain in order to contain
the full extent of the light wave.§ In addition, the eikonal
propagation equation becomes highly singular when the deflec-
tion effects are too important,* which complicates the numer-
ical integration.

In this paper, we present a novel numerical method for the
propagation of light in uniaxial birefringent samples, with two

i In the Jones method, only the polarisation state of light changes along the rays.
This implies that the Jones method will always predict a transmission of 1 in
bright-field microscopy.

§ Note that for the beam propagation method, the memory cost can still be
acceptable since the propagation can be done layer by layer in the propagation
direction z (only two-dimensional arrays are therefore kept in the computer
memory); but for propagation distance >1 mm, this method still takes a lot of
time since a great number of steps in the z-direction are needed.
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important features: fast and accurate reconstruction of the
electromagnetic fields inside the sample, as well as the possi-
bility to simulate POMs and BFOMs even when the sample is
surrounded with thick isotropic layers.

The plan of the paper is as follows. In Section 2, we describe
the theoretical framework and numerical implementation of
our method, which is based on a ray-tracing technique supple-
mented by transport equations for the wave amplitudes and an
efficient interpolation algorithm to calculate the electro-
magnetic fields. In Section 3, we validate our method with a
comparison against a full solution of Maxwell’s equations. In
Section 4, we use our method to calculate the BFOM of a LC
droplet, which we compare with experimental micrographs of
the same droplet. Finally, we draw our conclusions in Section 5.

2 Ray-tracing method including
energy transport

In this section, we explicitly describe our ray-tracing method
allowing a full reconstruction of the electric and magnetic
fields inside the uniaxial birefringent medium. First, we will
compute the polarisation basis of each transverse mode of the
electric and magnetic fields. Second, we will derive the Hamiltonian
ray-tracing equations for each of these modes. Third, we will derive
simple equations for the transport of energy and the associated
conservation laws allowing the computation of the amplitude of the
transverse modes. Finally, we will present the details of our
numerical implementation.

2.1 WKB expansion and polarisation bases

We use the usual notation for the Maxwell fields: E and B for
the electric and magnetic fields, and D = ¢q¢E for the displacement
field. Here, ¢, (resp. uo) is the permittivity (resp. permeability) of
empty space and ¢ is the tensorial relative permittivity. As we will
only consider uniaxial birefringent media, this tensor has the
following expression:

s=g(n®@n)+te, (I - n®n),

with I the identity operator, n the optical axis (normalised to 1),
and ¢ (¢ ) the relative permittivity along (orthogonal to) n.

We assume that the fields oscillate at a single angular
frequency w and that the wavelength 4 = 27n¢c/w is much smaller
than the typical length L over which & varies in the plane
orthogonal to the propagation axis.q Under these assumptions,
the wave equation for the electric field®> can be put into the
following form:

WV xVxE+eE=0, (1)

with 1 = 1/(ik,L) the complex “smallness” parameter, k, = 21/
the wave vector in empty space, and V = LV the dimensionless
gradient.

€ This length can be rigorously defined as L = |¢||../|V L&, with V the
gradient in the plane orthogonal to the propagation axis and || T/| ., the maximum
value of any component of a tensor field T.

This journal is © The Royal Society of Chemistry 2019
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Since the smallness parameter appears in front of the
derivative of highest order, the standard method for solving
such an equation is the so-called Wentzel-Kramers-Brillouin
(WKB) method.>® More precisely, we use the following asymptotic
expansion for the electric field:

¢ . ] o
E =exp {— — iwt n"E,, 2
p ; )

and we define the eikonal function y = L¢ so that the phase term
in eqn (2) can be written as (k) — wt). Throughout this article,
the amplitudes E,, and eikonal function s are assumed to depend
on the spatial position r. The validity of the WKB expansion relies
on the smallness of 1, which physically corresponds to systems
where L >» /. Note that the asymptotic expansions for the other
fields can be obtained from eqn (2) by replacing E with the
appropriate symbols (B or D). By injecting eqn (2) into eqn (1),
we obtain at order 0 and 1 in #:

LpEO = 07 (3)
LpE: + DpEo = 0, (4)
where we defined the linear operators L, and D, as:
Lye = [p@p — |pI’T +¢]e, (5)
Dye =V x(pxe)+px(Vxe), (6)

with p = Vi = V¢ the dimensionless wave vector k/k,. As will
become apparent later, eqn (3) allows one to calculate the
direction of E, and eqn (4) allows one to reconstruct the
amplitude of E,. Note that eqn (4) also allows one to compute
the first-order correction E;, but for simplicity’s sake we
will only keep the zeroth order term in the reconstructed
electric field.

For now, let us examine the zeroth-order eqn (3). This
equation admits a non-trivial solution if and only if the
determinant of L, is zero. After some algebra, we find that this
condition is equivalent to the following equation:

(lp1* — e )(eL|p|® + ea[npl — eje1) =0,

with e, = ¢ — 6.

We therefore retrieve the well-known eigenvalue equation
for the ordinary and extraordinary modes in a uniaxial
birefringent medium." In the following, we will indicate with
an (o) index all quantities associated with the ordinary mode -
which must fulfill the condition [p®]? = ¢, - and with an (e)
index all quantities associated with the extraordinary mode -
which must fulfill the condition ¢, [p©|? + e[np®@T = ¢/¢ .

We can now easily obtain for each mode the polarisation
states of E,, D, and By, as well as the direction of the Poynting
vector S, = oEo X Bo. Let us define u{*) = X59/|x5)|, with o = e
or o and X, = E,, Dy, By, or S,. We compute the expressions
of the vectors u{) by writing that E, must be in the kernel of L,
(¢f eqn (3)) and by developing the Maxwell equations at the
lowest order in 7. Since the fully covariant form of these vectors
is a bit lengthy, we refer to Section SO of the ESI{ for the final
result of this calculation. Here, we will simply mention that the

This journal is © The Royal Society of Chemistry 2019
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Fig. 1 Unit vectors representing the orientation of the fields Eq, Do, Bo and
So with respect to p and n for the extraordinary mode (left) and ordinary

mode (right). All vectors except u® and u = u' are in the plane of the

paper.

expressions of these vectors only depend on the optical axis n,
the dimensionless wave vectors p© and p(®, and the effective
relative permittivity along the propagation axis ¢ = [p®-u*?
for the extraordinary (o = e) and ordinary (o = o) modes.
The expressions of these effective relative permittivities are
¢© =¢, and:

o (7)
2 1 en-p©)
17+ &, [” )4 ]

To summarize, we have obtained in this subsection the
normalized directions of the electric, displacement, magnetic
and Poynting fields in both extraordinary and ordinary eigen-
modes. The orientation of these vectors is recapitulated in
Fig. 1. Note that to fully reconstruct E, D, B and S at the lowest
order in # using eqn (2), we still need to find a method to
compute the scalar amplitude of these fields as well as the Y©
and y© fields (from which we can deduce the phase of the
Maxwell fields and the renormalised wave vectors p'® and p().
These two points are addressed in the next sections.

2.2 Hamiltonian flow and ray-tracing

To reconstruct the eikonal functions ¥© and ¢, let us
introduce the concept of a ray, defined as an integral curve
(also called a field line) of the vector field #{ (extraordinary ray)
or u{ (ordinary ray) - the directions in which the energy flows,
since these vector fields correspond to the renormalised Poynting
vector field associated with each eigenmode. Our strategy here is
to compute a great number of these rays inside the sample by
using y© (resp., () itself as the natural parametrisation for each
extraordinary (resp., ordinary) ray. The trajectory of each ray is
computed thanks to a Hamiltonian ray-tracing method| similar
to the method of Sluijter et al.,** with two small improvements:

e All the formulae presented below are in a covariant form,
contrary to Sluijter’s formulas which are expressed in the
principal coordinate system of the birefringent system.

e Sluijter et al. derived the ray-tracing equations directly
from the eigenvalue equation for p® and p(®, and then showed

| Usually, ray-tracing is done by solving the Euler-Lagrange equation of a
minimization problem"” (i.e. by using the Lagrangian formalism). Here, we prefer
to use Hamiltonian dynamics because the involved expressions are much simpler
and easier to solve numerically.

Soft Matter, 2019, 15, 3659-3670 | 3661
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that these equations have a Hamiltonian form. Here, we prefer
to directly derive the Hamiltonian formulation of these
equations from the Fermat principle, which has the double
advantage of making the link with the century-old theory of
Fermat-Grandjean'® and showing that the natural parametri-
sation for this problem is the optical length § - the difference
AY™ (o = e or 0) between the value of the eikonal function at
the considered point and the value of the same function at the
starting point of the ray (for simplicity’s sake, we do not use an
(e) or (o) index for 5 since it can be inferred from other terms in
each equation).

Since this derivation is quite technical, we refer to Section S1
of the ESIf for the full calculation, whose main result is
the following expressions for the two Hamiltonian functions
associated with extraordinary and ordinary rays:

_eilp]® + eafn(r) - pl’

ZEHSL

_pP

H (r,p) HC) (r,p) = %

In these definitions, r corresponds to the spatial position of
a virtual bullet propagating along the ray and p is the conjugate
moment of dr/ds, with § the optical length defined above.
Tracing a ray (i.e. computing its spatial trajectory) is fully
equivalent to propagating the virtual bullet parametrized by r,
which we will call the “end point of the ray” in the following.

The ray-tracing equations for the extraordinary rays are then
simply obtained from the Hamilton equations associated with 7(®):

dr . 87‘{(6) 7 e p + Sa[ll(l‘) p}n(")

d_E 8]) &eL ’ [8)
dp OH®  efn(r) - p]
& o ees [Vn] - p. ©)

Note that when {r, p} is a solution of eqn (8) and (9), the following
identities are verified:
1 dr u®
@1 S0 d_u
H P PEPT BT
Similarly, the ray-tracing equations for the ordinary rays are
obtained from the Hamilton equations associated with H(°):

dr oH© p

—= == 10

ds op e’ (10)
©)

dp_ _OHT (11)

ds or
When {r, p} is a solution of eqn (10) and (11), the following
identities are verified:

1 (0) dr uéo)

27 p:p )

s e

Note that we neglected a possible spatial dependence of the
refractive indices in eqn (8)-(11). If taken into account, this
dependence leads to additional terms in the equations for
dp/ds. Although such terms are really not difficult to take into
account in the numerical code, we will assume here for
simplicity’s sake that they are negligible.
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Since it is shown in Section S1 of the ESIf that § can be
directly identified with Ay or Ay depending on the type of
ray, the eikonal functions can be calculated along the rays by
directly integrating the ray-tracing equations (8)-(11), on the
condition that a suitable set of initial conditions is given - the
values of p® and ¥ (o = e or o) need to be specified on
the surface defining the light source (i.e. the object of origin
for all rays).

2.3 Conservation laws along a ray

The last step to fully reconstruct the Maxwell fields is to find a
way of computing the amplitudes of these fields at order 0 in
the WKB expansion. This can be done by eliminating E; from
the first-order term in the WKB expansion of the wave equation
(eqn (4)). To simplify this elimination process, we neglect
all energy exchange between the extraordinary and ordinary
modes. This corresponds to the so-called adiabatic regime,
which in our formalism is equivalent to saying that E© and
E© separately verify eqn (4):

Lp(a]EQ“) + Dp(a)EE,“) ~ 0, a=eoro

(12)

The error made by setting the left-hand-side of eqn (12) to zero
is of order O(1/M ), where we defined the Mauguin number M =
koANegil Gege With Aneyr = Vel — V/el) and Geft = {[u(s°)~V]u(e°)}~u °) the
effective twist of the polarisation vectors along the propagation
axis.”® Neglecting all energy exchange between the extraordinary
and ordinary modes is therefore equivalent to the condition M > 1,
which we will assume in the following.

Using the fact that «® is in the kernel of L,«, we can
eliminate E®” from eqn (12) by taking the scalar product of this
equation with u{. After some simplifications, we then find:

()
28(“)(152 + [V . (\/ a(@ug&))} E(()a) =0, a=coro. (13)

Eqn (13) corresponds to two first-order ordinary differential
equations (ODE) for the amplitudes Ef) and E{” along a ray.
Instead of directly integrating these ODEs to reconstruct the field
amplitudes, we show that this system of equations is associated
with two conserved quantities (one for each eigenmode of the
electric field), each depending on the field amplitude, the
effective optical index and the so-called geometrical spreading -
a quantity of major importance in the theoretical and numerical
analysis of seismic waves and light propagation in isotropic
media.>* Searching for conserved quantities is a better strategy
than directly solving the ODEs in eqn (13) because it leads to more
accurate results (no propagation of errors).

More specifically, we introduce the geometrical spreadings
q® = det[J®] associated with each collection of rays (o = e or 0),
where we defined the Jacobian matrices J© and J© as:

Orgu)
6)((),'

J® (5,x0) = ol =€ or o.

i (14)

(5, X())7

In this definition, r9(,x,) and r°(5,x,) correspond to the
Lagrangian trajectories of the extraordinary and ordinary rays

This journal is © The Royal Society of Chemistry 2019
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starting at x, and computed from the ray-tracing equations of
the previous section.

The geometrical spreadings ¢© and ¢ obey the following
differential equations:

dg® (o)
%:q(“) |:V. ( ”:(d) , o=eoro. (15)

The proof of these transport equations is given in Section S2
of the ESL.{ Here, we focus on their physical interpretation:
when the extraordinary or ordinary rays are locally converging
(resp., diverging), the associated divergence term in eqn (15)
is negative (resp., positive) and therefore the associated geo-
metrical spreading decreases (resp., increases). This observa-
tion is confirmed by the fact that the geometrical spreading can
be interpreted as the change of volume of an infinitesimal cube
whose vertices are transported along the rays (see Fig. 2).

By combining the transport equations for E® and ¢®
(egqn (13) and (15)) and by using the Leibniz formula for the
divergence, we finally find the following conservation laws:

dF®
— =0, a=coro.
ds
where we defined
FO = EM\/qme®, a=coro.

Assuming that the amplitudes E® and E are specified on the
reference surface defining the light source, one can directly
compute the values of the conserved quantities F© and F©)
and then deduce E) and E{ in the rest of the sample using the
following equation:

(16)

Based on the previous discussion on the physical interpretation
of ¢© and ¢'®, eqn (16) has a very clear meaning: when the rays
are converging (resp., diverging), the geometrical spreading will
decrease (resp., increase) and therefore the amplitude of the
electric field will increase (resp., decrease).

qaVo < Vo 3

Fig. 2 The geometrical spreading q is related to the change of volume of
an infinitesimal cube advected along the light rays. In this figure, we
represent a simplified situation where the geometrical spreading is initially
1 and then increases or decreases depending on the converging or
diverging behavior of the rays.

This journal is © The Royal Society of Chemistry 2019
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2.4 Details of the numerical implementation

In the last three sections, we presented all the equations
necessary to reconstruct the polarisation state (Section 2.1),
the eikonal function (Section 2.2) and the amplitude (Section 2.3)
of the electric field at the lowest order in the WKB expansion.
We now propose a numerical scheme allowing one to efficiently
solve these equations.

Our target system will consist of two parallel isotropic plates
enclosing either a birefringent medium or a suspension of
birefringent droplets in an isotropic fluid. Fig. 3 schematizes
these two types of system. In each case, the light source
corresponds to an incident plane wave below the sample.**
The birefringent structure is specified by its orientational field
n, which can be obtained from a theoretical model, a numerical
simulation or an experiment. The field n is internally represented
in our code as a C' mapping using tricubic interpolation.>”
Instead of copying by hand the general formula for the inter-
polation kernel (>300 lines of code), we automatically generated
the associated C code with a symbolic calculation in Mathematica
using the centered finite-difference approximation for the
derivatives.

To propagate the rays across the sample, we define a target
plane containing the current end points of all rays. This target
plane is always parallel to the source plane and is moved in the
upward direction e; (see Fig. 3) by small increments. To fully
reconstruct the electric and magnetic field in the bulk of the
sample, we associate a 2D regular grid with the target plane and
we use the following iterative procedure:

(A1) Initial setup of the rays on the source plane; the target
plane is initially aligned with the source plane.

(A2) While the target plane has not reached the end of the
sample, do the following steps:

(A2.1) Move the target plane with a small vertical increment
and propagate the rays until they cross the new position of the
target plane.

(A2.2) Reconstruct the electric and magnetic field at the new
end points of the rays.

(A2.3) Interpolate the values of the electric and magnetic
field on the regular grid associated with the target plane.

A detailed description of the steps (A1) and (A2.1-2.3) is
available in Section S3 of the ESI.{ Here, we will only mention
two subtleties in our algorithm. First, each interface of dis-
continuity of the optical index produces reflected and trans-
mitted rays, which means that the number of rays at each point
of the sample is theoretically infinite. In our code, we only take
into account transmitted rays propagating forward in the
sample and apply the full Fresnel boundary conditions at each
interface to update the amplitude, polarisation and phase of
the rays. Second, the last step (A2.3) of the main loop of our
algorithm is more complicated than it appears because the

** Note that our method can support more complicated light sources such as a
Gaussian beam or a tilted plane wave. For these general light sources, the
initialization is however a bit more complicated since one needs to specify
inhomogeneous distributions on the source plane for the eikonal functions,
rescaled wavevectors and initial amplitudes.
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Al ..\‘...‘_. . ./._ ]. A target
e
e
—_——, e e — - —— =44 —-——— source
Fig. 3 The numerical implementation of our improved ray-tracing

method considers two types of system in which light is propagated: (a) a
birefringent droplet (gray color) suspended in an isotropic medium (dotted
domain) or (b) a slab of constant thickness of a birefringent medium (gray
color again). In both cases, two parallel isotropic plates (blue rectangles)
are used to contain the sample. We assume that the incident light is a plane
wave, in which case the surface defining the light source is just a reference
plane below the sample. Rays (in red if isotropic, in green if ordinary, in
brown if extraordinary) are propagated in the sample by pushing upward a
target plane containing the end points of the rays. Special care is taken
when a surface of discontinuity of the optical index is encountered, as
explained in the main text.

source

Fig. 4 When the deflection effect is strong, rays of the same family can
cross each other, as represented in this figure. In the white domain, there is
a one-to-one correspondence between points of this domain and source
points on the reference plane. In the red domain (where rays are crossing
each other), each target point is associated with three possible source
points, as illustrated by the blue and red rays.

local value of the electric field at a point P of the target plane is
obtained by summing all contributions from rays arriving at P.
When deflection effects are important, several rays from the
same family (extraordinary, ordinary or isotropic) can contri-
bute to the local value of the electric field, as illustrated in
Fig. 4. The surface separating the white domain (one-to-one
correspondence between the source and target planes) from
the red domain (multiple-to-one correspondence between
the source and target planes) in Fig. 4 is called a caustic,
and the red region itself is called a caustic domain. Reconstruct-
ing the full electric and magnetic fields inside caustic domains is
challenging, but it can still be done efficiently and accurately
when elementary caustic domains do not overlap (see Section S3.4
and Section $4 in the ESIYt).

3 Validation of our method on a simple
test case

In the previous section, we presented our improved ray-tracing
method but did not examine the conditions of validity of such a
method. We address this problem here by comparing the
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solution obtained with our method with a more exact solution
obtained directly from Maxwell’s equations with the finite-
difference time-domain (FDTD) method. We first present the
system on which this comparison is made, and then discuss
our results.

3.1 Numerical setup

The simple system used in this study consists of an isotropic
medium filling the lower half space z < 0 and an undeformed
cholesteric helix texture filling the upper half space z > 0, with
the helix axis oriented along the axis e,. A schematic represen-
tation of this system is visible in Fig. 5. The comparison
between our ray-tracing method and FDTD was made on the
z-component S, of the time-averaged Poynting vector R[p,E x B*]
inside the cholesteric domain, when the latter is illuminated
from below by a plane-wave of constant intensity S, = S,. The
polarisation of incident light was set to (e, +e,)/v/2 in order
to generate both extraordinary and ordinary rays inside the
cholesteric domain.

Since we assumed that the cholesteric texture
undeformed helix oriented along ey, the director field can be
expressed as:

is an

2nx . [2nx
n(x,y,z>0) = cos {7} e, +sin [7} e,

with P the cholesteric pitch. Because of the n - —n invariance
in a cholesteric, the true periodicity of this system is P/2,
which is why we limited our simulation to the interval —P/4 <
X < P/4. Furthermore, the director field is invariant in the
y-direction, which was therefore neglected in all our simula-
tions. Both numerical codes (ray-tracing and FDTD) were
initialized with the same setup as in Fig. 5 using the director
field defined above and the values of the material constants
defined in Table 1. From the values in Table 1 and the
calculated trajectories of the light rays, we also estimated that
the Mauguin number is always greater than 35, which means
that the assumption made in Section 2.3 (well-established
adiabatic regime) is valid in this system.

The FDTD simulation was done with the open-source code
Meep developed by MIT,"® which includes support for light

Z

Ll I TTT |+ Ll ITTT

1l TTT e |+ L1 ITTT
Ll I TTT e[+l LI TTTr
L1l I TTT |+ L L ITTT
Ll I TTT |+ Ll ITTT

Sz? s LLLITTTr |21l ITTT-
L1l I TTT |+t L L ITTT
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. L1 I TTT e[ a0l 1| TTT

cholesteric + XX 1TTT-|+0slTITTT- .
o TITIT TITIT

Sz =S50

Fig. 5 Test case setup for the comparison between our improved ray-
tracing method and a full solution of Maxwell's equations. Tilted molecules
in the cholesteric phase are represented by nails proportional in length to
the director projection in the plane of the drawing. The nail point is
oriented toward the reader.
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Table1l Values of the wavelength and the material constants for the setup
described in Fig. 5. nisc corresponds to the optical index of the isotropic
domain, and n (n) corresponds to the ordinary (extraordinary) index of
the cholesteric domain

A P Niso n, n|

0.5 pm 20 pm 1 1.45 1.55

propagation in inhomogeneous uniaxial media. We chose a
spatial resolution 4¢ = 7/75 ~ 6.7 nm and an associated time
resolution T = A¢/(2¢), which fulfills the Courant condition for
FDTID in 3D*® (¢T/4; <1/v/3). We used periodic boundary
conditions on the vertical boundaries (x = + P/4) and perfectly-
matched layer (PML) absorbing conditions on the top and bottom
boundaries. We stopped the simulation after N = 20H/4¢=6 x 10°
integration steps (with H = P the length of the mesh in the
z direction), which was sufficient to get good convergence for
the time-averaged amplitude of the electric and magnetic fields.
Note that the spatial resolution was not chosen randomly but in
order to get an accurate solution near the cholesteric/isotropic
interface. This was checked by directly comparing the computed
solution with an analytical calculation of the Maxwell fields on
each side of this interface.

In the ray-tracing method, we used a total of 200 rays and 200
target points to reconstruct the Maxwell fields in the xz-plane. The
target plane (which here corresponds to a line parallel to the x-axis,
since we neglected the invariance axis y) was moved upward by
increments 4, = 50 nm, which also correspond to the spatial
resolution along the x axis (200 points over a length P/2 = 10 pm).
We emphasize that with our choice of parameters, the rays are never
leaving the computational domain, which allows us to easily calcu-
late the Poynting vector everywhere inside the latter without having
to resort to periodic boundary conditions on the vertical boundaries.

Finally, note that both methods were parallelised in order to
benefit from the multiple CPU cores available on the simulation
desktop computer. For the FDTD code Meep, the parallelisation
was done using MPI (a distributed model with communication
between the parallel processes). For our ray-tracing method, the
parallelisation was done using OpenMP (a shared memory
model without any communication between the threads) by
evolving in parallel multiple rays.

3.2 Results and discussion

Fig. 6 shows two density plots of S./S, computed with the FDTD
method (Fig. 6a) and our ray-tracing method (Fig. 6b). The
agreement between the two methods is visually very good,
especially for the low-intensity elongated bands near the vertical
boundaries of the computational domain. Note that the contrast
of these bands is not due to an exchange of energy between the
extraordinary and ordinary waves (which we neglected in Section
2.3), but is simply caused by interference between these two
waves. This interference is possible because the polarisation of
an extraordinary ray at a given point is not orthogonal to
the polarisation of the associated ordinary ray at the same point
(the directions of the wave vectors associated with both rays are
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Fig. 6 Density plot of the renormalised intensity S,/So obtained with the
FDTD method (a) and our ray-tracing method (b). The black dashed line

delimits a domain R where the typical relative error between the FDTD
solution and the ray-tracing solution is more than 25%.

different since we have taken into account ray deflection). Had
we neglected the deflection of the extraordinary rays - as in the
Jones method - no such interference would have been visible.

However, some differences between the ray-tracing and
FDTD method can be seen in the small region R delimited by
the black dashed line of Fig. 6. This region was numerically
obtained by searching for all points where the relative error
between the FDTD solution and ray-tracing solution was more
than 25%. In this region, a sharp boundary between low and
high intensity regions can be seen in the ray-tracing simulation,
while the FDTD simulation is associated with a much smoother
solution. This sharp boundary corresponds to a caustic, whose
shape is similar to the one described schematically in Fig. 4.
The sharp increase of intensity is due to an artificial divergence of
the electric and magnetic field on the caustic itself, where the
geometrical spreading g can be shown to become zero.>* Since no
such divergence is present in the exact solution of Maxwell’s
equations, this means that our method is highly inaccurate near
caustics — a problem which is common to all ray-based methods.>*

Nevertheless, the good agreement between our method and
the FDTD method is quickly retrieved outside the domain R,
whose extent is rather limited. This can be directly confirmed
by looking at the horizontal and vertical profiles of the S,/S,
field. Two such profiles are presented in Fig. 7. In these graphs,
the intersection between the profile lines and the region R is
represented by gray areas. At the center of these gray areas, the
divergence of S, can be clearly seen, while outside these gray
areas, the curves associated with the ray-tracing solution
quickly converge to the curves associated with the FDTD
solution. In particular, good agreement is obtained inside the
caustic domain (but sufficiently far from the caustic itself),
where multiple extraordinary rays contribute to the local value
of the Maxwell fields (as depicted in Fig. 4).

Up until this point, all our results were associated with a
transverse periodicity P/2 = 10 um, as indicated in Table 1.
Since this periodicity corresponds to the typical length over
which the director field varies, the associated amplitude
for the smallness parameter introduced in Section 2.1 is
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Fig. 7 (a) Vertical profile of S,/So over the line x = 0 um. (b) Horizontal

profile of S,/Sg over the line z = 19.5 pm. The legend of (a) also applies for
(b). The gray regions correspond to the intersection of the domain R of
Fig. 6b with the profile line.

|[n| = mA/P = 0.15. To determine how the accuracy of our
method varies with |y|, we reproduced the same numerical
experiments as above with different values of pitch, while
keeping the other parameters constant and using a scaled
mesh of dimensions {P/2, P} in the {x,z} directions.

Whatever the value of the cholesteric pitch, we found that the
typical lateral extent of the branches defining the domain R is
always around 2/-44, which means that our method allows us to
localize the expansion error around the caustics, while keeping good
convergence properties far from the caustics. In particular, we
get an even better agreement with FDTD than in Fig. 6 and 7
when the cholesteric pitch is greater than 20 pm, because the
meshes associated with these systems are much bigger than the
wavelength - and therefore much bigger than the typical lateral
extent of the high-inaccuracy region R.

Conversely, the agreement between FDTD and ray-tracing
becomes less satisfactory for small cholesteric pitches: when
|7| = nA/P= 0.3, the mesh size becomes comparable to the lateral
extent of the high-inaccuracy region, which means that the
convergence error is becoming global. This critical point corre-
sponds to a periodicity length of 5 pm, which corresponds here
to ten times the wavelength. For even lower periodicity length,
our method is not applicable anymore and a full solution of
Maxwell’s equations using FDTD must be envisioned.

On a similar line, we also noticed that the caustics were
always appearing at a critical vertical position z. scaling linearly
with the cholesteric pitch. This scaling can be theoretically
explained by directly computing the analytical expression of z.
for the system considered here:

P}’lL
EVA I

Ze= (17)
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The proof of this formula is available in Section S5 of the ESI.{
Note that eqn (17) is only valid for positive birefringence
(for negative birefringence, it needs to be adapted by switching
the variables n; and n,). This formula can be used to deter-
mine if caustics are present or not in arbitrary birefringent
slabs by replacing P/4 with the typical distance L over which the
director switches from a vertical orientation to a horizontal
orientation. For sufficiently thin samples (thickness smaller
than z.), caustics are not present in the birefringent slab and
therefore do not “pollute” the simulated fields with a diverging
amplitude.

Finally, let us conclude this section by pointing out that our
improved ray-tracing method is massively faster than the FDTD
method. This can be directly checked by the running times
of both methods. As a typical example, the running times
associated with the results of Fig. 6 and 7 are 4 s for our
method and around 1 h for FDTD. These running times were
obtained on a state-of-the-art desktop computer (6 multi-
threaded cores cadenced at 3.5 GHz). Here, the high computa-
tional cost of FDTD is simply explained by the high density of
the mesh necessary to get an accurate solution: the wavelength
is much smaller than the typical size of our system, which
means that a few millions of points are necessary if we impose a
ratio of 75 vertices per wavelength. When a third dimension is
added to the system (as in the next section), the computational
cost of FDTD becomes prohibitive if the considered system is
large. Since our method works well for these large systems
(small expansion parameter 7), it can be adopted as a replace-
ment for FDTD.

4 Application to the visualisation
of liquid crystal droplets

In this section, we show how our method is able to predict the
bright-field optical micrographs (BFOMs) of liquid crystal droplets
as observed under a microscope when using unpolarised light
without any polariser and analyser — something that the Jones
method is unable to address. We first detail the experimental and
numerical setup used, and then present and discuss our results.

4.1 Experimental setup

We focused on one particular type of liquid crystal droplet,
namely twisted bipolar droplets obtained at the thermo-
dynamic coexistence between the nematic and isotropic phase.
Twisted bipolar droplets are characterised by their planar
anchoring (the molecules prefer to align parallel to the surface
of the droplet), the existence of two diametrically opposed
topological defects of rank +1 (in agreement with the Poin-
caré-Hopf theorem applied to a sphere), and a double twist
internal structure for the director field of the droplet. This last
characteristic can be experimentally induced either by using a
cholesteric liquid crystal (in which case the director field has a
spontaneous twist of fixed handedness) or an achiral nematic
liquid crystal in which twist elastic deformations cost a negli-
gible amount of free energy in comparison to splay and/or bend
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elastic deformations®* (in which case the director field prefers to
be twisted in order to decrease the energy of the surface defects).
In the latter case, the twist can be left-handed or right-handed
with a 50/50 probability since it is due to energetically-induced
spontaneous symmetry breaking in an achiral system.

In our experiment, we exploited this spontaneous symmetry
breaking by using a lyotropic chromonic suspension of Sunset
Yellow FCF (SSY) in water with a mass fraction 29 wt%. In
confined geometries filled with this mixture - such as the
droplets studied here - a twist can be observed because of the
giant elastic anisotropy of SSY suspensions, as reported by
several authors.>*® The protocol to prepare the sample and
create twisted bipolar droplets was already described in a pre-
vious article.*® Briefly, an aqueous suspension of SSY was con-
tained between two parallel glass plates separated by nylon wires
of calibrated diameter 110 pm. The glass plates of the sample
were spin-coated beforehand with polyvinyl alcohol (PVA) and
annealed at 120 °C in order to favor wetting of the sample plate
by the isotropic phase of the SSY suspension. Once filled, the
sample was sealed with UV glue and sandwiched by two trans-
parent ovens separately regulated within 0.01 °C. A detailed
description of these ovens is available in ref. 39. Note that two
thin layers of glycerol were added between the sample and the
ovens in order to improve the thermal contact.

The sample was observed through the objective of a Leica
microscope under bright-field illumination conditions (halogen
lamp producing unpolarised white light, Kohler illumination
setup allowing us to uniformly light the sample, no polariser and
analyser). Note that the condenser diaphragm of the microscope
was closed as much as possible in order to get normal illumina-
tion on the sample (which is assumed in our numerical method).
The temperatures of the ovens were adjusted to be inside the
coexistence range between the nematic and isotropic phase of
the SSY sample. Thanks to the surface treatment of the sample
plate, the nematic domains dewetted the walls and formed
droplets in the bulk of the sample. The radius of the observed
droplets was then adjusted to be typically R =~ 25 pum by
changing the temperature of the ovens while staying inside the
coexistence range. By setting slightly different temperatures for
the top and bottom ovens, we noticed that the droplets forming
in the sample only have two possible orientations: parallel or
orthogonal to the induced vertical temperature gradient. We
chose to focus only on droplets with the polar axis orthogonal to
the view direction by centering the sample stage appropriately.

Optical micrographs of the droplets were captured thanks to
a CCD camera (C4742, Hamamatsu). Note that the incident
unpolarised light was filtered using a red bandpass filter
(4 ~ 633 nm) in order to optimize the contrast of the micro-
graphs. Since our goal is to study light deviation effects in the
droplets, we systematically saved for each micrograph the
vertical shift of the sample stage with respect to a reference
position where the droplet is well-focused.

4.2 Numerical setup

The first step to numerically reconstruct the optical micro-
graphs of the twisted bipolar droplets was to compute the
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director field associated with the observed SSY droplets.
This was done using a trust-region finite-element minimisation
(TR-FEM) of the total free energy of a spherical droplet with
R = 25 pm. The details of this algorithm are given in another
paper.'? Briefly, we assume that the anchoring strength at the
nematic/isotropic interface is finite, which implies that the
polar defects of the twisted bipolar droplets are only virtual
(i.e. the Frank elastic energy stays finite near these defects).
This allows us to neglect variations of the scalar order para-
meter and write the total free energy F{n] of the droplet as:

Fln] = F{n] + F.[n]

In this equation, Fn] corresponds to the Frank free energy,
whose expression - given in the previous citation - depends on
the director field and on the elastic constants K; , ;4 respec-
tively associated with splay, twist, bend, and Gauss/double twist
deformations. The second term Fy[n] corresponds to the con-
tribution of the anchoring potential on the nematic/isotropic
interface, and its expression is given by:

Fin] = J ﬁ(n -v)’dS
N la

Here, [, = K;/W, is the anchoring length and W, is the anchoring
strength. Our TR-FEM algorithm allows us to iteratively mini-
mize a discretised version of F[n] with finite elements using an
efficient null space factorisation of the gradient and Hessian of
the free energy and a robust calculation of the solution update
which always decreases the energy and converges quadratically
near a minimum of F{n]. We applied this algorithm to the case
of SSY droplets by using the values of the material constants
given in Table 2. The resulting director field, obtained on a
mesh with approximately 2 x 10° vertices, is presented in Fig. 8.

Once the director field was computed, we used it in our ray-
tracing code to propagate light through the system described in
the previous section, including all the isotropic layers asso-
ciated with the transparent ovens and the sample plates. Since
we are only interested in the final micrographs and not in the
bulk data of the Maxwell fields, we skipped step (A2.3) of our
algorithm (see Section 2.4) and simply propagated forward the
rays through the system using the values of the material
constants in Table 2.

Table 2 Values of the relevant material constants for the system of
Section 4. The Frank elastic constants Kj » 3 and refractive indices n, iso
in the SSY suspension were measured by Zhou et al.?° The K, constant was
estimated using the theoretical formula of Nehring and Saupe.*° The
anchoring length [, at the nematic/isotropic interface was never measured
in SSY so we took a similar value to that in cyanobiphenyls,®! and we
checked that the computed micrographs were not changing much when
applying a factor 0.5-2 to this value. The values of the refractive index of
the glass, glycerol and water layers were obtained from tabulated data®**

Ky/Ky K3/Ky Ki/Ky I J

0.161 1.43 0.58 3 um 633 nm
Nglass Nglycerol Nwater Niso ny n
1.52 1.47 1.33 1.43 1.47 1.41

Soft Matter, 2019, 15, 3659-3670 | 3667


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8sm02448k

Open Access Article. Published on 11 April 2019. Downloaded on 2/3/2026 10:10:52 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

sl
0001100
/o000 000
EEEEERREREN
e0000000
‘o000 0000/
e\{illf}/
; esiide

)
=

[

|

|

@

DAY

LA W e DDOO®

s 00 FrIrIrrrIrry

0'.) \--------j

0948/ [& Yo Yo Yo Yo Yo You ¥<

X4 e, s ODOO®®
ceooe

Fig. 8 Director field of an SSY droplet with R = 25 um on three slice
planes and on the droplet surface. Here, y is the polar axis associated with
a rotational invariance and z is the direction of propagation of light in the
ray-tracing simulation.

Under a real microscope, optical micrographs are obtained
by propagating light through the objective to the final screen
(here, the CCD image sensor). In our numerical method, we
assume that the objective can be represented by an ideal lens,
in which case the final screen P is conjugated through the lens
to a virtual plane 7', which we call the back-focal plane. These
planes are schematised in Fig. 9. Since we assumed that the

(0) z

Fig. 9 Inthis figure, we illustrate how two different rays (brown and green
trajectories, respectively associated with extraordinary and ordinary rays)
are recombined at a point (O) of the final screen P after passing through
the ideal lens L. Since this lens is assumed ideal, the intensity data at point
(O) is perfectly equivalent to the intensity data at the conjugate point (O’)
on the back-focal plane P'. For this reason, we calculate micrographs by
propagating backward the rays to this virtual plane (dashed trajectories).
Here, we assumed that the droplet is embedded in a single isotropic
medium, but our approach can be easily generalized to more complex
setups.
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lens is ideal, the final intensity field on the plane P is perfectly
equivalent (with a scaling transformation) to the intensity
field on the virtual plane 7', which can be obtained by
propagating backward the output rays as if the whole space
was filled with air (dashed trajectories in Fig. 9). For this
reason, we calculated the optical micrographs by combining
all contributions of the ray families on the back-focal plane
after propagating the rays forward through the system and
backward to the virtual plane 7. Since an input polarisation
must be specified in our method, the final BFOM is obtained
by averaging incoherently the simulated POMs over all possi-
ble input polarisations.

4.3 Results and discussion

A few observed and simulated BFOMs are presented in
Fig. 10a and b for different vertical positions of the back-
focal plane P'. The same contrast setting (S,/S, between
0.5 and 1.5) was applied to all micrographs for ease of
comparison. As can been seen, the simulated micrographs
correctly predict the existence of the almond-shaped high
intensity region at the center of the droplet, which opens up
and expands when the back-focal plane is moved upward. Let
us remark that our first attempt to simulate the BFOMs
of Fig. 10 was unsuccessful because we initially neglected
the presence of all the additional isotropic layers associated
with the sample plates and the transparent ovens of
the experimental setup: in this simplified situation, the simu-
lated micrographs were much more uniform (inexistent
almond-shaped high intensity region) and therefore very
different from the observations. The fact that the micrographs
have a much sharper contrast when including the isotropic
layers in the simulation can be interpreted as an amplification
of the deflection effects on the back-focal plane P due to
light refraction at the boundaries of the isotropic layers
(see Fig. 9).

Although the agreement between the simulated and
observed BFOMs is good, some discrepancies are clearly
visible, especially outside the droplet and near its boundary.
First, it is easy to see that the simulated interference rings
outside the droplet are thicker and of higher contrast than in
the experimental images. This discrepancy is probably due to
the fact that we neglected all reflected rays on the boundary
of the droplet. Second, optical artefacts are visible near the
polar defects (left and right side of the droplet) when Az < 0in
Fig. 10. These artefacts are associated with the presence
of caustics, where the reconstructed Maxwell fields are highly
inaccurate as shown in the previous section. Last, the
crescent-shaped high intensity regions visible in the experi-
mental micrographs when Az > 0 are much thinner in the
simulated micrographs. This discrepancy is not due to the
presence of caustics (which can be directly checked in
our result files by counting the number of rays arriving at
one point of the micrograph); the most likely source of error is
that the effective birefringence Aneg introduced in Section 2.3
is vanishingly small near the boundary of the droplet,

This journal is © The Royal Society of Chemistry 2019
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Fig. 10 Experimental (a) and simulated (b) BFOMs of a SSY droplet with R = 25 um, for different vertical shift Az of the back-focal plane P’ with respect to
a reference position associated with a well-focused droplet (fourth column). The two bottom rows represent the deflection maps of the extraordinary (c)
and ordinary (d) rays. The color scale is associated with the amplitude of deflection. Note that the Jones method is unable to simulate these BFOMs since
it always predicts a transmission of 1 under bright-field illumination conditions.

where the director is almost parallel to the propagation axis.
This implies that one of the main assumptions of our code
(Mauguin number much bigger than 1) is broken near the
droplet boundary, which explains the difference between the
simulated and observed BFOMs near the crescent-shaped high
intensity regions described above.

Nevertheless, we checked that the Mauguin number is
reasonably high enough (>10) at the center of the droplet
and that the WKB expansion parameter |n| & 1/(2k,R) is small
enough (~0.002), which explains why our ray-tracing method is
robust enough to qualitatively predict the correct alternation of
dark and bright bands in all micrographs. It should be noted
that additional insight into the structure of the micrographs
can be obtained by looking at the deflection maps of the
extraordinary and ordinary rays, defined as the difference
Ar™ between the actual end point of a ray ¥ (o = e or o)
and the virtual end point which would be obtained if there were
no deflection of this ray. These deflection maps are plotted in
the two bottom rows of Fig. 10. The ordinary deflection map
always has rotational symmetry (which is expected since the
ordinary index is constant inside the spherical droplet) and
points outward for Az < 0 and inward for Az > 0, which
explains the presence of interference rings outside the droplet
when Az < 0 and the dark bands near the boundary of the
droplet when Az > 0. The extraordinary deflection map has C,
symmetry (as expected because of the bipolar and twisted
nature of the director field) and points inward for Az < 0
and outward for Az > 0, which explains why the almond-
shaped high intensity region opens up and expands when Az
increases. Finally, we should clarify exactly what we meant by a

This journal is © The Royal Society of Chemistry 2019

“well-focused droplet” when defining the reference position of
the back focal plane P’ (Az = 0 in Fig. 10): here, “well-focused”
simply means that the average deflection amplitude of the
ordinary rays is minimal (as can be visually checked in Fig. 10d).

5 Conclusion

To summarize, we presented an improved ray-tracing method
allowing one to fully reconstruct the phase, polarisation and
amplitude of the optical field inside a uniaxial birefringent
medium. We demonstrated that this method is extremely fast
in comparison to a full resolution of Maxwell’s equations, and
showed that the calculated solutions are accurate far from
caustics, which only formed when the sample thickness is
greater than a critical value. Finally, we showed how our
method can be used to simulate bright-field optical micro-
graphs of birefringent samples as seen under a microscope,
with good agreement with experimental micrographs. Our
method is thus able to address one of the main limitation of
the Jones method, namely the inability to take into account ray
deflection and simulate light propagation under bright-field
illumination conditions. Contrary to the numerical methods
mentioned in Section 1 (finite difference time domain, beam
propagation method, eikonal differential equation...), our
method is also able to support complex setups with thick
isotropic layers. The main reason for this is that we do not
have to solve a set of partial differential equations, we only have
to propagate rays and reconstruct the electric fields along
these rays.
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Note that the simplicity and effectiveness of our method are
largely due to the fact that we neglected any exchange of energy
between the extraordinary and ordinary modes. This assump-
tion is only valid if the Mauguin number is much bigger than 1.
As discussed in Sections 3 and 4, this was mainly the case for
the systems studied here. In the future, it would be interesting
to further improve our numerical method by relaxing this
assumption and deriving general transport equations for the
amplitude of the extraordinary and ordinary modes outside
the adiabatic regime. Such a generalised method could then be
applied to highly chiral birefringent systems, in which the twist
of the polarisation is non-negligible everywhere in the sample.

On a parallel note, although our method was mainly applied
to the calculation of optical micrographs, one could imagine a
number of other applications. For example, our method could be
used to analyze the diffraction patterns of the LC-based diffrac-
tion gratings mentioned in the introduction, by setting the final
target plane of our method to the output plane of the LC layer,
and then applying the usual far-field formula. The optical prop-
erties of flat LC diffractive lenses® could also be analyzed either
by using the ray trajectories computed by our method or by using
the reconstructed fields on the output surface of the LC layer.
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