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Biaxial nematics of hard cuboids in an external
field†
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By computer simulation, we model the phase behaviour of colloidal

suspensions of board-like particles under the effect of an external

field and assess the still disputed occurrence of the biaxial nematic

(NB) liquid crystal phase. The external field promotes the rearrange-

ment of the initial isotropic (I) or uniaxial nematic (NU) phase and

the formation of the NB phase. In particular, very weak field

strengths are sufficient to spark a direct I–NB or NU–NB phase

transition at the self-dual shape, where prolate and oblate particle

geometries fuse into one. By contrast, forming the NB phase at any

other geometry requires stronger fields and thus reduces the energy

efficiency of the phase transformation. Our simulation results show

that self-dual shaped board-like particles with moderate anisotropy

are able to form NB liquid crystals under the effect of a surprisingly

weak external stimulus and suggest a path to exploit low-energy

uniaxial-to-biaxial order switching.

It is well established that anisotropic colloidal particles can
self-assemble into a plethora of fascinating liquid crystal (LC)
phases in a solvent. Onsager showed that mere excluded
volume effects can force hard-core particles to align along a
common director at sufficiently large concentrations.1 The
resulting LC phases found at the thermodynamic equilibrium
and their structural properties strongly depend on the particle
geometry. In particular, prolate particles tend to orient along
their major axis, while oblate particles along their minor axis.
Although this tendency is regularly observed in systems of
uniaxial particles, such as disks, whose orientation is determined
by a single unit vector, it is less predictable for biaxial particles,
such as cuboids, whose orientation is fully determined by two unit
vectors. For instance, slightly oblate hard board-like particles
(HBPs) have been shown to orient along their major axis and

thus form prolate (rather than oblate) smectic LC phases.2 This
unusual arrangement was observed in suspensions of HBPs
with length-to-thickness ratio L* � L/T = 12 and width-to-
thickness ratio W� �W=T �

ffiffiffiffiffiffi
L�
p

, a geometry where oblate
and prolate shapes fuse into one.

Such an exclusive particle architecture, referred to as self-
dual shape, was predicted to favour the formation of the biaxial
nematic (NB) phase in systems of HBPs with rounded3 or
square4 corners. Nevertheless, these theoretical predictions
were made within the context of the Zwanzig model, which
does not allow free rotations of particles and restricts their
orientations to only six. Computer simulations that explored
the phase behaviour of freely rotating HBPs highlighted the
challenge of observing stable NB phases, even when an element
of size-dispersity is incorporated.5 The very recent and insight-
ful simulation study by the Dijkstra’s group showed that
monodisperse HBPs, with a geometry close or equal to the
self-dual shape, are able to stabilise the NB phase only if their
anisotropy is significantly large, with L* Z 23.6 Nevertheless,
the highly uniform colloidal board-like particles synthesised by
Nie and coworkers were not observed to assemble into the NB

phase in a wide spectrum of aspect ratios, between L* = 20 and
180, and very close to the self-dual shape.7 A direct observation
of a stable NB phase was reported almost ten years ago in
dispersions of purely repulsive and quasi dual-shaped goethite
particles,8 whose stability was shown to depend on the extre-
mely large particle size dispersity.4 These computational and
experimental findings unambiguously indicate that self-dual
shaped HBPs cannot self-assemble into an NB phase, unless
their anisotropy and/or size dispersity are especially relevant.
Vroege and coworkers investigated the effect of a magnetic field
on the phase behaviour of quasi-dual-shaped polydisperse
goethite particles in suspension and observed a biaxial-to-
uniaxial nematic transition above a certain magnetic field
strength.9 To explain the origin of these experimental results,
the same authors formulated a mean-field theory to calculate
the phase diagram of HBPs in the presence of a magnetic field.
Despite the good qualitative agreement between theory and
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experiments, the former neglects the effect of size polydispersity,
being crucial to stabilise the NB phase,8 and is limited by the
strong approximations imposed by the Zwanzig model, which
was shown to be not especially accurate to describe the phase
behaviour of HBPs.2,5

In this work, we perform Monte Carlo (MC) simulations of
freely-rotating monodisperse HBPs in the presence of an external
field that promotes a phase transition from the isotropic (I) or
uniaxial nematic (NU) phase to the NB phase. Because our main
interest is gaining an insight into the energetics associated to
this process, the field strength is a simulation parameter that
assumes values between ef* � efb = 0.1 and 3, with b the inverse
temperature. At the same time, we propose an alternative route
for the formation of the NB phase that does not necessarily imply
extreme anisotropies6 or particle size dispersities,8 nor the
addition of depletants.10 In the following, we discuss the main
aspects of the model and simulation methodology applied. The
interested reader is referred to ESI† and our previous works for
additional details.2,5

We have simulated fluids of HBPs with L* = 12 and 1 r W* r 12,

including W� ¼
ffiffiffiffiffiffi
L�
p

� 3:46, which gives the above mentioned
self-dual shape. The particle thickness, T, is our system unit
length and is kept constant. The unit vectors, x̂, ŷ, and ẑ,
aligned along W, T, and L, respectively, define the particle
orientation in space. Interactions are described by a hard-core
potential, which only depends on the distance between pairs of
particles. Consequently, an MC move is rejected if an overlap
occurs and accepted otherwise. The separating axes method,
introduced by Gottschalk et al.11 and later modified to study
suspensions of tetragonal parallelepipeds,12 has been employed to
assess the occurrence of overlaps between HBPs. The interaction
between HBPs and external field is described by a potential energy
term that favours the alignment of the particle intermediate axis,
x̂, with the direction of field, indicated by ê, and reads

Uext ¼
ef
2

XN
i¼1

1� 3 � x̂i � êð Þ2
� �

(1)

where N = 2000 indicates the number of HBPs in the system. The
field direction, ê, is always aligned with the same box axis, and the
field itself coupled to the particle axis x̂ in all the systems studied.
The latter could have been alternatively coupled to ŷ or ẑ, but this
choice would have promoted the formation of, respectively, oblate
(NU
�) or prolate (NU

+) uniaxial nematics, which are normally
observed without the application of an external field.2 We stress
that there is no intention here to mimic a real electric field, whose
effect on a colloidal suspension depends on particle polarizability,
charge and dielectric constant difference with that of the solvent.
The effective electric field perceived by a particle would be the
sum of the external field and the field due to the induced and
spontaneous dipoles. Dipole–dipole interactions are often large
and cannot trivially be ignored as they would determine the
stability of the phases observed. In the experimental work on
the formation of the NB phase in suspensions of goethite particles,
the driving external field was magnetic rather than electric.8

In this situation, one can assume that the magnetic coupling

between neighbouring particles is small9,13 and thus the inter-
actions between a particle and the external field will be the
predominant effect. Rather than on the physical nature of the
external stimulus, which we keep as simple as possible, we focus
on its resulting effect, that is the ability of reorienting and aligning
HBPs as well as the formation of uniaxial and biaxial LC phases.
How electric and magnetic fields can be employed to control the
internal organisation and self-assembly of colloidal suspensions
has been explored in recent theoretical and simulation studies
on spherical14–17 and anisotropic18–21 particles, including HBPs
within the Zwanzig model approximation.9 The field-particle
potential in eqn (1) can be regarded as an effective potential that
promotes the alignment of the particle intermediate axis with ê.
Therefore, we assume the inter-particle interactions to be pre-
dominantly governed by excluded-volume effects, ignoring any
enthalpic contribution that could arise from the presence of
the field.

The external field has been applied to suspensions of HBPs
that were either in dense I phases, very close to the border with
the nematics, or deeply in the NU

� or NU
+ phases, at the packing

fraction Z � Nv/V = 0.34, with v and V the particle and box
volume, respectively. At this packing fraction, the nematic phase
is stable for the whole range of particle geometries studied here.
In particular, NU

+ and NU
� phases are observed, respectively, at

1 r W* o 3.46 and 3.46 o W* r 12, as shown in the phase
diagram available in ref. 2. By contrast, the packing fraction of
the systems in the I phase changes with W*, between Z = 0.20 and
0.31. All simulations have been run in the canonical ensemble,
where number of particles, volume and temperature are kept
constant. After equilibrating a number of I and NU phases, the
field was switched on and new equilibrium states were achieved.

To identify the long-range order of the phases at the initial
and final equilibrium states, we calculated the nematic order
parameter and nematic director coupled to each of the three
particle axes. In particular, we applied the standard procedure
of diagonalising the following traceless symmetric second-rank
tensor22

Qll ¼ 1

2N

XN
i¼1

3l̂i � l̂i � I
� �* +

(2)

where i indicates a generic HBP, l̂ = x̂, ŷ, ẑ is the particle unit
orientation vector and I the second-rank unit tensor. The
resulting eigenvalues (S2,W, S2,T, S2,L) and associated eigenvec-
tors (m̂, p̂, n̂) identify, respectively, the order parameters and
nematic directors coupled to each particle axis. If the order is
very weak, as in the I phase, the eigenvalues vanish and
the eigenvectors are meaningless. However, if a preferential
direction of alignment exists, this is identified by the largest
positive eigenvalue of Qll and its corresponding eigenvector.
For instance, the NU

+ phase is characterised by a large value of
S2,L and a preferential alignment of the particle ẑ axes along the
director n̂. The three tensors in eqn (2) can be applied to
estimate three additional order parameters, B2,W, B2,T and
B2,L, coupled, respectively, to m̂, p̂ and n̂, that identify the
occurrence of biaxiality.23 However, it is sufficient to monitor
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the fluctuations of the unit vectors that are perpendicular to
the nematic director associated to the largest eigenvalue of
Qll.24–26 If S2,L is the largest eigenvalue, then these fluctuations
are quantified by the biaxial order parameter B2,L = (m̂�Qxx�m̂ +
p̂�Qyy�p̂� m̂�Qyy�m̂ � p̂�Qxx�p̂)/3. In this case, S2,L = 1 and B2,L = 0
would indicate perfect alignment along n̂ only and the occur-
rence of the NU

+ phase, while S2,L = 1 and B2,L = 1 would indicate
perfect alignment along three directors and the formation of
the NB phase. We stress that alternative definitions of order
parameters, which explicitly incorporate the particle axes con-
nectivity, are available.27 Finally, to unambiguously discard the
occurrence of smectic LC phases, we have calculated the pair
distribution functions along the relevant nematic directors,
which do not show any significant periodicity as expected from
the relatively low packing.

In the light of these preliminary considerations, we now
discuss our simulation results, which depend on three main
factors: (i) the initial state of the system, being either isotropic
or uniaxial nematic, (ii) the field strength, ef, and (iii) the
particle geometry, which only depends on W*. In Fig. 1 and 2,
we show the phases observed, in the new equilibrium state,
when a field of strength 0.1 r ef* r 3 is applied to, respectively,
I or NU phases of HBPs with 1 r W* r 12. The values of the
uniaxial and biaxial nematic order parameters that validate
these results are provided in the ESI.† The state points at ef = 0
are included as a reference and identify I phases in Fig. 1, and
NU

+ (W* o 3.46) or NU
� (W* 4 3.46) phases in Fig. 2. The

criterion adopted in both figures to classify the new equili-
brium phases essentially depends on the value of the uniaxial
and biaxial order parameters and is summarised in Table 1.

According to this criterion, two weak biaxial phases, similar
to those previously found by the Patras group in suspensions of

spheroplatelets,28–30 have been identified. To distinguish weak
and strong biaxial phases, we look at the magnitude of the
biaxial order parameter that is associated to the largest uniaxial
order parameter. If the latter is, for example, S2,L, then the
former is B2,L. In a strong biaxial phase, simply labelled as NB,
the HBPs are highly orientationally ordered, with their three
unit vectors x̂, ŷ and ẑ oriented along three mutually perpendicular
directions. This significant degree of orientational order is
reflected in the large values of all the uniaxial and biaxial order
parameters. By contrast, the weak biaxial phases, labelled as NB

+

and NB
�, show a modest, but not negligible biaxial order para-

meter, between 0.20 and 0.35, and at least two pronounced
uniaxial order parameters, above 0.40, which give them a prolate
or oblate character, respectively.

An external field with strength ef* o 1 is able to reorient
prolate and oblate HBPs along a common direction to form NU

+

and NU
� phases, respectively (see Fig. 1). Interestingly enough,

at the self-dual shape, even a very gentle field is sufficient to
spark a direct I–NB

� transition and then, at ef* = 0.3, the
formation of the NB phase, which becomes dominant at larger

Fig. 1 Equilibrium LCs resulting from the application of the external field
given in eqn (1), with strength ef, to an isotropic phase of HBPs of length-
to-thickness ratio L* = 12 and width-to-thickness ratio 1 r W* r 12.
Packing fractions are in between Z = 0.20 and 0.31 (see ESI† for details).
Circles, empty and solid squares, empty and solid triangles, and diamonds
indicate, respectively, I, NU

+, NU
�, NB

+, NB
�, and NB phases. Shaded areas

are guides for the eye. The vertical dashed line refers to the self-dual
shape, where W ¼

ffiffiffiffiffiffiffi
LT
p

.

Fig. 2 Equilibrium LCs resulting from the application of the external field
given in eqn (1), with strength ef, to uniaxial nematic phases (Z = 0.34) of
HBPs of length-to-thickness ratio L* = 12 and width-to-thickness ratio
1 r W* r 12. Circles, empty and solid squares, empty and solid triangles,
and diamonds indicate, respectively, I, NU

+, NU
�, NB

+, NB
�, and NB phases.

Shaded areas are guides for the eye. The vertical dashed line refers to the
self-dual shape, where W ¼

ffiffiffiffiffiffiffi
LT
p

.

Table 1 Range of uniaxial and relevant biaxial order parameters for
isotropic (I), uniaxial (NU) and biaxial (NB) phases observed in suspensions
of HBPs. The superscripts + and � indicate, respectively, prolate and oblate
phase symmetry

S2,L S2,T S2,W B2,L or B2,T Phase

0.00–0.20 0.00–0.20 0.00–0.20 — I
0.40–1.00 0.00–0.35 0.00–0.35 0.00–0.30 NU

+

0.00–0.35 0.40–1.00 0.00–0.35 0.00–0.30 NU
�

0.40–1.00 0.35–1.00 0.35–1.00 0.20–0.35 NB
+ a

0.35–1.00 0.40–1.00 0.35–1.00 0.20–0.35 NB
� b

0.40–1.00 0.40–1.00 0.40–1.00 0.35–1.00 NB

a S2,T and/or S2,W should be in the range specified. b S2,L and/or S2,W

should be in the range specified.
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field strengths across the complete set of particle geometries.
Similar tendencies are noticed when the same field is applied
to a uniaxial nematic phase. In this case, however, the I–NB

phase transition is detected at an almost insignificant field
strength, ef* = 0.1, with no intermediate formation of weak
biaxial phases (see Fig. 2). Snapshots showing the phase order
before and after the application of a relatively weak field to I
and NU phases are shown in Fig. 3.

Therefore, regardless of the initial system configuration, the
dual-shape is found to be the optimal particle geometry to form
the NB phase in terms of energy costs as the strength of the field

applied at W� ¼
ffiffiffiffiffiffi
L�
p

is at its minimum. In spite of being
relatively low, such energy costs are crucial to achieve the
desired orientational order with no increase of the translational
order, which remains negligible and would otherwise imply the
onset of biaxial smectic, rather than nematic, LCs. As a matter
of fact, the calculation of the pair distribution functions along
the nematic director, g8(r), excludes the formation of position-
ally ordered phases (see ESI†). At particle geometries that are
different, but still relatively similar, to the self-dual shape,
stabilising the NB phase becomes more energetically demand-
ing, whether the initial phase is I or NU. For instance, an I phase
incorporating HBPs with W* = 4 requires a field strength of
approximately ef* = 1. At larger anisotropies, stronger fields are
required, up to ef* = 1.5 at W* = 12. As expected, the energy to
reorient HBPs originally in uniaxial nematics into biaxial

nematics is sensibly lower. At W* = 4, this is approximately
50% of that needed to align them in the isotropic phase.

In summary, our results suggest that it is indeed possible to
observe biaxial nematics in colloidal suspensions of mono-
disperse HBPs. To this end, one needs to apply an external
field whose strength is comparable to the particle thermal
energy. In particular, the self-dual shape is the most appro-
priate particle geometry for energy-efficient I–NB and NU–NB

phase transitions. Although these conclusions agree well with
past theoretical works,3,4,27,31 de facto they indicate that this
agreement is the consequence of restricting particle orienta-
tions and/or neglecting the occurrence of positionally ordered
phases, which artificially enhance the stability of the NB phase.
Mere excluded volume effects were shown to be insufficient to
observe biaxial nematics in monodisperse systems of HBPs,2

unless extremely long particles are employed.6 Applying an
external field to monodisperse freely-rotating HBPs produces
a scenario that the above mentioned theories, despite their
strong assumptions, had predicted: the NB phase can be
stabilised at moderate particle anisotropies and a direct I–NB

transition, so far only detected experimentally in systems of
significantly size dispersed goethite particles,8 observed. The
external field induces the desired alignment of particles with
no effect on their positional order an at a relatively low energy
cost. While promoting the particle alignment along one direction,
this field does not prevent them from rotating freely, especially
around the remaining two directions. By gradually increasing the
field strength, the particles, regardless their geometry, assume a
more and more narrow distribution of orientations, which even-
tually end up fluctuating around three main orthogonal directions,
being the signature of the formation of the NB phase.
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