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The viscoelastic signature underpinning polymer
deformation under shear flow

Airidas Korolkovas, *ab Sylvain Prévost, a Maciej Kawecki, b Anton Devishvili,ac

Franz A. Adlmann, b Philipp Gutfreunda and Max Wolffb

Entangled polymers are deformed by a strong shear flow. The shape of the polymer, called the form

factor, is measured by small angle neutron scattering. However, the real-space molecular structure is

not directly available from the reciprocal-space data, due to the phase problem. Instead, the data has to

be fitted with a theoretical model of the molecule. We approximate the unknown structure using

piecewise straight segments, from which we derive an analytical form factor. We fit it to our data on a

semi-dilute entangled polystyrene solution under in situ shear flow. The character of the deformation is

shown to lie between that of a single ideal chain (viscous) and a cross-linked network (elastic rubber).

Furthermore, we use the fitted structure to estimate the mechanical stress, and find a fairly good

agreement with rheology literature.

Introduction

Viscoelastic materials have properties of both viscous liquids
and elastic solids. Such non-Newtonian fluids are very com-
mon, from daily items like food and cosmetics, to raw materials
for plastics and fibres. Their complex response to flow is due to
the intricate deformation of polymer molecules, shown in
Fig. 1. To describe it, let us consider two extreme cases. On
one hand there are fully elastic materials, like rubber, which are
composed of permanently cross-linked polymer chains. Under
stress they exhibit the so-called affine deformation, meaning
that the mean square distance (MSD) between two monomers
n and m is linearly proportional to their separation hr2

nmip |n�m|.
On the opposite side, there is the ideal chain (Rouse model),
whose deformation is non-affine, scaling as |n� m|2, see ref. 1. In
this article we examine an intermediate case, a semi-dilute
entangled polystyrene solution, and using a novel fitting approach
we show that the deformation is proportional to |n � m|x, where
1 o (x = 1.2) o 2 is a viscoelastic signature exponent.

Thanks to deuteration, small angle neutron scattering
(SANS) can measure the structure of an individual polymer
chain, called the form factor. Many previous studies have used
extensional flow to characterize the relaxation of polymers
(creep) over time.2–4 In this work we focus on shear flow, which
poses more practical challenges, but has an advantage of

eschewing the complicated time response, once steady state
has been reached. The effect of a shear rate k on the material
structure is quantified with a dimensionless Weissenberg
number Wi = kt, where t is the relaxation time specific to each
fluid, typically a millisecond or more. For polymer melts,5 shear
can be applied on a heated sample, which is then quenched
below the glass transition temperature, and the molecular
structure is later examined ex situ. Polystyrene (PS) has been
measured with SANS using this technique, at an estimated
shear rate of Wi = 4. An asymmetry of 1.7 was detected between
the chain radii of gyration along the flow and the vorticity
directions.6 More difficult, but also more industrially relevant
experiments measure the fluid structure under in situ shear.
Molten polymers like polydimethylsiloxane (PDMS) and poly-
butadien (PBD) are popular examples, thanks to their low glass

Fig. 1 An entangled polymer chain under shear flow. Its structure is
defined by the distribution of distances between all monomer pairs (n, m).
Conceptually, and for the purpose of data analysis, it is subdivided into two (or
more) linear regimes, hr2

nmi p |n � m|, each an ideal random walk. On the
short scale (red ellipses), the anisotropy is just a few percent, but grows much
bigger on a large scale (blue ellipse). The chain gradually stretches along the
flow, and shrinks perpendicular to it.
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transition temperature and comparatively low viscosity. In situ
steady flow SANS experiments have not detected any anisotropy
of the form factor for either of these samples. The highest shear
rate for the PBD experiment7 in Couette geometry was Wi = 5.4
and for the PDMS experiment8 in cone-plate geometry it was
Wi = 0.8. The only in situ shear experiment that has shown
anisotropy of entangled polymers was performed in a Couette
cell with PS at Wi E 1, but since the relaxation time has not
been reported, the Weissenberg number is uncertain.9 Aniso-
tropy of 1.5 has also been detected in a dilute solution of long
but unentangled PS chains.10

Up to now, the form factor of entangled semi-dilute polymer
solutions has not been characterized by SANS under in situ
shear. The advantage of the semi-dilute condition is that it has
a lower viscosity and glass transition temperature than a melt,
facilitating its handling and enabling higher Wi. However,
shear induces massive concentration fluctuations, leading up
to complete demixing in the extreme case. The resulting SANS
signal contains a strong contribution from the structure
factor,11,12 hindering the single chain analysis.13 Fortunately,
it is possible to use deuteration to match the contrast between
the solvent and the polymer, fully canceling the inter-chain
contribution to scattering, even at high density.14

The scenarios where polymers may deform range from
dilute, to semi-dilute, to melts. Moreover, a strong anisotropy
can also be found in cross-linked polymer networks of gels and
rubbers,15,16 as well as nanocomposites like polymer–clay.17,18

Mechanically, these materials are probed in either shear or
extensional flow, applied in a steady, oscillatory, or stepwise
mode, or even a superposition of multiple stimuli. As a rule of
thumb, a strong deformation will stretch the polymer along
flow and shrink it perpendicular to flow. However, the detailed
shape of the form factor can have considerable differences in
the various cases listed above. While many isotropic theories
exist for equilibrium,19–21 anisotropic scattering patterns up to
now have been analyzed in mostly ad hoc fashion: fitting 1D
radial cuts,6 comparing angular sector averages,9 fitting ellipses
to isointensity curves,6 and fingerprinting with spherical
harmonics.4 In the present work, we develop a new approach
to extract the underlying real-space structure directly from the
data, not requiring any knowledge of the molecular motion.
The observed form factor originates from the MSD between the
monomers, which is a function of their index separation along
the chain, see Fig. 1. At equilibrium, this function is a straight
line (ideal random walk), while under a strong deformation it
becomes some other, unknown curve. Our main novelty is to
approximate this curve with a set of straight segments, or
layers. This discrete model converges to the exact mathematical
result when the number of segments is brought to infinity
(a textbook definition of the Riemann integral). Luckily, in real-
world experiments the MSD deviation from a perfect straight
line is quite small, almost never exceeding �2, so there is no
need for an infinity of parameters for a good description, and
only a few layers are sufficient. In this case, the model is
convenient to integrate analytically, and the resulting formula
is fitted to the 2D data, to determine the width and the slope of

each layer. This structure is then fitted to reveal a power-law of
x = 1.2, and that is our novel measure of structural non-affinity.

Experimental

An unlabeled polymer solution of C chains with N monomers
each is characterized by a quantity known as the structure
factor

SðqÞ ¼ 1

NC

XN
n¼1

XC
c¼1

e�iq�rnc

�����
�����
2

¼ Fj j2

NC
(1)

which is the modulus squared of the Fourier transform F of all
the monomer positions rnc. While there are (NC)2 terms in the
double sum, only the nearest neighbours of each scatterer
contribute to the structure, hence it is normalized by NC. With
this convention, a structureless fluid (i.e. ideal gas) has S(q) = 1.
In real fluids, one can measure deviations from this baseline
which is a signature of their molecular interactions.22 However,
the focus in this study is to obtain the single chain form factor,
defined as

PðqÞ ¼ 1

N2

XN
n¼1

e�iq�rn

�����
�����
2

(2)

with the normalization chosen to have P(q - 0) = 1. Using a
mixture of deuterated (D, phase 1) and hydrogenated (H, phase 2)
chains, it is possible to isolate the form factor P(q) even in dense
solutions where the chains strongly overlap. This method, called
the Zero Average Contrast, is described in the handbook ref. 14
(see eqn (35) on page 324), and is a standard SANS technique.
Here we briefly outline its derivation. The experimental scattering
cross-section from a sample of volume V consists of three terms:

dS
dO
¼ 1

V
bSF0 þ bDF1 þ bHF2j j2 (3)

where F0,1,2 are the Fourier transforms of the solvent, D, and H
monomer positions respectively, while bS,D,H are the corres-
ponding scattering lengths of each nuclear species. While the
volume v of one monomer and vS of one solvent molecule are in
general different, the system can be assumed to be incompressible,
leading to: vSF0 + vF = 0, where F = F1 + F2 is the Fourier transform of
all polymers as defined in eqn (1). The solvent term F0 is plugged
into eqn (3), leaving only the polymer part:

V

v2

� �
dS
dO
¼ r1F1 þ r2F2j j2 (4a)

=r1r2|F|2 + r1(r1 � r2)|F1|2 + r2(r2 � r1)|F2|2 (4b)

For convenience, the scattering length density (SLD) con-
trast has been defined as r1 = bD/v � bS/vS and r2 = bH/v � bS/vS

for the two labels. The Fourier transform squared of each phase
can be further decomposed into the diagonal (intra-chain) and
the off-diagonal (inter-chain) terms:

|F1|2 = C1N2P(q) + C1(C1 � 1)Q(q), (5)
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and similarly for F2 and F. Note that the total number of chains
C1 + C2 = C is fixed. The auxiliary function

QðqÞ ¼
XN
n;m¼1

e�iq�ran;bm
� �

aab (6a)

¼ NSðqÞ �N2PðqÞ
C � 1

(6b)

is the interference between any two different chains a a b.
The definition of Q(q) involves only the monomer positions,
not their SLD, since the contrast information has already been
factored out in eqn (4b). The weight in front of Q(q) is propor-
tional to C2, whereas the weight of P(q) has a C1 dependence,
and this difference enables the tuning of the relative contribu-
tions of the form and the structure factors. Eqn (6b) is plugged
into eqn (5), which is then plugged into eqn (4b), revealing the
scattered intensity in terms of the form and the structure
factors only:

f1 þ f2

v

� �
dS
dO
¼ r1 � r2ð Þ2f1f2NPðqÞ þ f1r1 þ f2r2ð Þ2SðqÞ

(7)

It is the same formula as used in other SANS studies.23

In particular, it shows that if we set the average contrast to
f1r1 + f2r2 = 0, the structure factor contribution S(q) vanishes,
since the three inter-chain signals from hPS–hPS, dPS–dPS, and
hPS–dPS add up to zero in this case.

Our sample was an entangled semi-dilute polymer solution,
with a volume fraction f1 = 0.172 of deuterated PS (575 kg mol�1,
N = 5127, PDI = 1.09) and f2 = 0.0998 of hydrogenated PS
(510 kg mol�1, N = 5000, PDI = 1.1), purchased from Polymer
Source. It was prepared by first dissolving the powdered PS mix
in a glass beaker with a large amount of deuterated toluene,
using a magnetic stirrer. After removing the stirrer, the solution
was left in a ventilated fume hood for several days until the
toluene has evaporated to the volume fraction quoted above,
which was determined by weighing the dry and the dissolved
polymer, minus the container. The detailed rheological char-
acterization of a similar sample has been reported in ref. 24.

In our region of interest, O(qR) = 1, the structure and the
form factors as defined in eqn (1) and (2) both have a similar
magnitude of O(S(q) E P(q)) = 1. Using the SLD values r1 = 0.47 �
1010 cm�2 and r2 = �4.5 � 1010 cm�2 we can estimate the ratio of
the two intensities as

f1r1 þ f2r2ð Þ2

r1 � r2ð Þ2f1f2N
¼ 6� 10�5 � 1 (8)

which is quite small, thanks also to the high degree of polymer-
ization N = 5000. Even though our system is not exactly contrast-
matched, the structure factor contribution is negligible beyond
q 40.04 nm�1, see Fig. 2. This quiescent data25 was recorded on
the instrument D11 (Institut Laue-Langevin, Grenoble, France)
providing a wide q range, in this case 0.004–4 nm�1, covering
distances from multi-chain clusters to a single monomer. Our
focus is on intermediate q values, which are well fitted with the

Debye function, eqn (16), establishing the radius of gyration to be
R = 27.12 nm. To assess the validity of this fit, we compare it with
literature data26 for dilute PS of the same molecular weight in
toluene RTOL = 29.9 nm (maximum swelling in a good solvent),
and in cyclohexane RCH = 20.2 nm (a theta solvent which fully
screens the excluded volume). Our semi-dilute solution of volume
fraction f = f1 + f2 = 0.27 is partially screened, so the radius is
estimated to be (1 � f)RTOL + fRCH = 27.3 nm, in agreement with
our data.

The form factor of an ideal random walk has a power law
behaviour of P p (qR)0 for qR { 1 and P p (qR)�2 for qR c 1,
as evidenced in Fig. 2. Eventually at high q the scattering starts
to probe correlations inside the blob of size O(l) = 1 nm, which
is a typical distance between the semi-dilute chains, called the
mesh size. Within the blob (ql c 1) the excluded volume
interactions are not screened, so the polymer form factor
changes towards the scaling of P p (ql)�5/3, which is a
signature of a self-avoiding random walk (see textbook ref. 27
and 28). In addition, the scattering from density fluctuations at
the chemical monomer level may become visible for the highest
q-values (not measured here). On the opposite side of the
spectrum, the ultra low q data also deviates from Debye,
this time due to scattering from very slowly relaxing density
inhomogeneities spanning large distances, likely hundreds of
chains or more.12 Extreme viscoelastic samples like ours are
difficult to fully equilibrate, as some residual flow persists for
many hours if not days (one experiment has been running for
almost 100 years29). Even when left perfectly still, the sample
may keep flowing due to an interplay of gravity and the capillary
forces between the narrow gap of the rheometer plates. This
can induce concentration fluctuations (see ref. 30–33), and
while their amplitude may be tiny, when integrated over a long
distance, a strong SANS signal can result at ultra low q.

Our shear experiments were conducted on PAXY (Labora-
toire Léon Brillouin, Saclay, France), with a narrower q range set
at 0.05–0.5 nm�1, where the scattering is fully described by the

Fig. 2 The scattering cross-section from a quiescent solution, multiplied
by q2 to reveal the ideal random walk character (flat line) of the chain form
factor. The solid black line is the Debye function, eqn (16), fitted to
R = 27.12 nm.
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Debye function. We have used a custom-made vertical sealed
cone-plate shear cell,34 designed for both SANS and NSE
instruments and allowing a smaller liquid volume than typical
Couette cells,9 which can be a considerable advantage for costly
and rare deuterated samples. It is also well suited for shearing
fluids which exhibit non-linear viscoelastic phenomena such
as the rod-climbing effect. A vertical cone-plate geometry is a
necessity for rheo-NSE and allows a direct measurement of both
structure (SANS) and dynamics (NSE) in the same setup. In our
experiment the shear rate was k = 300 s�1, corresponding to
Wi = 30. Data collection has lasted 4.25 h per spectrum, at a
temperature of 45 1C, which is the same as used at D11 for the
quiescent measurement.

In this article we only report data from the SANS experiment
carried over one day. After that, the experiment continued for
three more days with NSE, which will be a separate subject.
However, for full disclosure we note that after these four days of
shearing, we have spotted some wear of the cell sealing, causing
aluminum and teflon impurities to have leached into the
sample. Solid particles are known to give rise to Porod scatter-
ing of P p q�4, and fortunately there was no trace of it in
the range covered by PAXY, where the Debye law P p q�2

dominates. As the SANS data was collected during the first day
of shearing, the impurities at that stage must have been very
dilute and hence invisible to the beam. On top of that, the
particle size must have been much greater than the polymer
radius of gyration, falling outside of the SANS range. Such big
particles cannot interfere with the polymer dynamics, as that is
only possible in polymer-nanocomposites where the two com-
ponents are similar-sized.18 These specialty materials require
advanced chemical synthesis and cannot be produced by just
using mechanical friction to grind up some aluminum dust.
Therefore, even if we would have had a considerable percentage
of sample contamination, its effect could not have altered the
entanglement physics, but only lowered the overall polymer
density. This means that the actual Wi may have been 29
instead of 30 we claim. Either way, it is unlikely that these
impurities could have altered the polymer form factor beyond
the uncertainty of the fit (15%), as explained in the next section.

Results
Theory

Previous studies on sheared polymers have for the most part
focused on the deformation as a function of shear rate, or time
in the case of extensional flow.4 In the present experiment we
elucidate the lesser understood aspect, which is the structural,
or the q dependence. For this goal, the entire available beam-
time was devoted to only one shear rate Wi = 30, the highest
possible with the setup. In Fig. 3a we plot the 2D scattering
pattern under shear, divided by the quiescent signal. Aniso-
tropy at low q is clearly visible, showing that the chains stretch
along the flow and shrink along the vorticity, but the extent of
the deformation decreases as we probe deeper into the chain
interior (higher q). The observed signal originates from the

distribution function C(rnm) of the distance rnm = xı̂ + y;;̂ + zk̂
between the monomers n and m (we drop the subscript nm
from now on). In equilibrium, it is well described by a Gaussian
function (the normalization factor is not shown):

Cðr;Wi� 1Þ ¼ exp �x
2 þ y2 þ z2

2 n�mj jl2

� �
(9)

This result is exact for an infinite ideal random walk, and is very
often applied for real polymers too. Under an experimentally
reasonable amount of deformation, our assumption is that
the functional form of the distribution C remains close to a
Gaussian, but its shape is now a tilted ellipsoid rather than
a sphere:

Cðr;Wi\1Þ ¼ exp �1
2
Axxx

2 þ 2Axyxyþ Ayyy
2 þ Azzz

2
� �� �

(10)

The ellipse is specified by the anisotropy matrix Aij(|n � m|).
In other words, we account for the observed deformation of the
polymer form factor through a change of the Gaussian’s
dimensions and orientation, rather than a change of the
function itself. It is justified, since the scattering is mainly
sensitive to the width of the monomer distribution, while its
precise shape is less important. Nevertheless, for extreme deforma-
tions this assumption may break down, in which case we could
extend eqn (10), for example by adding higher order terms of the
Hermite expansion. This would introduce additional fitting para-
meters, which would enable an experimental determination of the
magnitude of those extra terms. For now, only the zeroth order
term (a regular Gaussian) is considered, as it will be seen to already
produce a satisfactory fit to the data. In this case, the scattering
contribution from two monomers is (see Appendix 2.1 in ref. 28):

heiq�ri = e�h(q�r)2i/2 (11)

The argument of the exponent, which we call the MSD function,

h(q�r)2i = hx2iq2
x + 2hxyiqxqy + hy2iq2

y + hz2iq2
z (12)

contains 4 averages, derived from the 4 components of the
anisotropy matrix Aij:

x2
� �
y2
� �
xyh i

z2
� �

0
BBBBBB@

1
CCCCCCA
¼

D=Axx

D
	
Ayy

ð1�DÞ
	
Axy

1=Azz

0
BBBBBB@

1
CCCCCCA

(13)

where we have defined D = 1/(1 � Axy
2/(AxxAyy)) for brevity. We

now plug in eqn (11) to eqn (2), which in the continuous limit
becomes a double integral

PðqÞ ¼ 1

N2

ðN
0

dn

ðN
0

dm exp

�
�
�
q � rnmð Þ2

�
2

�
(14)

An exact analytical solution is available in equilibrium (see
Section 2.4 in ref. 28), since the argument

h(q�rnm)2i/2 = a|n � m|/N (15)

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
N

ov
em

be
r 

20
18

. D
ow

nl
oa

de
d 

on
 1

0/
23

/2
02

5 
6:

55
:5

2 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8sm02255k


This journal is©The Royal Society of Chemistry 2019 Soft Matter, 2019, 15, 371--380 | 375

is then a straight line with a constant dimensionless slope
a = (qR)2, where R2 = Nl2/6 = (27.12 nm)2 is the equilibrium
radius of gyration. The result is known as the Debye function:

PisoðqÞ ¼
2 e�a � 1þ að Þ

a2
(16)

Under shear, the slope is not constant, as evidenced by the
q-dependence of the anisotropy, Fig. 3a. The functional form of
the MSD dependence on |n � m| is due to the specific
molecular and topological interactions, and at present no
suitable theory is available for entangled polymer solutions.
Luckily, this information is not necessary to fit the SANS data,

and we propose to integrate eqn (14) by approximating the
unknown MSD function with a series of straight lines. Any
reasonable curve can be approximated to an arbitrarily high
accuracy with a set of ever shorter segments. In this study we
only use two of them:

�
q � rnmð Þ2

�
2

¼ b n�mj j=N; n�mj joN1

cjn�mj=N þ ðb� cÞn; n�mj j4N1



(17)

Here N1 is the first layer ‘‘thickness’’, specified through the
fitting parameter 0 o (n = N1/N) o 1. In our cone-plate

Fig. 3 (a–c) The scattered intensity under shear P(q), divided by the quiescent signal Piso(q). This plot removes the Debye envelope 1/q2, highlighting the
structural changes induced by the shear. The data (a) is fitted with the analytical function (b), and their difference is plotted in (c), showing that the fit
accounts for 85% of the signal or more. (d) The inferred mean square distance (MSD) between two monomers, for different directions probed by the
scattering vector q. The dotted lines are a sketch of what the true function may look like. The straight black lines show our piecewise approximation,
eqn (17). The dashed black line is the isotropic MSD found at equilibrium, eqn (15).

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
N

ov
em

be
r 

20
18

. D
ow

nl
oa

de
d 

on
 1

0/
23

/2
02

5 
6:

55
:5

2 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8sm02255k


376 | Soft Matter, 2019, 15, 371--380 This journal is©The Royal Society of Chemistry 2019

experiment, only the xz plane could be measured, so the slopes
from eqn (12) reduce to

b = R2[(aqx)2 + (bqz)
2] (18)

c = R2[(gqx)2 + (dqz)
2] (19)

although if 3D data was available from Couette or ex situ
experiments, the full eqn (12) would be retained. Now the two
slopes in two dimensions are described by four fitting para-
meters (a, b, g, d), which trace back to the original inter-
monomer distribution, eqn (10). Our generic model is plugged
into the scattering function, eqn (14), and integrated piece
by piece to yield:

PðqÞ ¼ 2

b2

�
b� 1þ e�nb�

1þ ½ b=cð Þ2�1�e n�1ð Þc þ 1� nð Þ b=cð Þ b� cð Þ
n o� (20)

which is our main result. In principle, more than two layers
can be added, keeping in mind that every new layer introduces
three fitting parameters (its thickness and the two (x, z)
slopes). Although the formulas become tedious with extra
layers, the analytical solution always exists and is straight-
forward to obtain with symbolic algebra software (Matlab,
Mathematica, etc.).

Experimental application

Eqn (20) is divided by its isotropic counterpart, eqn (16), and
fitted in 2D to the experimental data shown in Fig. 3a. The five
fitting parameters are listed in Table 1. They were obtained by a
standard genetic fitting algorithm. Using these values, eqn (20)
is plotted in Fig. 3b and is seen to match the experimental data
reasonably well. To assess the quality of the fit, we show the
residuals (difference between the data and the fit) in Fig. 3c.
Admittedly, some structure remains unfitted, mostly the low qx

area with a difference of 0.05. In comparison, the amplitude of
the signal change in the same area is 0.3, meaning that our fit
accounts for at least 0.25/0.3 = 85% of the observed phenom-
enon. The remainder is likely to be a combination of some
structure factor contribution due to imperfect contrast-
matching, impurities, instrument bias, and an inexact fitting
function.

Using the parameters from Table 1, the piecewise model of
eqn (17) is plotted in Fig. 3d with solid black lines for the qx and
qz directions. Quite obviously, a realistic polymer structure
cannot have sharp kinks, so we have fitted two smooth curves
(dotted red and blue) to our piecewise model. These fits are

made with a semi-empirical function�
q � rnmð Þ2

�
2 qR2ð Þ ¼ n�mj j

N
þ Bxqxð Þ2� Bzqzð Þ2

q2

 !
n�m

N

��� ���x (21)

First, the anisotropic amplitudes are fixed at Bx ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
na2 þ ð1� nÞg2

p
¼ 1:51 and Bz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nb2 þ ð1� nÞd2

p
¼ 0:85, to

exactly match the endpoints of the piecewise eqn (17). Second,
the exponent x is determined by minimizing the difference
between the piecewise and the smooth curves. The result is
x = 1.19 and x = 1.18 for the x and z axes respectively. Optimizing
for both axes simultaneously still leaves us with 1.19, since the
z-axis amplitude is much smaller. This semi-empirical expression
requires merely three parameters (Bx, Bz, x) to describe the entire
experiment.

Stress estimation

SANS is a tool to measure structure on the large scale of the
whole molecule. Mechanical stress, on the other hand, arises
from the structure on the short scale of one molecular bond.
Yet, there is considerable overlap between these two techni-
ques, and we shall now attempt to extract the stress tensor
values from our fit of the SANS data. First, SANS is measured in
units of length alone, as the intensity is given in 1 cm�1, and
the q-vector is in 1 nm�1. In contrast, stress is measured in
units of Pa, or N m�2, so clearly some additional information
is required to connect these two methods. Coarse-grained
polymers are often described by a mechanical model of beads
joined by harmonic springs, in which case the stress tensor is
derived to be:35

sij ¼
rNAkBT

3Mr

� �
3 rirj
� �
l2

(22)

where ri is the bond vector in the ith direction i = (x, y, z). The
pre-factor contains the polymer mass density, the Avogadro
number, the thermal energy, and the molecular mass of a
monomer. The product in the big parentheses amounts to
s0 = 2 � 106 Pa for our polystyrene solution. To extract the
bond length from SANS, we go back to eqn (17), which says that
at short distances, the polymer has the structure of an ideal
random walk of step length hrx

2i = (al)2/3 and hrz
2i = (bl)2/3

along x and z respectively. Plugging this into eqn (22), we obtain
a rheological quantity called the third normal stress difference

N3 = sxx � szz = s0(a2 � b2) = 1.3 � 105 Pa (23)

Since we could not measure this quantity with our shear
apparatus, we compare it with the available literature data of a
similar polymer. Ref. 36 reports oscillatory shear results for
polyisoprene of Mw = 170 g mol�1, which is 3 times shorter than
our polystyrene, but also 3 times denser as they have used a
melt instead of a semi-dilute solution. Judging from the dynamical
moduli data in Fig. 3c of that study, the cross-over frequency,
which corresponds to Wi = 1, is at oaT = 6 � 10�3. To compare
with our conditions of Wi = 30, we look at their Fig. 4c and
frequency oaT = 0.18. Reading off the stress axis we find
N3 = 6 � 104 Pa, which is half of the magnitude that we could

Table 1 Chain deformation parameters

Slope x Slope z Thickness

Layer 1 (high q) a = 1.005 b = 0.976 n = 0.09
Layer 2 (low q) g = 1.556 d = 0.835 1 � n = 0.91
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infer from our piecewise fit of SANS. It shows that our structural
data analysis is reasonably consistent with an independent
rheology perspective. We attribute the remaining discrepancy
of O(2) partly to the difference of sample chemistry, but mostly
to the uncertainty of the SANS data in the high q region, which
is the important bit for calculating the stress. A more precise
comparison with rheology may become available in the future,
by improving the resolution and the counting time of the
SANS setup, and by collecting data in more directions than
just the xz plane.

Discussion

Our experiment can be compared to an earlier work in ref. 6,
where an entangled PS melt has been sheared, quenched, and
measured with ex situ SANS, using the same PAXY instrument.
Their data does not show any change along the vorticity axis,
whereas we observe a clear increase in scattering (chain shrink-
age), although the effect is (g � 1)/(1 � d) = 3.37 times weaker
than the stretching seen along the flow axis (see Table 1).
This discrepancy could be explained by their slower shear rate
of Wi = 4, compared to ours Wi = 30. The anisotropy in the melt
case was thus entirely due to the change along the flow axis.
It was quantified by fitting ellipses to the scattering data, and
taking the ratio of their axes. In the flow-vorticity plane data is
available for Wi E 1, where anisotropy is seen to decrease from
1.39 to 1.23, the value at which it saturates with increasing q.
In contrast, the anisotropy in our data decreases continuously
from g/d = 1.86 to a/b = 1.03, and is almost perfectly isotropic
at high q. To summarize, shear experiments on ex situ melts
and in situ semi-dilute solutions bear qualitative similarities at
low q, but the universality breaks down at high q, where we see
almost no saturation or plateau of the anisotropy.

We have extracted the chain deformation parameters,
Table 1, using a purely structural model, without any recourse
to molecular theories. Nevertheless, to understand why the
chain deforms in this particular way, a molecular explanation
is needed. Currently no definitive theory exists, but the main
contender in this arena is GLaMM,37 a tube theory38 with several
modifications. In essence, the many-chain fluid is simplified with
just a single chain trapped in a tube, which is the mean field of
other chains, and the overall dynamics are described in a self-
consistent way. This model can accurately reproduce the rheology
of entangled polymer melts, although SANS studies have not
reached a consensus yet, with some authors claiming a strong
support of tube theory,39 others report no evidence of any tubes,40

and others still demonstrate kinetic trends opposite to theoretical
predictions.4 The debate centers on how exactly does the tube
relax, and how is it affected by a strong deformation.

There is considerable universality between entangled polymer
melts and semi-dilute solutions, especially in the linear regime
Wi o 1, where GLaMM could be applied. At higher shear the
universality breaks down, as polymer solutions display enhanced
concentration fluctuations, which can reach length scales con-
siderably larger than the molecule radius of gyration.31,33,41–43

Therefore, a single average chain in a tube may not be enough to
describe the whole fluid. Furthermore, the shape of an individual
molecule is known to fluctuate between highly stretched and
collapsed states, a phenomenon called tumbling dynamics.44

The mean field assumption, a core tenet of tube theory, becomes
questionable given such inhomogeneities. Finally, we note that
the form factor measured by SANS is a fundamentally static
quantity (contains no units of time), and could be consistent
with many different dynamical models. Given the above limita-
tions, it would be premature to interpret our findings in terms of
the current tube theories.

Instead, we offer an explanation based on the fact that an
entangled polymer liquid is an intermediate case between a
rubber and an ideal Rouse chain. A piece of rubber responds to
stress with an affine deformation, meaning that the exponent
in eqn (21) is x = 1. It is widely believed that entangled polymers,
at a large scale, have this rubber-like affine response.16,45 How-
ever, on the short scale, a non-affine liquid-like response is
expected. In this regime, unentangled polymers are well
described by the Rouse model, which contains the following
forces: spring, random, and shear (see Chapter 4 in ref. 28 for
details):

@Xp

@t
¼ �kp

zp
Xp þ

fp

zp
þ k ;̂ � Xp

� �
ı̂ (24)

Its solution gives the mean square value of the Rouse modes
Xp(t) in the thermodynamic limit t - N:

�
q � Xp

� �2� ¼ kBT

kp
q2 þ q2x

kzp
	
kp

� �2
2

" #
(25)

in agreement with ref. 46. We use standard definitions for the
mode friction zp = 2Nz and the mode stiffness kp = 6p2kBTp2/(Nl2).
The above equation shows that the mean square width of a
harmonic dumbbell is elongated by a factor of 1 + (ktp)2/2,
where tp = zp/kp is its thermal relaxation time. The quadratic
dependence on the dimensionless shear rate (ktp)2 = Wi2 is
expected to hold even in the complete multi-chain theory,
since it is the first non-zero term in the Taylor expansion
of any reasonably behaved function, and is sufficient to
describe the effect as long as the shear is not too strong.
In the future a much stronger shear may become accessible, in
which case we would simply argue for adding a Wi4 term. The
odd terms are all zero, because reversing the flow Wi - �Wi
is equivalent to flipping the axis qx - �qx, which does not
affect the physics.

The pairwise distance for polymers is obtained by summing
all the Rouse modes (dumbbells):

rnm ¼ 2
X1
p¼1

Xp cos ppn=Nð Þ � cos ppm=Nð Þ½ � (26)
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and this leads to the chain structure�
q � rnmð Þ2

�
2 qR2ð Þ ¼ n�mj j

N
þ qx

2

q2

� �
kt1ð Þ2

�
X1
p¼1

cosðppn=NÞ � cos ppm=Nð Þ½ �2

p2p6

(27a)

¼ mþ p4

180

qxkt1m
q

� �2

1þ m� ðm=2Þ2 � 2m3 þ m4
� �

(27b)

where m = |n � m|/N has been defined for brevity. The above
equation is the exact analytical solution of the Rouse chain
structure under shear, and is reported here for the first time.
The summation of the Fourier series, eqn (27a), can be per-
formed using formulas tabulated in ref. 47. We can see that for
small separations m { 1 where the Rouse model should have
some validity, it predicts the deformation exponent x = 2.
Hence, our fitted value of x = 1.19 lies between the rubber (1)
and the liquid (2) predictions, a reasonable outcome for a
viscoelastic material.

Conclusion

In this study we have performed the first SANS experiment on
the form factor of entangled semi-dilute polymers under in situ
shear. We have verified our quiescent result against an inter-
polation of literature measurements in different solvents. We
have then compared our shear result with earlier ex situ data
and found a qualitative agreement. To allow a deeper analysis,
we have derived an analytical fitting function for SANS in 3D,
which is the major novelty of this work. From the fit we have
shown that the molecular deformation follows a power law
between an elastic rubber and a Rouse liquid. In addition, we
have used our SANS fit to calculate the rheological third normal
stress difference, and compared the outcome with the literature
data. The match was reasonably good, which is encouraging
for future studies, as it is now possible to directly connect the
SANS spectra with mechanical stress, in both shear and normal
components. Our fit is independent of molecular theories, and
is therefore applicable to deformed polymers in a wide variety
of situations: dilute, semi-dilute, and melts, as well as cross-
linked materials like rubbers and gels, in addition to polymer-
nanoparticle composites. For such complex materials, far from
equilibrium, reliable theories and simulations are yet to be
developed. Traditionally, one has to postulate (guess) a theory,
calculate the resulting SANS, and compare it with experiment,
until a good match is found. Our piecewise fit takes the guesswork
out of the equation, and instead directly provides the real-space
structure, from which a theory is more straightforward to deduce.
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