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Volume-controlled cavity expansion for probing
of local elastic properties in soft materials

Shabnam Raayai-Ardakani, a Zhantao Chen,b Darla Rachelle Earla and
Tal Cohen *ab

Cavity expansion can be used to measure the local nonlinear elastic properties in soft materials,

regardless of the specific damage or instability mechanism that it may ultimately induce. To that end, we

introduce a volume-controlled cavity expansion procedure and an accompanying method that builds on

the Cavitation Rheology technique [J. A. Zimberlin et al., Soft Matter, 2007, 3, 763–767], but without

relying on the maximum recorded pressure. This is achieved by determining an effective radius of the

cavity that is based on the volume measurements, and is further supported by numerical simulations.

Applying this method to PDMS samples, we show that it consistently collapses the experimental curves

to the theoretical prediction of cavity expansion prior to the occurrence of fracture or cavitation, thus

resulting in high precision measurement with less than 5% of scatter and good agreement with results

obtained via conventional techniques. Moreover, since it does not require visual tracking of the cavity,

this technique can be applied to measure the nonlinear elastic response in opaque samples.

1 Introduction

The ability to accurately measure the elastic properties of soft
and biological materials can significantly advance our under-
standing of their mechanical behavior and can be applied in
diagnostic applications to distinguish between healthy and
diseased tissue. Elastic properties of biological materials are
defined by the hierarchical organization in the tissue, hence
they can be directly influenced by pathological changes or
disease.1,2 Previous research has shown that changes in stiffness
can indicate various diseases such as cancer,3,4 atherosclerosis,5–8

fibrosis,9 and glaucoma.10,11 Thus, imaging based methods such
as elastography have been previously introduced and used to
measure the elastic modulus of soft tissues in vivo.12,13 While
such methods are able to qualitatively differ between stiff and
soft regions in a tissue, which can be used comparatively, they are
not able to produce reliable quantitative measures.14,15

Indentation has also been employed for measuring the
elastic properties of soft materials.2,3,15 In this method the
sample is placed under an indenter and the displacement
under an applied force is measured. Then, using the relation-
ship between the displacement of the body under indenters of
different shapes and the total applied force (found theoretically

or through finite element modeling), the elastic modulus of the
material is extracted.2,3,15–17 However, such methods usually require
the material to be removed from its natural environment.

Tensile testing also requires the specimen to be cut or prepared
in specific shapes. While this is easily applicable to metals and
hard plastics, it becomes a tedious task in the case of soft and
biological materials and results in limited reproducibility.
Moreover, when it comes to biological organs and tissue, such
tests would require pieces to be cut, not only damaging the
tissue but also removing and testing the piece in an environment
different from its habitat, thus affecting its elastic response.18 This
heavily limits the capability of the current mechanical testing to be
effectively used as a diagnostics tool for bio-medical researchers,
medical professionals, or even to obtain quantitative measures to
correlate with elastography tests.

To remedy this limitation, inspired by the cavitation phenom-
enon and the accompanying theory, Crosby and co-workers18–24

have developed the method of Cavitation Rheology (CR) to measure
the elastic modulus and the surface energy of soft nonlinear
materials and have demonstrated its applicability for various gels,
biological materials, and even for single cells.24 In this method, by
pressure-controlled inflation, a cavity is expanded at the tip of a
needle. Through this inflation process, the pressure inside the cavity
reaches a maximum that theoretically corresponds to the predicted
cavitation instability limit, which can be used to determine the
elastic modulus.18–23 This method has been successfully applied for
measuring the elastic properties of biological tissue in vivo and, in
particular, for the case of vitreous inside an eye. While reporting on
the differences in the elastic modulus of the cortex and the nucleus,
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it was shown that removing the vitreous from the eye results in a
reduction of the elastic modulus.18,22

Despite its success in the case of the vitreous and other soft
and biological materials, in several instances the CR technique
results in fracture of the sample prior to reaching the cavitation
instability limit. Hashemnejad and Kundu25 have previously
attempted to theoretically explain their experimental results
in polymers that exhibit such failure, however they report
questionably large surface energies. In a separate study, Pavlovskly
et al.26 have performed CR experiments on poly(ethylene oxide)
(PEO) mixed in water (at various weight ratios) and show that for the
CR results to be comparable to results extracted from conventional
rheometry techniques, a correction factor in the range 0.7–1.9 is
required. Therefore, with materials that fracture before reaching the
cavitation instability, it is difficult to obtain quantitative measures.
Moreover, it cannot be determined a priori which expansion
mechanism (i.e. elastic or crack propagation) the material is going
to follow. Nonetheless, considering the simplicity of the CR method
that can be applied in vivo and the availability of theoretical models
of the material response in cavity expansion, it is still of interest to
be able to use the CR technique as a method of measuring the local
material properties, especially the elastic modulus. Thus, in this
work, we explore a volume-controlled CR technique to precisely
measure the local elastic properties of soft materials, from
gathered pressure–volume results prior to the cavitation or
fracture of the sample.

The paper is organized as follows: in Section 2 we present a
summary of observations made using the conventional CR
technique, followed by a theoretical formulation in Section 3.
Next, in Section 4 we explain the experimental setup for our
custom-designed volume-controlled CR method and the calibration
technique used to measure the pressure–volume results from the
raw data collected. In Section 5, we propose a method for analyzing
the results which allows us to find the elastic properties of
the samples by introducing an effective length scale of the
cavity and fitting the appropriate constitutive model to the

experimental results. Then in Section 6 we present the results
of the experiments performed on PDMS samples with various
degrees of base to cross-linker ratios and the elastic properties
extracted using the proposed analysis. Lastly, in Section 7 we
summarize the key points of this work.

2 Observations

With a custom designed CR setup (which will be discussed in
detail in Section 4), we have performed quasi-static volume
controlled experiments on PDMS samples of varying base :
cross-linker ratios, where the magnitude of the gauge pressure,
and volume of the injected fluid are recorded as a function of
time. For example the results of the case of a PDMS sample with
44 : 1 base : cross-linker ratio are shown in Fig. 1a in the form of
pressure as a function of time (volume change is linear with
time). In addition, snapshots of the cavity at different time
instances (every half a second) are shown above the figure
(working fluid is dyed red to be distinguished from the trans-
parent sample). Notice in the first snapshot (t = 0 s) an initial
incision is already apparent; its shape and size are dependent
on the experimental execution, and on the needle properties. In
the beginning, as the cavity is filled (without any form of elastic
expansion), no pressure change is recorded inside the cavity,
however, after B0.2 s the initial cavity is fully filled and the
additional injected volume will result in an increase of pressure
inside the cavity. While, it is theoretically expected that the
pressure monotonically increases up to a peak value, we notice
that the pressure follows a non-monotonic and non-smooth
path, with multiple local maxima visible in the results. This
makes it difficult to choose an apparent maximum to compare
with the maximum in the theory, as done in the conventional
CR technique.

To evaluate the applicability of the conventional CR technique
we apply the method to PDMS samples of different base : cross-
linker ratios and compare them with results of tensile test

Fig. 1 (a) Time evolution of the pressure in a cavity in a PDMS sample with 44 : 1 base : cross-linker ratio, and snapshots of the cavity at every half second.
(b) Snapshots of the cavity shape from five different sides (at t = 71 [s]), showing a non-spherical geometry due to the fracture propagation throughout the
cavity expansion. The experimental setup is detailed in Section 4.1.
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measurements (with dog-bone shaped specimens mounted on
an Instron universal testing machine) and with values reported
in literature.27 As seen in Fig. 2, the CR technique (analyzed
using the maximum recorded pressure) consistently measures
an elastic modulus lower than the results measured via tensile
testing. In addition, scatter in the measurements of the maximum
pressure leads to rather large error bars on the figure.

Due to the non-smooth and non-monotonic behavior, it is
also not clear whether the cavity growth is solely due to the
elastic expansion (as predicted by the cavitation theory), or if it
involves irreversible processes, such as crack propagation.28,29

Although the snapshots of the cavity expansion suggest that the
cavity is expanding in a nearly spherical shape, snapshots of the
final cavity shape taken from 5 different sides of the sample (as
shown in Fig. 1b) clearly show that the expansion is due to a
combination of fracture and elastic expansion.

Ultimately, we aim to design a technique to extract the
constitutive response of the material without relying on the
visual tracking of the cavity expansion process. Based on these
observations, we find that to be able to consistently do so, we
must eliminate issues related to the specific execution of the
experiments and the initial incision. Additionally, it is desirable
to use the pressure–volume curves without a priori assumption
on the instability mechanism.

3 Theoretical formulation

Based on our observations, we seek to determine the material
properties by employing a method that is not based on the
cavitation instability limit. Therefore, we are interested in
studying the mechanical response prior to its occurrence.

Although cavitation literature often considers an unbounded
body, for the practical application considered here we aim to
determine the influence of the dimension of the body and the
initial cavity size. The geometry of a finite body undergoing

spherically symmetric expansion is illustrated in Fig. 3a. The
radial coordinate in the initial and deformed configurations is
defined by R and r, respectively. The corresponding inner and
outer radii of the body in the undeformed and deformed
configurations are A, B and a, b, respectively. The circumferential
stretch is ly = lf = r/R and we denote its value at the cavity wall
by l = a/A.

Limiting our attention to incompressible materials, we can
write the radial stretch lr = ly

�2. Additionally, for any spherical
sub-region incompressibility implies r3 � a3 = R3 � A3, which
for the entire body reads

b3 � a3 = B3 � A3. (1)

Accordingly, the circumferential stretch at the outer radius of
the body is

lb ¼
b

B
¼ 1þ l3 � 1

� � A

B

� �3
 !1=3

: (2)

Now, considering a material whose response is modeled by
an arbitrary free energy density function W = Ŵ(lr,ly,lf), which
is written here as a function of the principal stretch components,
pressure applied at the cavity wall is readily derived in the
integral form

p ¼
ðlb
l

W 0ðlyÞ
1� ly3

dly (3)

where W(ly) = Ŵ(ly
�2,ly,ly). (See Appendix for the derivation.)

The above equation is a general result that applies for any
incompressible isotropic hyperelastic material. It reduces to the
case of an initially vanishing cavity with respect to the size of
the body (i.e. B/A - N) when lb = 1

p ¼
ð1
l

W 0ðlyÞ
1� ly3

dly (4)

In the present work we will demonstrate our technique using
the noe-Hookean model, since it is found to be well suited to
capture the response of PDMS. Nonetheless, any alternative
constitutive response can be considered. Several such solutions
are available in the literature for both quasi-static and dynamic
expansion. Some example are; Mooney–Rivlin (compressible and
incompressible),30,31 power law,32 Blatz-Ko,33 elastoplastic,34–37

generalized Varga material,38 composite and anisotropic non-
linear materials,39–41 viscoelastic,42 and porous elastoplastic.43

Although our formulation applies for any hyperelastic con-
stitutive relation, our analysis of the technique, presented in
Sections 5 and 6, has been conducted for a family of materials
whose response can be determined by a single elastic coefficient. If
multiple material coefficients need to be determined from the cavity
expansion procedure, a more complex fitting algorithm should
be employed (compared to the one detailed in Section 5.2).
Nonetheless, a similar approach can be used.

The special case of cavity expansion in an unbounded neo-
Hookean body (B/A - N) has been considered by several
researchers.44–48 Then the energy density has the form Ŵ =
(E/6)(lr

2 + ly
2 + lf

2 � 3) with E being the elastic modulus at

Fig. 2 Comparison between the elastic moduli of PDMS samples
measured using the CR analysis proposed in this paper and the results of
conventional CR method (denoted by circles), tensile measurements, and
previous work reported by Wang and coworkers.27 Results of the current
method are discussed in Section 6.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
D

ec
em

be
r 

20
18

. D
ow

nl
oa

de
d 

on
 9

/2
1/

20
24

 1
0:

01
:4

0 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8sm02142b


384 | Soft Matter, 2019, 15, 381--392 This journal is©The Royal Society of Chemistry 2019

small strains, and by eqn (4) the internal pressure ( p) can be
written as

p

E
¼ 5

6
� 2

3l
� 1

6l4
(5)

We plot eqn (5) using the red curve in Fig. 3b showing a
monotonic increase of pressure as the cavity expands (i.e.
l increases), up to an asymptotic limit of p = 5/6E at which
the cavity grows indefinitely. This phenomenon is known as the
cavitation instability limit and was first reported by Gent and
Lindley.44 They discussed it in terms of the cracking stress in
cylindrical test samples of vulcanized rubber and identified that
the measured cracking stresses were linearly dependent on the
elastic modulus rather than the extensibility. Later, Lindsey49

discussed the cavitation phenomenon in terms of fracture and
nucleation of a point of weakness in the material. The strong
relationship between cavitation and fracture continues to be indi-
cated in recent years. Lin and Hui50 studied the cavity inflation for
various constitutive equations in terms of crack growth in soft
materials and energy release rate during the cavity expansion. Kang
et al.51 used finite element modeling to investigate the propagation
of a ring crack in a spherical cavity and the effect of the crack size
on the stable and unstable crack propagation. In addition, based
on experimental observations of the nucleation of internal cavities
and their transition to cracks, at high spatial and temporal resolu-
tions, Poulain et al.29 conclude that the internal damage in soft
material should be viewed as a fracture phenomenon.

A relation for the internal pressure for the case of a finite neo-
Hookean body is readily derived from eqn (3) and written as†

p

E
¼ 1

6
lb�4 þ 4lb�1 � l�4 � 4l�1
� �

: (6)

The pressure as function of l (eqn 6), for bodies with various
B/A ratios are plotted in Fig. 3b. It is shown that in contrast to
the case with B/A -N, the pressure has a non-monotonic behavior

and goes through a maximum as l is increased. The location of the
maximum is highly sensitive to the radii ratio. The sensitivities of
the maximum pressure pmax and the corresponding stretch lmax are
presented in Fig. 3c, showing that up to B/A E 100 the maxima are
clearly smaller than the asymptotic limit for the case of an infinite
body. As B/A is increased, the stretch at which the maximum
pressure takes place keeps increasing and for B/A 4 100, lmax is
expected to be larger than 27 (or a strain of 2600%). Notice that
although sensitivity of the instability limit is considerable, in
smaller ranges of the stretch (i.e. l o 3), the curves of p–l for
bodies of B/A 4 10 show nearly no sensitivity to the size as
presented in Fig. 3b. Although we have demonstrated this point
for the neo-Hookean material, based on Saint-Venant’s principle
it is possible to determine a range of stretches in which the
pressure is insensitive to the outer dimension of the body for any
hyperelastic material with sufficiently large radii ratio B/A. Within
this range we can employ eqn (4).

The conventional CR method measures the elastic modulus
of soft materials18–23 by determining the value of the maximum
pressure from the experiment and comparing it with the asymptotic
maximum predicted by the theory, which for the case of a neo-
Hookean material is found as E = 6/5pmax.‡ This assumption is valid
as long as B/A c 1, as assumed in the conventional CR technique.
In the present study, to eliminate the effect of the sample
dimensions, we will present a method for employing the experi-
mental data within a limited range of stretch prior to instability.
For the neo-Hookean material this range is 1 o l o 3.

4 Experimental method

Based on conclusions of the theoretical investigation, it is clear
that the pressure alone is insufficient to determine the state of
the cavity. Hence, we have developed an experimental setup

Fig. 3 (a) Schematic illustration of the cavity expansion problem. (b) Curves of pressure as a function of stretch calculated using eqn (2) and (6) with
different radii ratios B/A. In this plot pressure is normalized by the elastic modulus and the dashed line shows the asymptotic limit for the case of infinitely
large geometries. (c) The maximum pressure pmax and the corresponding stretch lmax at onset of the instability for varying B/A values.

† For the full derivation of this formula see also ref. 52.
‡ This relation was applied to determine the elastic modulus shown in Fig. 2, by
circle markers. It is obtained from (5) with l - N.
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that allows us to conduct volume-controlled cavity expansion
experiments and to extract the cavity pressure and corres-
ponding volume with high precision.

4.1 Experimental setup

Our custom designed CR setup consists of a set of two attach-
ments to an Instron universal testing machine as shown in
Fig. 4a. The bottom attachment consists of two columns hold-
ing a horizontal platform. This part is stationary and attached
to the optical breadboard at the base of the Instron machine.
The flange of the syringe slides through the opening in the
horizontal platform keeping the syringe fixed. This setup allows
for both downward and upward movement of the piston (i.e.
fluid injection and withdrawal). The top attachment is connected to
the load cell and moves with the Instron crosshead. The plunger of
the syringe is fixed to the top attachment and thus its movement is
controlled and recorded with the movement of the crosshead. These
two attachments turn the Instron machine into a customized
syringe pump for the purpose of the CR experiments. In all the
experiments 3 mL BD syringes were used (internal diameter of
D = 8.66 mm). Any incompressible fluid can be used in these
volume-controlled experiments. The reported tests were conducted
using glycerol (dyed in red for visualization purposes).

A manual vertical translation stage (Optics Focus) is fixed to
the base of the machine (shown in Fig. 4a) and is used to move
the sample up and down to insert the fixed needle into the sample.
Hence, although the bottom of the sample is kept stationary, it is
not confined on any of the other five faces, to obtain a closer
resemblance to a traction-free boundary condition on the samples.

4.2 Pressure calibration

The Instron testing machine gives us the ability to precisely
control the movement (i.e. vertical location of the plunger, z)
and thus the volumetric fluid discharge from the syringe and
needle system. The load cell of the Instron machine allows for

accurate measurement of the force (F) applied to the plunger
(shown in the free body diagram of Fig. 4b). The measured force
is then used to find the pressure inside the cavity. Initially the
load cell is balanced to zero and using hydrostatic formulation
for the working fluid we can write the gauge pressure p0 as rgz0,
where r is the density of the working fluid, g is the gravitational
acceleration, and z0 is the initial vertical location with respect to
the tip of the syringe (as shown in Fig. 4b). Then, after the start
of the experiment, as the crosshead is lowered to inflate the
cavity (by injecting the working fluid) the load cell records the
force F exerted on the plunger. In addition, there is a frictional
force between the plunger tip and the internal surface of the
barrel (Ff,plunger) and another frictional force between the fluid
and the needle/syringe walls (Ff,fluid) as shown on the free-body
diagram of Fig. 4b. Combining these two frictional components
into Ff = Ff,plunger + Ff,fluid, during the experiment, the gauge
pressure in the cavity is found as p1 = rgz1 + (F � Ff)/S where S is
the cross sectional area of the syringe piston (i.e. the cross
sectional area of the inside of the barrel). Therefore, using the
above relations, pressure acting on the cavity (corresponding to
p in eqn (5)) is found as

p ¼ p1 � p0 ¼ rgðz1 � z0Þ þ
F � Ff

S
(7)

Among the two terms in the above equation, the first term due to
hydrostatic variations is negligibly small compared to the static
pressure due to the force applied to the plunger. In all the
experiments presented in the upcoming sections, the plunger is
only lowered by a maximum distance of 5 mm. Thus with Glycerol
as the working fluid (r = 1258 kg m�3),53,54 the hydrostatic term is
always smaller than 0.062 kPa. Therefore, throughout this work,
only the pressure due to the forces applied to the piston are used to
calculate the pressure inside the fluid cavity

p ¼ F � Ff

S
: (8)

Fig. 4 (a) Experimental setup attached to an Instron universal testing machine. (b) Free body diagram of the CR setup used in this work. The figure on the
left presents the initial state at rest, and the figure on the right presents the setup and the loads during the test. The height of the piston is shown with
respect to the end of the needle, however the Instron measures the displacement as the difference of the current height and the initial height (Dz = z0� z1).
(c) Comparison of the measured pressure by a pressure sensor and the pressure calculated from the Instron measurements using the calibration discussed
here with fluid filled syringe connected to an air-filled tube in both upward and downward motion of the Instron crosshead.
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To measure the total frictional force in the system (between
the plunger tip and the syringe barrel, as well as between fluid
and the walls), we perform an identical test as the one
performed in the CR measurements, but without the sample
attached to the system. With the needle open to atmospheric
pressure at all times (i.e. p = 0), the measured force is equal to
the total frictional force in the system (F = Ff). This process is
repeated prior to every experiment to find the Ff response to be
used to calculate the pressure. It is important to note that in all
cases a transient response is observed in the frictional force (Ff)
followed by a steady value. This transient response is highly
dependent on the specific syringe in use. To assure a correct
measurement of the pressure, we consider data that has been
collected during the steady response. This will be further
explained in Section 5.

To validate our calibration method, a fluid filled syringe has
been connected to an empty tube system connected to a pressure
sensor (Omega) and the pressure was measured in a quasi-static
injection-withdrawal test as shown in Fig. 4c (measured data were
recorded using a National Instruments data acquisition system
(USB-6002) accompanied by a custom Labview program).
Simultaneously, the force measurement has been recorded
through the Instron Blue Hill software and turned into pressure
using the above calibration (eqn (8)). The results are presented
in Fig. 4(c) showing very close agreement between the pressure
measured using the pressure sensor and the corrected pressure
calculated from the force measurements.

In addition to finding the pressure from the measured force,
we can find the total injected volume of fluid from the recorded
displacement of the crosshead. Since the plunger is connected
to the crosshead through the top attachment, the total injected
volume at every time instance is found as V = SDz where Dz is
the downward displacement as shown in Fig. 4(b). In this work,
experiments on samples numbered 1, 2, 3 and 4 have been
performed at four different rates of 0.03, 0.05, 0.07 and
0.09 mm s�1, respectively which correspond to 1.77, 2.95,
4.12 and 5.13 mL s�1. However, the results do not present any
sensitivity to the rates used, thus confirming that the tests are
conducted in the quasi-static limit. Similarly gauge 19 and 21
needles have been used (to avoid any effects of surface tension)
in these experiments and did not present any differences thus
confirming our expectation.

4.3 Sample preparation

To be able to vary the elastic properties of the samples, in this
work we use soft PDMS (Polydimethylsiloxane) rubber samples
(Sylgard 184, Dow Corning) with various base : cross-linking
agent ratios of 33 : 1, 37 : 1, 40 : 1, 42 : 1, 44 : 1, and 50 : 1. To
prepare the samples, the two parts were mixed and de-gassed
using a vacuum pump. Then the samples were poured into
molds of rectangular cuboid shape with a square cross sectional
area of 30 � 30 mm2 and a height of 50 mm. Molds were filled
with about B33–38 mm of the mixture resulting in average
heights of about 35 mm after the end of de-gassing process.
All the samples were cured in a 40 1C oven for 72 hours.
Afterwards samples were retrieved from the oven and left to

cool to room temperature. All the experiments were performed
at room temperature.

5 Determining the elastic coefficient

The experimental results acquired using the current setup are
reported in the form of pressure (adjusted using the calibration
discussed in Section 4.2) as a function of the injected volume.
However, as presented in Section 3, the theoretical curves are
reported in the form of pressure as a function of the circumferential
stretch ratio, l (defined based on the radius of the cavity wall). Thus,
to be able to analyze the data, extract the constitutive behavior, and
the elastic modulus of the material at hand, we need to transform
the experimental results from p–V to p–l.

Based on available literature55 PDMS is expected to rupture
at strains in the range 20–100% (stretch of 1.2 o l o 2)
depending on the base : cross-linker ratio, curing method,
and curing temperature. Therefore, in cavitation experiments,
PDMS is not able to experience stretches beyond l E 2 and
fractures. After the point of fracture, the results of CR experiments
do not follow the theoretical trend and the pressure is not able to
reach the maximum predicted cavitation pressure.

For samples used in this work, the initial outer radius is
estimated to be B15 mm and the radius of the cavity is estimated
based on the outer diameter of the needle used (B0.5 mm). Thus
with a B/A E 30 as an initial size estimate, the maximum pressure
would be expected to take place at around l E 11 (i.e. strain of
1000%) which is beyond the rupture strain previously reported for
PDMS samples. Hence, to extract the constitutive relations and
elastic modulus of the materials from the collected results, instead
of depending on the maximum pressure recorded, we aim to use
the results prior to any indication of fracture which manifests itself
in different ways such as sudden drops in pressure or changes in
the trend. To do so, we require a method to transform the
instantaneous volumetric data to a length scale that adequately
represents the radius of the cavity wall at every instance.

To analyze the results, first let us consider the general p–l
relation for a material whose response is determined by a single
elastic coefficient in eqn (4), and substitute l = a/A to write

p ¼ p E;
a

A

� �
(9)

Now, if we are able to extract the radius of the cavity wall (a) at every
instant during the experiment, we are left with two unknowns in the
above equation; the elastic modulus (E) and the initial radius of the
cavity (A). However, the key difficulty arises due to the fact that we do
not know the shape of the cavity initially (created by inserting the
needle into the bulk of the sample) or throughout the experiment.
Even if we can capture the two dimensional projection of the cavity
(as shown in Fig. 1(a)) they do not provide a clear measure. This
limits our ability of defining a meaningful length scale for either a,
A, or their ratio l, hence we introduce an effective length scale.

5.1 Effective cavity radius

Our CR experiments are performed using a volume-controlled
protocol and thus we have access to exact volume of the cavity
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at every time instance. We thus use the volume of the injected
fluid as a means of determining an effective length scale in the
problem. For simplicity, assume that at every instance, we can
think of the cavity to take the shape of an ‘‘effective’’ sphere,
having an ‘‘effective’’ radius (i.e. length scale). Therefore

V ¼ 4p
3

�a3 ! �a ¼ 3

4p
V

� �ð1=3Þ
(10)

where %a is the effective radius associated with the volume at
every time instance. Now, using %a and initial effective radius %A
(which needs to be found through the curve fitting method) we can
define an effective stretch l to be used in the p–l formulations.
Note that the initial effective cavity radius cannot be directly
determined by searching for p = 0 on the curves. This will be
further explained in following text.

To further support the use of an effective radius, here we
present the results of the finite element (FE) analysis (using ABAQUS)
of the case of the cavity expansion inside a neo-Hookean body for
two non-spherical cavities; one in the form of two cones connected at
the base (revolution of a triangle) and another in the form of a
cylinder (revolution of a rectangle). In both cases the outer boundary
of the body is of spherical shape. Calculating the volume of the cavity
at every time step of the simulation and using eqn (10) to calculate
an effective stretch l = %a/%A, it can be seen that the results are nearly
indistinguishable with the theoretical p–l curve for the case of a
spherical cavity as shown in Fig. 5.

Clearly, comparing these lines one can see that even though
the process of cavity expansion initially started from a non-
spherical cavity, we can still base our fitting on an effective
p–l relation. These two examples demonstrate that not knowing
the exact geometry of the cavity while only knowing its total
volume is enough for finding a cavity length scale which can be
effectively used to analyze the experimental results within the
elastic range. This also confirms the report of Hutchens and
Crosby56 that the shape of the cavity does not affect the overall
results in CR.

5.2 Fitting method

Having determined the effective cavity radius, we are left to fit
the data (prior to the point of fracture) with eqn (9) to extract
the values of %A and E. Different methods can be used to fit the
experimental data to the theoretical prediction, and different
constitutive relations can be considered to obtain the best fit.
Here we limit our attention to materials whose response can be
determined by a single elastic coefficient. In the demonstration
of this method to determine the response of PDMS at varying
base : cross-linker ratios, we employ the neo-Hookean model,
which is found to fit well to our experimental curves.

Our fitting method is based on the identification that the
maximal (positive) slope in the experimental curve is associated
with the point of maximum elastic resistance. Accordingly, we
require that our fitted curve crosses through this point with the
same slope. Additionally, we use this point to determine a
useful range in the experimental data.§

The steps of the method used here are as follows:
(1) First we write the measured pressure as a function of the

effective radius of the cavity found using eqn (10). For example,
for a sample of 40 : 1 PDMS, the experimental results of F/S,
Ff/S, and p are plotted as a function of the calculated effective
radius and presented in Fig. 6(a). Notice the transient regime in
the measurement of the friction force extends to %a B 1.1 mm.
Hence, for the fitting in this case we employ data obtained
beyond this value.

(2) Next, we search for the largest slope (a) in the p–%a curve and
determine the line tangent to the data at this point (a%a + b where b
is the ordinate intercept, as shown by the dashed line in Fig. 6(a)).

(3) Returning to the theoretical analysis of eqn (5) and
Fig. 3(b), one can see that the slope of the p–l curve is the
largest at l = 1 (slope = 4/3E) and decreases as l is increased. To
efficiently initiate a trial and error procedure, we use this
tangent as a starting measure to find a first guess for %A. We
define a starting guess for the initial radius of the cavity ( %Ag) by
finding the line’s abscissa intercept. With this guessed value we
define a guess for the stretch lg as

�Ag ¼ �
b
a
! lg ¼

�a
�Ag

: (11)

(4) Now, as it is clearly seen in Fig. 6(a), %Ag requires a correction
to get closer to the correct fitting. Therefore, to adjust the value of
the effective initial radius, we introduce a correction factor M as

l = Mlg. (12)

To find the elastic modulus we then differentiate (4) using
Leibniz’s rule to write (see details in the Appendix)

dp

dl
¼ dp

d�a

�Ag

M
¼W 0ðlÞ

l3 � 1
where a ¼ dp

d�a
: (13)

Fig. 5 Plots of pressure versus effective stretch for cavities of two
different initial shapes; two cones connected at the base, and cylinder.
The stretch is calculated using the effective radius as defined by eqn (10).
The theoretical results for the case of a spherical cavity is shown with a
broken line.

§ Note that the chosen range of data applied for the fitting can be further tuned
throughout the process to obtain a best fit over a maximal range, nonetheless it
excludes the range in which transient changes in friction may affect the
measurements.
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For the neo-Hookean material the above relation can be
reorganized using the maximum slope a found earlier to find
the value of E as

E ¼ 3a
2

�Ag

M

l5

1þ l3

� �
: (14)

(5) Using the elastic modulus, E, from eqn (14) we then
calculate the difference (e.g. error) between the measured value

of pressure and the corresponding fit and define Er ¼ Erk k2 as
an average error.

(6) Since M is not known a priori, we repeat steps (4) and (5)
for a range of correction factors, (typically 0.5 o M o 1.5) and

record the average error Er for all the cases. Then, among all
the above cases, we search for the M, and E combination that
gives minimum average error. This value of M (or equivalently
%A = %Ag/M) and the corresponding E are the fitting parameters.

For the example tests presented here, a stretch range of
[1.2–1.5] was employed resulting in A = 8.1725 � 10�4 m and
M = 1.094. The resulting neo-Hookean fit is presented in
Fig. 6(b) and the corresponding error, Er normalized by the
elastic modulus (149.85 kPa) is shown in Fig. 6(c).

6 Results and discussion

The measured values of pressure versus volume for PDMS with
various base : cross-linker ratios (50 : 1, 144 : 1, 42 : 1, 40 : 1,
37 : 1, and 33 : 1) have been analyzed using the above algorithm.
The results are presented in Fig. 7 and Table 1. For example,
experimental results for PDMS 50 : 1 samples are presented in
Fig. 7(a) in the form of p–l curves for four different tests. As
shown in the figure, within a range of 1 o l o 1.5 the results
collapse onto a curve that corresponds to a neo-Hookean material
with elastic modulus of 73.65 � 2.95 kPa. Notice that the point of
departure of the results from the neo-Hookean behavior varies
among the different tests and is observed within a range of
l B 1.2–1.4 (17 o p o 22 kPa). Moreover this point is clearly
distinct from the point of maximum pressure recorded during
the tests. The average maximum recorded pressure for these
samples is 25.85 � 2.12 kPa which is about 35% of the elastic
modulus calculated through the fitting.

A summary of the measured properties using the current
and the conventional CR techniques are presented in Table 2.
Note that the maximum pressure measured in all the cases is
within a range of 35–45% of the elastic moduli found through
the fitting analysis used here (recall that in conventional CR
technique pmax = 5/6E). In addition, a larger standard deviation
is recorded in the maximum pressures when compared to the
standard deviation reported for the fitted elastic moduli.

In comparison to the theoretical predictions we find that the
point of departure from the neo-Hookean trend happens within
a range of l E 1.2–1.9 which is well below the cavitation
instability threshold (lmax in Fig. 3(c)). We thus interpret the
departure from the neo-Hookean trend as a manifestation of a
mode-I crack propagation that results in a sudden growth of
the cavity (defect) and relieving the pressure inside the cavity.

Fig. 6 (a) Measured total force and frictional force normalized by the
surface area of the plunger (F/S and Ff/S) and calculated pressure p in the
cavity as a function of %a defined using eqn (10). The red dashed line
presents the tangent line to the data at the point with the largest slope
(away from the region impacted by the transient friction at the start-up).
(b) The resulting p–l curve using the current method and the
corresponding neo-Hookean fit to the data. (c) The value of error Er
calculated and normalized by the elastic modulus for the stretch range of
1 o l o 1.6.
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This process can be clearly seen in nearly all the samples and
for example dominates the response of the 50 : 1 and 40 : 1
samples after the point of departure from the neo-Hookean
behavior.

In some of the samples, the pressure relief is followed by
local increases in the pressure, with additional pressure
releases. This behavior can be explained as a combination of
crack propagation and cavity expansion processes occurring

Fig. 7 Plots of p–l curves for PDMS with four different base : cross-linker ratios: (a) 50 : 1, (b) 44 : 1, (c) 42 : 1, (d) 40 : 1, (e) 37 : 1, and (f) 33 : 1. The
corresponding neo-Hookean fitting parameters are presented in Table 1 and the neo-Hookean fit based on the average elastic modulus is plotted with a
black dash-dot line. The asymptotic limit for an infinite neo-Hookean block (5/6E) is shown with red dashed line. Data in the range 0 o lo 1 corresponds
to the early time when the cavity is being filled and does not represent compression.
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simultaneously. Each sudden fracture and crack opening leads
way to initiation of a new and larger cavity which results in a
pressure relief. However, as we increase the volume, this larger
cavity goes through an entirely new cavitation process (possibly
starting from a not stress-free state) until another crack starts to
propagate leading to another pressure relief.

It should be noted that even though the pressure relief in
some of the samples shows a gradual trend (not sudden like the
ones in 44 : 1 and 33 : 1 samples), it should not be mistaken by
the cavitation response of a finite size body. Using the effective
initial radius of the cavity, calculated through the fitting, one
can clearly see that the bodies have a mean B/ %A E 14–18. The
corresponding maximum pressure thus takes place in the range
of 5.6 o l o 7.6 (see Fig. 3(c)). However, the maximum
pressure recorded in the samples is within the range 1.4 o
l o 1.8. Hence, the behavior reported here for PDMS is

dominated by the gradual pressure relief due to crack propagation
as more volume is injected into the cavity. In addition, using the
radius of the needle as an estimate of the initial radius of the cavity
is not an appropriate measure of length scale in this problem and
fitting the data for the elastic modulus and the initial radius
presents more accurate results. However, since the calculated B/%A
is larger than 10, we can still use eqn (9) for the curve fitting
purposes within 1 o l o 2.

Finally, we plot the results of the extracted elastic moduli
calculated using the proposed method as a function of the
base : cross-linker ratios as shown in Fig. 2. It can be seen that
the current measurements capture the expected magnitude and
trend in the elastic modulus of PDMS and the results agree with
both our tensile measurements and the previously reported
numbers. In addition, one should note that the current method
is able to capture the neo-Hookean trend of the material
behavior in addition to capturing the elastic modulus. Also,
comparing the results of the fitting method proposed here and
the use of the maximum pressure for analysis of the CR results
shows that the conventional technique consistently predicts a
lower bound and only captures up to 43% of the value of the
elastic modulus with a larger standard deviation (Table 2). In
addition, the proposed technique can be performed in opaque
samples (i.e. does not depend on the visualization of the cavity)
and allows us to determine an effective radius of the cavity at
every instance.

7 Conclusions

In this work, we present a volume controlled cavitation rheology
(CR) technique for measuring the elastic modulus of soft materials
with rupture strains lower than the limit of cavitation instability. A
custom-designed CR system provides high precision measurement
of the injected volume and the pressure inside the cavity. Due to
the non-spherical initial geometry of the cavity, the experimental
data is analyzed by employing the notion of a volume based
effective cavity radius, to determine an effective value of the
circumferential stretch. The validity of this assumption is con-
firmed using numerical simulations. The resulting curves for
pressure versus stretch are then fitted to the theoretical cavity
expansion curve. The presented fitting method is limited to
materials whose response can be determined by a single elastic
coefficient. Future work should center on extending this technique
to consider more complex materials that require additional material
parameters.

Applying this method to PDMS samples that are fabricated
with different base : cross-linker ratios shows good agreement
with measurements reported using conventional tensile/compres-
sion testing. Moreover, it allows us to capture both the neo-Hookean
behavior of the PDMS samples and the elastic modulus, even
though the samples fracture much earlier than the cavitation
instability is observed.

Comparing this method to the conventional CR technique
that is based on the maximum pressure that appears at onset of
the instability, one can see that due to the failure and crack

Table 1 Fitting parameters calculated using the numerical algorithm of
Section 5 for PDMS samples of various base–cross-linker ratios and the
maximum pressure measured in experiments with different discharge
rates. The fitting parameters have been used in plots presented in Fig. 7

Sample M %Ag (m) E (kPa) pmax (kPa)

50-1 1.022 8.7779 � 10�4 69.49 22.90
50-2 1.043 8.5305 � 10�4 75.05 26.02
50-3 0.995 7.8534 � 10�4 76.26 26.58
50-4 1.002 8.0037 � 10�4 73.78 27.92

44-1 1.049 9.6097 � 10�4 90.38 24.40
44-2 0.987 7.7068 � 10�4 91.88 42.75
44-3 0.995 7.4101 � 10�4 93.92 34.82
44-4 1.022 8.4074 � 10�4 93.32 38.32

42-1 0.990 7.1154 � 10�4 104.02 45.63
42-2 0.995 7.5830 � 10�4 118.03 52.98
42-3 1.076 11.4262 � 10�4 115.54 39.78
42-4 1.018 7.6021 � 10�4 119.79 56.39

40-1 1.040 8.7512 � 10�4 140.98 57.54
40-2 1.094 8.1752 � 10�4 149.85 55.99
40-3 1.057 8.5193 � 10�4 144.77 64.32
40-4 1.055 8.7386 � 10�4 146.47 54.59

37-1 1.065 9.332 � 10�4 177.87 80.23
37-2 1.066 9.1536 � 10�4 175.88 61.86
37-3 1.011 9.3838 � 10�4 183.05 81.52
37-4 1.084 8.7437 � 10�4 177.44 76.11

33-1 1.123 8.5990 � 10�4 258.39 110.74
33-2 1.058 8.8030 � 10�4 250.47 109.83
33-3 1.096 11.0033 � 10�4 250.89 121.03
33-4 1.201 9.6268 � 10�4 249.20 97.33

Table 2 The elastic properties of the PDMS samples calculated from the
collected data using the current technique and the conventional CR
technique. These results are plotted in Fig. 2

Ratio E [kPa] (current method) E [kPa] (conventional CR)

50 73.65 � 2.95 25.85 � 2.13
44 92.37 � 1.58 35.07 � 7.82
42 114.34 � 7.10 48.70 � 7.45
40 145.52 � 3.69 58.11 � 4.31
37 178.56 � 3.11 74.93 � 9.02
33 252.34 � 4.11 109.73 � 9.70
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propagation in PDMS, the conventional CR technique captures
about 43% of the elastic modulus of the samples with a larger
scatter in the results. Finally, this approach is insensitive to
the respective size of the sample and the needle, it can be
performed in opaque samples (i.e. without observing the cavity
expansion), and does not make any preliminary assumption on
the specific rupture mechanism, hence it can potentially
be applied in future for measurement of nonlinear material
properties in vivo.
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Appendix

The spherically symmetric expansion illustrated on Fig. 3(a),
results in an equi-biaxial deformation state. By limiting our
attention to incompressible materials, the principal stretch
components have the form

lr ¼
R2

r2
; ly ¼ lf ¼

r

R
(A1)

such that lrlylf = 1. Notice that in the main text l represents
the circumferential stretch (i.e. ly) at the inner radius (where
r = a and R = A) and lb is at the external boundary.

In spherical coordinates, the equilibrium requirement
reduces to a single non-trivial equation

@sr
@r
¼ 2

r
sy � srð Þ: (A2)

Considering an isotropic hyperelastic material, we can write
the elastic energy density in the general form W = Ŵ(lr,ly,lf)
and the principal stress difference is readily derived as

sy � sr ¼ ly
@Ŵ

@ly
� lr

@Ŵ

@lr
¼ ly

2
W 0ðlyÞ (A3)

where W(ly) = Ŵ(ly
�2,ly,ly). Inserting this result into (A2) and

performing integration we can now write the applied cavity
pressure for an arbitrary hyperelastic material as

p ¼
ðb
a

lyW 0ðlyÞ
dr

r
(A4)

where we have applied the boundary conditions

sr(a) = �p, sr(b) = 0. (A5)

By transformation of variables

dr

r
¼ dly

lyð1� ly3Þ
(A6)

the integration in (A4) may be written alternatively as

p ¼
ðlb
l

W 0ðlyÞ
1� ly3

dly: (A7)

Now, the slope of this pressure-stretch curve can be found by
differentiation of this integral employing Leibniz’s rule. In
particular, for lb = 1 the slope is

dp

dl
¼W 0ðlÞ

l3 � 1
: (A8)
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