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Curvature sensing by cardiolipin in simulated
buckled membranes†

Federico Elı́as-Wolff, ab Martin Lindén, ‡c Alexander P. Lyubartsev b and
Erik G. Brandt *b

Cardiolipin is a non-bilayer phospholipid with a unique dimeric structure. It localizes to negative

curvature regions in bacteria and is believed to stabilize respiratory chain complexes in the highly curved

mitochondrial membrane. Cardiolipin’s localization mechanism remains unresolved, because important

aspects such as the structural basis and strength for lipid curvature preferences are difficult to

determine, partly due to the lack of efficient simulation methods. Here, we report a computational

approach to study curvature preferences of cardiolipin by simulated membrane buckling and

quantitative modeling. We combine coarse-grained molecular dynamics with simulated buckling

to determine the curvature preferences in three-component bilayer membranes with varying

concentrations of cardiolipin, and extract curvature-dependent concentrations and lipid acyl chain order

parameter profiles. Cardiolipin shows a strong preference for negative curvatures, with a highly

asymmetric chain order parameter profile. The concentration profiles are consistent with an elastic

model for lipid curvature sensing that relates lipid segregation to local curvature via the material

constants of the bilayers. These computations constitute new steps to unravel the molecular mechanism

by which cardiolipin senses curvature in lipid membranes, and the method can be generalized to other

lipids and membrane components as well.

I. Introduction

Biological membranes are subject to large deformations in
cellular organelles, which can involve membrane remodeling.
The interplay between lipids, proteins, and membrane curva-
ture is now recognized as a key factor for cellular organization
and membrane protein function.1–6 Recent experimental work
has revealed curvature sensing and generation by many
membrane associated molecules such as peripheral7–13 and
transmembrane14–18 proteins, amphipathic and antimicrobial
peptides,19–23 and lipids.24–26 However, the small sizes of
individual lipid molecules tend to produce weak effects on
the curvature scales of organelles or cells, unless amplified by
cooperative effects or lipid–protein association.25–27

Cardiolipin (CL) is a lipid that constitutes 10–20% of mito-
chondrial membrane phospholipids,28 and is a major constituent
in many bacterial membranes,29 e.g., about 5% of E. coli
phospholipids.30 CL deficiency is associated with numerous

diseases,31–34 and CL is believed to stabilize respiratory
chain complexes in mitochondrial membranes.35,36 CL is also
involved in proton transport along the mitochondrial
membrane surface.37 The unique structure of CL, which resem-
bles two phospholipids joined together via the head groups,
yields a conical shape that is the origin of its curvature sensing
abilities. For example, CL localizes to the curved poles and
septa of rod-shaped bacteria,26,38 and promotes polar localiza-
tion of certain membrane proteins.39,40 Further, ATP synthase
(which exploits energy released via transmembrane proton
transport) associates with the highly curved edges of the
mitochondrial membrane cristae,18 where the high curvature
might also promote local enrichment of CL.

The majority of experimental studies of lipid and protein
curvature sensing are based on fluorescence methods that
monitor how sensor molecules partition between regions of
different curvatures.8–11,16,20,24,25 There are several challenges
with these experimental methods. One is the difficulty to
ensure that the curvature sensor and the surrounding
membrane are not influenced by dyes or other additives.41

For supported lipid bilayers,10,42 unwanted interactions with the
solid surface must be avoided. Finally, fluorescence microscopy
only provides the position and/or local density of the fluorescent
labels,43 and therefore gives only indirect information about the
structural basis of curvature sensing.
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Fortunately, computer simulations have potential to provide
additional details on the microscopic level, but face methodo-
logical and technological challenges of their own. Simulating
curvature sensing and deformation in a flat bilayer patch relies
on induced local membrane deformations which can be diffi-
cult to interpret.18,23,44–46 Curved membrane surfaces can be
generated by simulating spheres47,48 or cylinders,49 but require
equilibration of lipids and solute in different leaflets and
compartments, which is only feasible for strongly coarse-
grained membrane models. In this work, we use simulated
membrane buckling50–60 and develop an elastic theory to
overcome these difficulties. Our buckling method59 is based
on a reaction coordinate (the arc-length) along the membrane
profile, which presents a continuous range of curvatures in
a single simulation, and is amenable for comparison to
elastic membrane theories. In our simulations, the buckled
membrane patch (Fig. 1a) consists of two equivalently deformed
monolayers, which due to periodic boundary conditions does not
divide the solutes into multiple closed compartments. Thus, the
distributions of various species along the buckled membrane
reflect their respective curvature preferences,53,54,56–60 and equili-
bration is limited only by in-plane lipid diffusion. We use the
coarse-grained Martini model61–63 (Fig. 1b) to sample curvature
dependent distributions and structural variations of CL mixed
with the two other major E. coli lipids,64 1-palmitoyl-2-oleoyl
phosphatidylethanolamine (POPE), and 1-palmitoyl-2-oleoyl phos-
phatidylglycerol (POPG). We find a strong curvature dependence
on the lipid structure. The curvature dependent distributions are
well explained by different intrinsic preferences for positive, zero,
and negative curvature by POPG, POPE, and CL, respectively. The
strength of these curvature effects is relevant to membrane
structures such as mitochondrial cristae,18 and inclusion bodies
resulting by over-expression of bacterial membrane proteins.12

II. Methods
A. Coarse-grained molecular dynamics simulations

All molecular dynamics (MD) simulations were run with the
Gromacs 4.6 program65 employing the MARTINI force field
for lipids,61,66–68 and coarse-grained polarizable water,63 with
relative permittivity er = 2.5. The production trajectories were

simulated at 300 K with the Bussi velocity rescaling thermostat69

(coupling time constant of 1 ps), semiisotropic pressure coupling
with the Parrinello–Rahman barostat at 1 bar (12 ps time
constant), and constant area in the xy-plane. van der Waals
interactions were modeled with a Lennard-Jones potential,
shifted to zero between 0.9 and 1.2 nm. Electrostatics were
handled using the particle-mesh Ewald method,70 with a real-
space cutoff of 1.4 nm. These were the parameters used in the
original Martini parameterization.61 We used a time-step of
25 fs and VMD71 was employed to visualize simulated trajectories.

A buckled bilayer is produced by assembling a flat bilayer in
the xy-plane with a specified Lx/Ly ratio (Lx 4 Ly). After the
bilayer is equilibrated, the bilayer is compressed along the
x-direction, keeping the length of the simulation box in the
y-direction fixed. The compression is performed by rescaling
the simulation box instantly by a certain compression factor
Lx/L = 1 � g (where g = 0 indicates a flat bilayer). The curved
bilayer is energy minimized, re-equilibrated, and then simu-
lated in production runs of 20–30 ms. We computed lipid
autocorrelations to estimate sampling times, and found that
single lipids are correlated for 120 ns in a pure POPE bilayer
(details are given in Section S1 and Fig. S1 in the ESI†). Since
the autocorrelation time is closely linked to lipid diffusion,
we expect this result to approximately hold for all the simulated
lipid systems. The first 1 ms was then discarded as equilibration
in all simulations.

The simulated bilayers contained 512 lipid molecules, but
with varying lipid composition. The charged systems were
neutralized with counterions, and the amount of water in the
systems corresponds to fully hydrated bilayers.72 The ratio
between the lateral box lengths was Lx/Ly E 4.5. Two single-
component systems with 512 POPG and 512 POPE were
included. The other simulations were multicomponent systems,
with 384 POPE lipids, 0, 8 or 24 CLs, and the rest being POPG
lipids. We used a CL model developed for Martini68 that corre-
sponds to di-[1-palmitoyl-2-oleoyl-phosphatidylglycerol], corre-
sponding to the most common type of cardiolipin found in E. coli
membranes.73 The phosphate head groups (Fig. 1b) of POPG and
CL are charged (�1). We used a symmetric head charge distribu-
tion for CL, with �0.5 charge units on each phosphate group,
conforming to recent experimental data.74–76 We simulated two
extra replicas of the system with 24 CL molecules (CL12): one

Fig. 1 (a) Snapshot of a simulated trajectory fitted to the theoretical buckled shape in orange, POPE in blue, POPG in green and CL in red. The bilayer
composition is 384 POPE, 104 POPG and 24 CL, and the compression factor is g = 0.3. (b) Martini representations of POPE, POPG(�1) and CL(�1) lipids
annotated by head group charges.
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with added salt (at 0.15 M), and one with a higher degree of
buckling (g = 0.4 compared to the other simulations at g = 0.3).
Since the presence of divalent cations can decrease the molecular
surface area77 so that CL undergoes a lamellar-to-hexagonal
(La-HII) phase transition,78 we used only monovalent ions
(Na+ and Cl�) to neutralize and/or change the salt concentrations
in the simulated systems. Table 1 summarizes the simulations
carried out in this work. Note that all reported times are actual
simulation times and have not been scaled with the semi-
universal factor of 4 sometimes employed for the Martini
model.79

B. Trajectory analysis

A flat bilayer that is compressed along its long axis adopts a
buckled profile (Fig. 1a). The buckled bilayer is subject to
random fluctuations, in particular in the phase of the buckled
shape. To extract accurate lipid position data from the simula-
tion, we therefore align each trajectory frame to a reference
shape. This is carried out by fitting the membrane surface
defined by the innermost lipid tail-beads to a theoretical
buckled shape, indicated by a orange line in Fig. 1a. The
procedure is described in detail in ref. 59, and briefly summarized
here for convenience. We have also applied the method to study
curvature sensing by amphipathic peptides.56,57

The membrane shape obtained with this buckling procedure
is the two-dimensional analogue to the compressed elastic rod
known as the Euler elastica.51,52 A theoretical description of the
bilayer membrane as a thin elastic sheet leads, via a Helfrich
functional model,80 to a parameterization of the elastica in
terms of the arc-length parameter 0 r s r 1 (Fig. 1(a)). The free
energy is56

F ½cðsÞ� ¼ Lyk
2L

ð1
0

ds c0ðsÞ � LK0ð Þ2; (1)

where L is the length of the uncompressed bilayer, Ly is the
projected length in the long box dimension, k is the mean
curvature modulus, K0 is the spontaneous curvature of the
bilayer, and c(s) is the angle between the x-axis and the local
tangential vector on the membrane midplane. F is minimized
with the projected length Lx kept fixed. The differential
equation obtained from this minimizing procedure is solved

with periodic boundary conditions, which leads to a closed
expression for the angle as function of the arc-length, c(s).
This solution, however, is given in terms of Jacobi elliptic
functions,51,52 and the Cartesian coordinates of the buckled
shape, (X(s), Z(s)), need to be obtained by integration of the sine
and cosine of c(s).

As an alternative, we have developed a numerical method
which avoids special functions and efficiently extracts accurate
values for X(s) and Z(s) from eqn (1).59 This method relies on
Fourier expansions of X(s) and Z(s), with Fourier coefficients
stored in lookup-tables for fast evaluation. The heart of the
algorithm is to minimize the sum-of-square distances from
the innermost lipid tail-beads (xj,zj) to their corresponding
positions along buckled shape X(sj,g), Z(sj,g). The parameters
in the minimization procedure are the offsets in the x and z
directions, the sj ( j = 1,. . .,N where N is the number of
innermost tail-beads) which are the projected positions of the
innermost tail-beads along the buckle in terms of s, and the
compression factor g (to prevent area fluctuations from biasing
the fit). In practice, g-fluctuations are only a few percent.56

Implementation details and speed and accuracy tests of this
method can be found in ref. 59. An open source Matlab
implementation of the Euler elastica is available within the
mxdrfile package.81

The local curvature at position s is directly evaluated by the
standard formula

KðsÞ ¼ Z0ðsÞX 00ðsÞ � X 0ðsÞZ00ðsÞ
X 0ðsÞ2 þ Z0ðsÞ2ð Þ3=2

; (2)

since X(s) and Z(s) and all their derivatives are well-defined
within the numerical method. We use the reference shape fitted
to the bilayer midplane, in the same way for both monolayers,
in all of our analysis. This means that our curvatures are
measured with respect to the bilayer midplane. The sign
convention is such that positive curvature is when the
membrane bends away from the probe. This means that maxi-
mum positive curvature in the upper monolayer occurs at
s = 0.5, while the curvature in the lower monolayer is given by
�K(s), and takes its maximum positive value at s = 0, 1. The
buckled shape is symmetric around its maximum at s = 0.5, and
periodic with period s = 1. A simulation box contains one period
of the buckled shape because of the periodic boundary
conditions.

Fig. 1 shows a snapshot of a buckled bilayer, annotated
with the fitted shape along the bilayer midplane. Position data
for membrane components relative to the buckled profile can
easily be extracted from an aligned trajectory. The projected
s-positions of the innermost lipid tail-beads serve as the
reaction coordinate to measure the curvature preference of
each lipid component.

Two recent simulation studies58,60 of lipid curvature sensing
in buckled membranes used a different analysis approach.
Those studies employed an analysis method based on spline-
fitting the lipid head beads and then extracting the local
curvature by differentiation (i.e., by eqn (2)). Our analysis of

Table 1 Molecular dynamics simulations, with varying lipid compositions,
carried out in this work. The systems are listed by lipid composition, ion
concentrations, compression factors g, simulation box sizes and simulation
times. All systems contain B20 000 polarizable water beads, except
allPG and CL4, which are smaller in the z-direction and contain
B11 000 polarizable water beads. The reported times are actual simulation
times (i.e., they have not been multiplied by any speed-up factor)

POPG POPE CL Na+ Cl� g Lx�Ly [nm2] Lz [nm] Sim. time [ms]

allPG 512 0 0 512 0 0.3 113.4 18.7 20
allPE 0 512 0 0 0 0.3 114.0 30.0 20
CL0 128 384 0 128 0 0.3 115.2 27.7 30
CL4 120 384 8 128 0 0.3 115.3 17.2 30
CL12 104 384 24 128 0 0.3 120.3 28.4 30
CL12s 104 384 24 335 207 0.3 119.7 25.1 30
CL12b 104 384 24 128 0 0.4 105.4 32.1 30
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the average bead densities, shown in Fig. 2a and Fig. S2 (ESI†),
strongly suggests that the distance between the planes defined
by the head groups vs. the bilayer midplane is independent of
curvature, so that translating between these planes is only a
matter of geometry. While the spline-fitting analysis is more
flexible in terms of bilayer shape, our approach makes explicit
use of elasticity to parameterize possible bilayer shapes.
Further, since we have a theoretical reference for the buckled
shape, we can align many frames to compute averages such as
Fig. 2. More importantly, the well-defined particle positions sj

along the buckled shape enables direct comparison to physical
models developed using the tools of statistical physics.56,59

Thus, with our approach we can move beyond a descriptive
analysis and directly validate or refute different model hypotheses.
Since the reference shape of our membrane buckle is based on a
model of solid physical merit (the Euler elastica52), our results
furnish an enduring starting platform for future refinements.

C. Error analysis

We performed a thorough error analysis with bootstrapping82

to quantify the statistical errors of all calculated quantities
(densities, tail order parameters, and enhancement ratios) in
this work. We report all errors as standard errors of the mean
(SEMs), calculated with 10 000 bootstrap realizations, and
sampled from data points separated by 150 ns to ensure
independence (as described in Section S1 in the ESI†). For
clarity, most figures show the standard errors as shaded areas
in the background, but only for the CL0, CL12 and CL12b
systems. In the other systems, the errors were smaller than the
symbols. In addition, Fig. S5 (ESI†) shows the error analysis for
all the bilayer densities.

III. Results and discussion

Curvature sensing of lipids in buckled bilayers with varying
compositions was investigated with coarse-grained molecular
dynamics (MD) simulations. The lipid compositions were
chosen to mimic the inner membrane of E. coli,30 and the CL

concentration was varied from 0% to 5% with fixed POPE
concentration. We expect the strongest curvature localization
for CL, since the shape of CL is significantly more conical than
that of POPE, while the shape of POPG is cylindrical. We describe
the buckling effects with respect to packing in terms of the lipid
components and acyl chain order parameters. Then, we measure
the relative enrichment of lipid components in curved bilayer
regions. Finally, we develop an analytic theory that relates local
midplane curvature to lipid redistribution, and use it to extract
information about membrane elastic constants.

A. Buckled shape

First, we compare the simulated buckled bilayers to their
corresponding theoretical shapes. Fig. 2a shows the distribu-
tion of the innermost tail-beads and the head-beads of each
leaflet (in the xz-plane) in the simulated systems. Since there
are two innermost tail-beads (four for cardiolipin) for every
head-bead in each of the two leaflets, and since both leaflets
contribute to the tail-bead distribution, the bin counts for the
head-beads are multiplied by 4 for POPG and POPE, and by 8
for cardiolipin. The middle solid curve corresponds to the
theoretical buckled shape, with the average fitted value of g,
and shows excellent agreement to the simulated buckle. The
outer curves are parallel to the middle one, but displaced by
2.1 nm to the planes of the head-beads. Since they follow the
headgroup densities well along the whole profile (see also
Fig. S3, ESI†), we conclude that the average bilayer thickness
does not change with curvature.

Geometrical effects of bilayer curvature with respect to lipid
packing are apparent in Fig. 2a. While the bilayer innermost
tail-bead density is almost constant, the head-bead regions
corresponding to negative curvature are enriched, while the
opposite is true for positive curvature. This effect is much more
pronounced for cardiolipin as shown in Fig. 2b.

B. Geometric effects of curvature on lipid packing

The leaflets are equivalent and symmetric since the overall
buckled shape is symmetric. In particular, the local midplane

Fig. 2 Heat maps of head- and tail bead densities in the xz-plane. (a) All lipid components for the CL12 simulation (Table 1). The red curve corresponds
to the average fit (X(s; hgi), Z(s; hgi)). The blue curves are parallel to the first one, but displaced by 2.1 nm. (b) Same data as in panel (a) but for the CL
component alone. Head bead densities have been weighted by factors 4 (POPG, POPE) and 8 (CL) to compensate for the number of tails per lipid, and the
fact that the midplane contains tail beads from both monolayers.
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curvature at a point s0 in the upper leaflet is the same at points
1 � s0 in the upper, and point s0 + 0.5 in the lower leaflet,
respectively. Also, the same point s0 in the lower leaflet is
subject to the same magnitude in midplane curvature, but with
opposing curvature sign.

However, our simulations show asymmetric curvature
dependence of the lipid distributions. This asymmetry is
observed in Fig. 3a and c, which show the monolayer lipid
density r(s) defined by the innermost tail-beads. The density
function r(s), takes the perspective of the upper monolayer,
with s = 0.5 corresponding to the region of maximal positive
curvature, and s = {0, 1} corresponding to largest negative
curvature. Contributions to r(s) from lower monolayer lipids
are constructed by shifting their s-values by half a period.
Fig. 3a and c show that the depletion around the region of
minimal curvature is larger than the enrichment at maximal
curvature. Also, the profile r(s) is flat around maximum curva-
ture (s = 0.5). The bilayer midplane density r̂(s) is depicted in
Fig. 3d. This alternate function corresponds to the distribution
of the innermost tail-beads of all lipids, without regard to
which monolayer they occupy. Fig. 3d shows that this density
does not deviate more than a few percent from r̂(s) = 1, yet the
deviations are systematic and consistent with the monolayer
asymmetry. r̂(s) is maximal around s = {0.25, 0.75}, where the
bilayer is flat and lipid packing is tightest (densities are normal-
ized as probability densities). Interestingly, we have previously

seen the opposite trend for an even more coarse-grained three-
bead lipid model.59

C. Curvature-dependent lipid structure

We calculated lipid acyl chain order parameters,

P2 ¼
1

2
3 cos2ðyÞ
� �

� 1
� �

, for the tails83 as functions of local

midplane curvature (eqn (2)) to investigate how lipid structure
is affected by curvature. The lipids are binned according to
their s-positions, and averaged over all lipids in each bin for
the entire trajectory. Fig. 4 shows the order parameter hP2i,
which is an average over the 4 tail bead-to-tail bead bonds, for
saturated and unsaturated tails. The hP2i-parameters for both
kinds of tails follow similar trends as functions of curvature,
but differ in magnitude and in the larger slope for the saturated
tails in the positive curvature region. The chain order para-
meters for POPG and POPE are very similar, as expected due
to their identical lipid tails. The hP2i-value is slightly larger
for POPG in all cases except for the single component
simulations. The likely explanation is that the charged
headgroup keeps POPG molecules more elongated (Fig. S3 in
the ESI† shows that, for the CL12 system, the planes formed
by POPG head beads are farther away from the midplane
compared to POPE and CL, which are at indistinguishable
distances). The chain order parameter is maximized at close-
to-flat regions (K E 0), and minimized in the most negative

Fig. 3 The lipid distribution along the curved bilayers. (a) The monolayer density r(s) for all lipids as a function of s. (b) Curvature, K(s), (defined in eqn (2))
as function of s for the two g-values used in this work. (c) Monolayer density r(s) for all lipids as a function of curvature K(s). Symbols correspond to
different lipid compositions, degrees of buckling and salt concentrations (Table 1). The s-values correspond to the upper monolayer. The s-positions of
the lower monolayer have been translated by half a period, according to r(s) = (rupper(s) + rlower(s + 0.5))/2. (d) Bilayer midplane density r̂(s), which
includes both monolayers. The sizes of the standard errors of the mean (SEMs) is smaller than the symbols in panels (a) and (c). In panel (d), SEMs are
slightly larger than the symbols but are omitted for clarity. Fig. S5 in the ESI† shows a scaled-up version of this figures with SEMs.
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curvature region for CL, and at the most positive curvatures for
POPG and POPE. Taking both kinds of tails into account, this
variation is considerably stronger for CL, indicating that a
possible mechanism for CL curvature sensing is its ability to
spread its tails at negative curvatures. In all lipids, the chain
order parameter profiles for saturated tails decrease more
rapidly as positive curvature increases than their unsaturated
counterparts. This difference is larger for POPG and POPE
compared to CL, reinforcing CL to avoid positive curvature
regions. These two observations suggest that the curvature
sensing properties of CL can be tuned by tweaking its tail
composition.60

The presence of CL leads to a small increase in hP2i for
the remaining lipids. We believe that this is due to the tails of
CLs filling the larger available volume in regions of negative
curvature. This mechanism is similar to how cholesterol can
‘‘plug the holes’’ in fluid bilayers that are rich in unsaturated
lipids.84 Analogously, the ability for CL to stabilize protein–
lipid domains has been ascribed to its ability to fill gaps in
protein interfaces.85

D. Curvature-dependent lipid distributions

The different lipids sense curvature with varying strengths.
In this section, we show that cardiolipin strongly prefers
negative curvature regions, and outcompetes POPE for the
region with most negative curvature. POPG is conversely
enriched in regions with positive curvature.

Fig. 5 shows the normalized relative densities Fj of each
lipid component j as function of local midplane curvature K(s).
These densities are calculated as follows: From an aligned
trajectory, the s-positions of the innermost tail-beads are
collected to form the monolayer distributions rj (s) for each
lipid species j (Fig. S2 in the ESI†). rj (s) is normalized toÐ 1
0dsrjðsÞ ¼ fj , where fj is the fraction of lipids of species j in

the monolayer. The relative densities of each lipid component
are computed by dividing rj (s) by the corresponding all-lipid
density r(s) (shown in Fig. 3a), i.e.,

fjðsÞ ¼
rjðsÞP
k

rkðsÞ
¼

rjðsÞ
rðsÞ : (3)

Fig. 4 Average order parameter hP2i as function of K(s) for saturated (open symbols) and unsaturated (solid symbols) tails. Panels correspond to
(a) POPG, (b) POPE, and (c) CL, and symbols to lipid bilayers with different compositions, degrees of buckling, and salt concentrations (Table 1). Shaded
areas show the standard errors of the mean (SEMs), as described in Section IIC. SEMs are only shown for CL0, CL12 and CL12b for clarity. SEMs are only
noticeable in the regions of largest negative curvature in (a), where POPG is depleted, and are smaller than the symbols in (b).

Fig. 5 Normalized relative densities Fj (s) as functions of curvature K(s) for each lipid component. Fj (s) is calculated as the density rj (s) (Fig. S2, ESI†),
divided by the corresponding all-component density r(s) (Fig. 3), and normalized as a probability density. The panels correspond to (a) POPG,
(b) POPE, and (c) CL, and symbols correspond to the simulated systems as reported in Table 1. The shaded areas show the standard errors of the mean
(SEMs), as described in Section IIC. SEMs are only shown for CL0, CL12 and CL12b for clarity, and are smaller than the symbols for all values of K(s) in
panels (a) and (c).
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The relative densities are finally normalized as FjðsÞ ¼
fjðsÞ

.Ð 1
0dsfjðsÞ. For the two-component bilayer, Fig. 5 shows

that POPE is enriched around the region of negative curvature
(s = {0, 1}), while POPG is conversely depleted in the same
region. When cardiolipin is increasingly added to the mixture,
the CL density is also enriched around negative curvature, but
more strongly than POPE. Thus, at large CL concentrations,
it outcompetes POPE for the region of maximum negative
curvature, and POPE is partially displaced.

CL localization to negative curvature depends not only on its
shape,60 but can also be affected by its headgroup charge.67,86

However, the ionization state of the CL headgroup has been
heatedly debated in the literature (see ref. 87 and the references
therein), partly because of its potential role in the molecular
pathways for Barth syndrome33 and/or as a proton reservoir
for proton-pumping respiratory enzymes.37 Recent FT-IR
measurements,76 titration experiments,75 and electrokinetic/
spectroscopic methods74 lend convincing support to CL being
fully ionized at physiological conditions, with a symmetric
charge distribution (�1 on each phosphate head group).
We used a reduced-charge model of CL with �0.5 charge units
on each phosphate group, to partially balance the overestimated
electrostatic interactions in the Martini model (which uses relative
permittivity er = 2.5 with the polarizable water model).

We tested if increased charge screening can enhance CL curva-
ture sensing in a simulation with 0.15 M salt concentration (CL12s),
which is equivalent to that in blood plasma at physiological con-
ditions. We found only minor changes to all calculated quantities
(lipid distributions, chain order parameters, and enhancement
ratios, as shown in Fig. 3–6) compared to their salt-free counter-
parts. The differences are most pronounced, but within 1–2%, at
high positive and negative curvatures, and negligible at intermediate
curvatures. These observations are consistent with earlier
simulations58 that also showed a small effect on the degree of CL
localization when the head group charge changed from�1 e to�2 e.

Chen et al. have shown that 1,2-dioleoyl-sn-glycero-3-phospho-
ethanolamine (DOPE) is more prone than CL to assemble into

highly negative curvature structures in the Hexagonal II (HII)
phase.88 Furthermore, CL curvature sensing depended on the
presence of divalent calcium ions. This is most likely a charac-
teristic of the HII phase, where CL curvature sensing is strongly
suppressed by electrostatic repulsion between headgroup charges.
The dominating factor in our simulations of the buckled lamellar
phase is lipid packing frustration.

E. Quantitative analytical model of relative densities

We now develop an analytical theory for three-component lipid
mixtures to provide a quantitative analysis of the competition
between lipid components for the most favorable curvature
region. We validate the theory by deriving a linear relationship
between curvature and the logarithm of the relative mole
fractions of different lipids in opposing monolayers, the
so-called enhancement ratios. As in our previous work,56,57,59

we consider the buckled bilayer shape to be fixed, as enforced
by the simulation geometry, and model the lipid species dis-
tribution along the buckled profile.

Following ref. 3 and 47, we model the curvature dependent
energy per lipid molecule of species j in a monolayer with the
harmonic expression

Ej ¼
1

2
Mj KðsÞ � Kj

� �2
; (4)

where K (s) is the midplane curvature, Kj is the lipid’s preferred
curvature, and Mj is the bending modulus per molecule, i.e., the
bending modulus times the area per lipid. The mixing entropy in
the monolayer per molecule is given by the ideal gas expression

S = �kB(logfj (s) � 1), (5)

where fj (s) denotes the local mole fraction of lipid species j,
defined in eqn (3). The free energy per leaflet becomes

F ¼ LyL

ð1
0

ds~rðsÞ
X3
j¼1

fjðsÞ
2

Mj KðsÞ � Kj

� �2�

þ kBTfjðsÞ logfjðsÞ � 1
� ��

;

(6)

Fig. 6 Enhancement ratios for the two- and three-component simulations. f+
j (s) is the local relative density of lipid species j in regions of positive

curvature (an innermost lipid tail bead with s A (0.25, 0.75) corresponds to positive curvature if it resides in the upper monolayer), and f�j (s) denotes the
relative density of lipids in negative curvature regions. Black lines are least-squares fits to eqn (10). Shaded areas show the standard errors of the mean
(SEMs), as described in Section IIC, for the CL0, CL12 and CL12b systems.
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which is subject to the constraints

ð1
0

ds~rðsÞfjðsÞ ¼ nj ; (7)

and

X3
j¼1

fjðsÞ ¼ 1; (8)

where ~r(s) is the all-lipid number density, and nj is the number
of lipids of species j in the monolayer. Minimizing with respect
to fj (s) yields

�kBT logfjðsÞ ¼
Mj

2
KðsÞ � Kj

� �2þmj þ aðsÞ; (9)

where mj are Lagrange multipliers from the condition in eqn (7),
and a(s) enforces the point-wise constraint in eqn (8) (see
the ESI† for details of these calculations). Since we use the
midplane curvature, opposing monolayers have the same
curvatures but with opposing signs at any s value. Moreover,
the terms a(s) and mj can be made to cancel if we compute ratios
of relative fractions in opposing leaflets. Such considerations
lead to quite simple relations of the form

log
fþi ðsÞ
f�i ðsÞ

� log
fþj ðsÞ
f�j ðsÞ

¼ 2

kBT
KiMi � KjMj

� �
KðsÞ; (10)

where f+
i and f�i denote the molar fractions in opposing leaflets

of positive and negative curvature, respectively. As lipids partition
between regions of positive and negative curvature, eqn (10)
characterizes the competition between lipid species with different
curvature preferences. Analyzing our simulation results in this way
in Fig. 6, we see excellent agreement with the predicted linear
relationship. From the slopes in Fig. 6, we find weak competition
between POPG and POPE, (KPG MPG � KPEMPE E 1.2kBT nm), and
strong competition between POPG and CL (KPGMPG � KCLMCL E
4.6kBT nm), which makes sense since these lipids prefer curvatures
of opposing sign. The slope of the line of the remaining pair, POPE
and CL (KPEMPE � KCLMCL E 3.4kBT nm), quantifies the extent to
which CL outcompetes POPE for negative curvature, as seen
qualitatively in Fig. 5, and in a previous study of lipid distribution
in buckled Martini membranes.58

A direct comparison of our simulations with experimental
elastic constants is not possible, since we only extract combina-
tions of products of the bending moduli and intrinsic curva-
tures for the lipid species. However, it is possible to do a
consistency check on the product of elastic constants by
assuming typical literature values for the bending moduli89

(25kBT) and area per lipids90 (0.7 nm2). With these numbers for
all lipid species, the extracted products of bending modulus
and intrinsic curvatures can be solved to yield the intrinsic
curvature differences KPG � KPE E 0.06 nm�1, KPG � KCL E
0.26 nm�1, and KPE � KCL E 0.17 nm�1. These differences are
similar in magnitude to the experimentally estimated intrinsic
curvatures of CL (�1 nm�1 to �0.2 nm�1)91 as well as other
lipids.24,92

Finally, we emphasize that although Fig. 6 shows enhance-
ment ratios versus curvature, the comparison is based on
number densities along the buckled profile. Our analysis there-
fore relies on our ability to extract lipid arc-length positions sj

from the simulations, which is also the reason for the unequal
spacing of points along the K(s)-axes in Fig. 6.56,59

IV. Conclusions

In this work, we used a computational approach to investigate
curvature sensing in coarse-grained models of three-component
lipid bilayers with varying concentrations of cardiolipin (CL),
which is known experimentally to aggregate in membrane regions
of negative curvature.85

The shapes of the simulated buckled bilayers were in
excellent agreement with predictions from elastic theory,51,52

and we observed no curvature dependent bilayer thinning
for any of the lipid mixtures. We found that the curvature
dependence of the lipid packing was asymmetric, with the
density depletion being largest at the minimal curvatures.
Our analysis shows that CL lipids strongly prefer membrane
regions with negative curvatures. POPE lipids also prefer nega-
tive curvatures, but more weakly, and are outcompeted for the
most negative curvatures by CL. POPG lipids show opposite
behavior and are enriched in the regions on positive curvature.
The relative preferences of CL and PE for negative curvature
agree qualitatively with the observations of Boyd et al.58 They
studied mixtures of POPE, POPC, and CL in a buckled geometry
using the Martini model and a simulation setup similar to the
one used here, but with a different analysis method.

Since lipid redistribution can stabilize curved membranes,93

we calculated the chain order parameters of the lipid tails along
the curved surface to assess the curvature dependence of the
lipid structures. We found the largest decrease in the chain
order parameter in regions of maximal negative curvature for
CL, where it is most concentrated. This is consistent with
a geometric mechanism for curvature sensing, with cardiolipin
‘‘repairing’’ local membrane deformations in the curved
structure.

Finally, we developed and validated a Helfrich-type elastic
model that quantifies the competition among lipid compo-
nents for the most favorable curvature region. The theory
provides a simple relation between enhancement ratios47

for multicomponent membranes and the local curvature, and
can be used to determine some of the membrane’s material
constants.

CL has theoretically been predicted to form clusters that
localize to the poles of E. coli membranes once a critical
concentration threshold is reached, partly driven by lipid–lipid
interactions.27 We see no significant concentration dependence
of our CL enhancement ratios (Fig. 6b and c), as expected for a
model without lipid–lipid interactions (eqn (6)). However, while
the nominal CL concentration in our simulations reach well
above the predicted threshold of 1%,85 the absolute number of
CL molecules may be too small to form clusters. We also probe

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
Ja

nu
ar

y 
20

19
. D

ow
nl

oa
de

d 
on

 8
/9

/2
02

4 
12

:1
9:

11
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8sm02133c


800 | Soft Matter, 2019, 15, 792--802 This journal is©The Royal Society of Chemistry 2019

curvatures more than an order of magnitude larger than those
of bacterial cell poles, so it is perhaps not surprising that the
curvature mismatch energy strongly dominates in our results.
However, this regime is still of biological relevance for the
extreme curvatures present for example in the mitochondrial
inner membrane.18

CL is the signature lipid of mitochondria. Several proteins
bind cardiolipin with high affinity, including respiratory com-
plexes I, III, IV and V.94 The efficiency of ATP synthase is linked
to high membrane curvature in mitochondrial cristae,95,96 and
specific interactions between CL and the rotary mechanism
of ATP synthase.97 CL segregation in the highly curved mito-
chondrial inner membrane may also enhance ATP synthase
function by acting as a proton sink.98 The computations and
analysis reported in this work are stepping stones for the
theoretical explanation of curvature sensing by cardiolipin in
lipid membranes at a molecular level, and can be generalized to
study the general interplay between shape and composition in
biological membranes.
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56 J. Gómez-Llobregat, F. Elı́as-Wolff and M. Lindén, Biophys. J.,

2016, 110, 197–204.
57 A. Martyna, J. Gomez-Llobregat, M. Lindén and J. S.

Rossman, Biochemistry, 2016, 55, 3493–3496.
58 K. J. Boyd, N. N. Alder and E. R. May, Langmuir, 2017, 33,

6937–6946.
59 F. Elı́as-Wolff, M. Lindén, A. P. Lyubartsev and E. G. Brandt,

J. Chem. Theory Comput., 2018, 14, 1643–1655.
60 K. J. Boyd, N. N. Alder and E. R. May, Biophys. J., 2018, 114,

2116–2127.

61 S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman and
A. H. De Vries, J. Phys. Chem. B, 2007, 111, 7812–7824.

62 D. H. de Jong, G. Singh, W. D. Bennett, C. Arnarez,
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