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We present a new and accurate method to determine the Poisson’s ratio of PDMS, using thermal
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expansion and an optical surface profilometer. The Poisson’s ratio of Sylgard 184 was found to be
v = 0.4950 + 0.0010 and for Sylgard 182, v = 0.4974 + 0.0006. Furthermore, we found that for both
PDMS types, the coefficient of thermal expansion depends approximately linearly on the curing

temperature. This method can be used for almost any kind of soft polymer that can be cured from a

rsc.li/soft-matter-journal liquid at elevated temperatures.

1 Introduction

Polydimethylsiloxane (PDMS) is widely used as a MEMS material,
e.g., for manufacturing lab-on-a-chip devices."” In other appli-
cation fields, PDMS is used for its thermal, mechanical and
optical behaviour.*® Although PDMS is widely used for many
applications, its Poisson’s ratio is not known exactly. In the
literature, the value for PDMS ranges from 0.45 to 0.5.°'° While
this appears to be only a variation of 10%, in many situations, it
is essential to know how close this value is to 0.5.” If 0.5 is used
as the Poisson’s ratio, it would lead to, e.g., an infinite bulk
modulus. Thus, knowing the accurate value of the Poisson’s
ratio is important to predict the mechanical behaviour of a
system made from the material.” The Poisson’s ratio can be
determined from the linear relationship of the Young’s modulus
and either the shear modulus or the bulk modulus."” A method
to determine the Poisson’s ratio is to relate the transverse
deformation to an elongation during a tensile test.>'">1°
Indentation methods are another way to characterize the
mechanical properties of isotropic, homogeneous and linearly
elastic materials. For most indentation methods, one material
property is measured and the others are assumed, which might
be an error source.” Two material properties can be measured
by using indenters of different size, similar to our approach
here.'® The authors of that paper, however, use a linear model
that applies, in our experience, only to extremely small strains.
We include geometric non-linearities, which require a different
approach to the data analysis, which we hope may also be
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useful for indentation methods with finite strains. Indentation
tests require only small volumes with sufficiently flat surfaces,
which can be advantageous for measuring the mechanical
properties of biological tissue samples or small animals.'®"®
However, the initial point of contact of the indenter tip will
cause problems with PDMS, where pull-in and pull-off events
were observed during the initial contact.>*! This requires, e.g.,
advanced in situ tests inside a scanning electron microscope.>>
All these methods are limited in their accuracy and may be non-
trivial to apply, in particular for a soft elastomer like PDMS.
The goal of this paper is to determine an accurate value for
the Poisson’s ratio of PDMS using thermal expansion in a set of
defined moulds by measuring the resulting surface deformation.
To measure the surface, we used an optical profilometer, which is
highly accurate and readily available in most MEMS laboratories.
In addition, this method gives the coefficient of thermal expansion
of a PDMS body undergoing thermal expansion. To make sure our
findings are reasonable, we compared the results to the literature.

2 Methods

2.1 Basic method

The method is based on the surface deformation due to
thermal expansion of PDMS in a cavity, as described by Brunne
et al.® A soft polymer is filled into a cavity, closed with a glass
slide and heated. During heating, the still liquid polymer
expands and flows out of the cavity at the edges. The temperature
is kept constant until the polymer is completely cured. Afterwards,
the glass slide is removed and the setup is cooled down, such that
the polymer shrinks and the surface deforms. This surface
deformation is generally dependent on the depth and shape
of the initial cavity, the polymerisation shrinkage, the coefficient
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of thermal expansion and the Poisson’s ratio. However, with
increasing cavity depth, the surface deformation becomes
independent of the cavity depth. This is because for any material
that is not perfectly incompressible, the internal stress that causes
the deformation is eventually limited by the volume modulus.
While we expect the deformation to scale approximately linearly
with the thermal expansion, there will hence be a different
dependence on the Poisson’s ratio for shallow and deep cavities.
Thus, we use different depths of the cavity to find the Poisson’s
ratio. We choose a cylindrical shape for the most reliable
manufacturing, to avoid edge effects and to allow for efficient
rotationally symmetric simulation. In our method, we added spacers
next to the cavities to enable a controlled flow of the expanded
liquid polymer out of the cavities. Additionally, we introduced a
curing protocol with a temperature ramp to avoid the formation of
voids due to polymerisation shrinkage during curing.

2.2 Analytical model

The Poisson’s ratio is usually defined as the ratio between the
transverse and longitudinal deflection in an isotropic material.
The deformation in one direction will lead to a deformation in
the other direction according to Hooke’s law with strain ¢ and
stress o,

& = Di’jilﬂ'j, [1)

where D is the linear elasticity tensor with Young’s modulus E
and Poisson’s ratio v:

E
D=
T (T4 v)(1=2v)
(1—v v v 0 0 0 i
v l—v v 0 0 0
v v l1—v 0 0 0
1-2
x |0 0 0 2” 0 0
1—2v
0 0 0 0 0
2
1—2v
_O 0 0 0 0 >

If we want to know the deformation due to thermal expansion
and ignore the shear components in Hooke’s law, we get:

1 -V -V 1
5:1 —v 1 —v|d+ |1 |aAT 3)
E b
v —v 1 1

where o is the coefficient of thermal expansion and AT is the
temperature difference.

For infinitesimally shallow cavities, we can analytically
obtain the strain using Hooke’s law (eqn (3)) and subsequently
the surface deformation Ah, which is caused by the PDMS shrink-
age. Adding boundary conditions for an isotropic material with a
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fixed bottom and side walls (-, = 0) and a free top surface
(o, = 0), the in-plane stress becomes
_ —aATE

Oy = . 4
= @)
Substituting eqn (4) into the strain in the transverse direction

&, We get:

e = (lzljy—Fl)ocAT. )

The surface deformation AZz from the PDMS shrinkage in a
cavity with depth H is then:

Ah = ¢,H. (6)

For finite cavities, the analytical estimate is less trivial.
Hence, we used finite element method (FEM) simulations to
predict different cavity depths and temperatures, using eqn (6)
to verify our model.

For a hypothetical infinitely deep cavity, we have a negative
pressure Ap in the material close to the bottom of the cavity,
depending on the bulk modulus K, and the volume shrinkage
AV/V:

AV
Ap=—K22
P %

7
= E 30AT 7
T3l =2
To account for an additional shrinkage &, due to the temperature
ramp in the curing protocol and for the polymerisation shrinkage,
&0

we could replace o« with & = o + AT

2.3 Finite element method (FEM) simulations

We performed the FEM simulation using COMSOL Multiphysics
as per the method described in Section 2.1. Therefore, we chose
the 2-D axisymmetric structural mechanics module using solid
mechanics with a linear elastic material model: thermal expansion.
The geometry and the used mesh with corner refinement at the
edge of the cavity are illustrated in Fig. 1. To rule out a possible
mesh dependency at the edge of the cavity, we also simulated
different mesh sizes and chamfers and fillets with different radii
and found rapid convergence with decreasing mesh size or
decreasing curvature radius. The boundary conditions were
set as: a roller constraint at the bottom and a free boundary
on the sidewalls and the top surface. As we vary the depth of the
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Fig.1 Left: Cross section of the FEM model. Right: Mesh of the FEM
model in the region near the cavity (the red box in the left image).
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cavities from shallow to very deep, the resulting surface deformation
becomes relatively large such that nonlinear effects cannot be
neglected. Thus, geometric nonlinearities were taken into
account for a precise result. We used four nested parametric
sweeps of different cavity depth H,, curing temperature 7,
Poisson’s ratio v and linear coefficient of thermal expansion o
to obtain an interpolation f :{v, «) over v and « for each cavity
depth and temperature.

The analytical estimate from eqn (5) for the strain in a finite
cavity differs from the simulation with equivalent boundaries by
1.12% and 3.63% at aspect ratios of 1:10 and 1: 20, respectively,
and the negative pressure of the analytical estimate in eqn (7)
deviates by 0.12% and 0.15% for the same aspect ratios. Hence,
we can assume that the simulation is reliable.

3 Experimental procedure

We investigated two commonly used types of PDMS: Sylgard
184 and Sylgard 182, from Dow Chemical Company (formerly
DowCorning), which differ in their viscosity, shore hardness
and curing time. First, we prepared them as recommended in
the data sheets.>*** The liquid two-part silicone elastomer kit
consists of a pre-polymer base (part A) and a cross-linking
curing agent (part B), which need to be mixed thoroughly in a
10:1 ratio. After mixing, the PDMS was degassed in a vacuum
desiccator at a pressure below 30 mbar for at least 15 min (until
the mixture shows no more air bubbles) and was filled into an
aluminium substrate, where it was degassed again for at least
30 min. We fabricated the aluminium cavities using precise CNC
milling, as illustrated schematically in Fig. 2, top. The substrate
has four cavities each with different depths: 0.5 mm, 0.75 mm,
1 mm and 1.5 mm. The diameter of all cavities is kept constant at
d = 3 mm, and we add a spacer with thickness ¢ = 0.5 mm. After
pouring the liquid PDMS into the cavities and degassing, we
carefully arranged a silane coated glass slide on top and placed
the device directly into a mechanical press, which was preheated
at different temperatures (see Table 1). We then applied a force of
at least 1 kN to prevent motion or deformation of the glass slide.
While the still liquid PDMS expands, the excess material is
pressed out of the substrate via the spacers.

Height H 0.5mm 0.75 mm
= == ..

1 mm

1.5mm
Z/

07 Ah

D)

0 t |

Ah/pm

—

o 2 4 6 8 10 12 14 16 18
Position in x-direction / mm

Fig. 2 Top: Cross-section of the aluminium substrate with different cavity
depths. Bottom: Measured profile of the generated PDMS (Sylgard 184)
surface deformation at 120 °C at the corresponding position. Bottom right:
Schematic illustration of the whole milled aluminium substrate.
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Table1 Curing protocol of Sylgard 184 (S184) and Sylgard 182 (S182) with

start temperature (Start), ramp time (Ramp), end temperature (End) and the
afterwards applied curing time (Curing)

PDMS Start (°C) Ramp (min) End (°C) Curing (h)
5184 50 60 60 6
65 18 75 2.5
80 6 90 1
105 0 105 0.5
120 0 120 0.3
135 0 135 0.2
5182 50 120 60 11.2
65 45 75 4.7
80 15 90 2
95 6 105 1
120 0 120 0.6
135 0 135 0.4

Fig. 3 Measured 3-D profile of the generated PDMS (Sylgard 184) surface
deformation at 120 °C.

After curing, we released the pressure and removed the glass
slide, such that the substrate can cool down to room temperature.
Doing so, the material shrinks and a small surface deformation
is formed.

We measured the surface deformations using an optical
surface scanning profilometer with a chromatic confocal sensor
CS-MG-CL2 from Polytec GmbH. It has a lateral resolution of
1.7 um with a working range of 400 um and an axial resolution
of 2.7 nm. After leveling the surface profile using the measured
vertical positions between the cavities, we evaluated the minimum
of each surface deformation manually, as shown in Fig. 2. A three
dimensional profilometer measurement of Sylgard 184 at 120 °C is
illustrated in Fig. 3.

The temperature protocol was found experimentally, guided
by the curing time, and is summarised in Table 1. The measure-
ments were done with four different cavity depths, with each
done for at least four cavities, at six different temperatures, to
generate a statistically significant measurement sample.

4 Data evaluation

To relate the measurements to the simulation, we had to relate
one quantity, the maximum surface deformation Ak, measured
at different cavity depths, to two quantities, » and «. Equating
the measured A% to the interpolation f; (v, o) leaves us with
one unknown degree of freedom, i.e., with a line in the space
(o, v) for each cavity depth H,,. The intersection of these lines of

Soft Matter, 2019, 15, 779-784 | 781
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Fig. 4 Data evaluation in (, v) space using Mathematica. Left: Probability
distribution for different cavity depths. Right: 1o probability region for
different cavities and the 1 and 2¢ regions of the multiplied probability
distributions of all different cavity depths.

different cavities then gives us the predicted value of v and «. To
take into account the measurement uncertainty, we assumed a
Gaussian probability distribution W of the surface deformation
Ah for each cavity depth H, at a constant temperature T:

(S r(va)~Dhi, )’

bl
WH” = —28 (JH")

C 8
on, Hy» ( )

with the corresponding measurement uncertainty o that is
found statistically from the four cavities at each depth. The
factor C co-variantly relates the probability distribution in the
space of A& to a probability distribution in the space of v and «:

o [T o

The distributions for different depths at a constant temperature
are shown in Fig. 4 (left) at 60 °C for all four cavity depths. The
distributions are then multiplied to get a total probability
distribution of the overall measurement result for v and «, as
illustrated in Fig. 4 (right). We see that the Poisson’s ratio and
the coefficient of thermal expansion for one temperature correlate
and have dependent uncertainties. To obtain independent
uncertainty values, we integrated one variable to obtain an
independent value for the other variable.

5 Results

The surface deformations for both materials at different cavity
depths and temperatures are summarised in Fig. 5. As expected,
deep cavity depths lead to a relatively large surface deformation.
We optically verified that there is no delamination of the PDMS
from the aluminium mould inside the cavities. In Fig. 4, we see
that the probability distributions for the different cavity depths
cross approximately at a single point, which validates our
measurement method.

The heat transfer in the setup was simulated to ensure the
drainage of the liquid PDMS, as illustrated in Fig. 6, using
the 1.5 mm deep mould. The temperature at the center of the
PDMS reaches 90% in 3.97 s for Sylgard 184 and 6.98 s for
Sylgard 182, which is in both cases well below the curing time.

In our most extreme case of the strain (relative volume
change), at a cavity depth of 1.5 mm and a curing temperature
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Fig. 5 Measurement results: Surface deformation Ah at different cavity
depths for both Sylgard 184 (S184) and Sylgard 182 (S182) at different
curing temperatures. The error bars indicate the sample over at least four
cavities.
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Fig. 6 Simulated heat transfer in the complete setup for both PDMS types
with indications at 90% of the final temperature. Inset: Simulation of
Sylgard 184 at 90% of the final temperature.

of 135 °C, the maximum strain is 10.83%. The volume with a
strain of more than 5% accounts for less than 3.8% of the
overall volume change. Hence, we can conclude that the result
is dominated by small strains, where the possible nonlinear
deformation near the edge is negligible. In comparison to
standard tensile tests, which usually measure strains around 10%
going up to strain values of 40%,>'° our results are dominated by
strains in the range from 1% to 2.35%.

The Poisson’s ratio for Sylgard 184 and Sylgard 182 at six
different temperatures is shown in Fig. 7. The shaded areas
show the error of the mean values. We can find an approximately
constant Poisson’s ratio for both materials. Averaging the overall
curing temperatures, the Poisson’s ratio for Sylgard 184 is v =
0.4950 + 0.0010 and for Sylgard 182, it is v = 0.4974 £ 0.0006.
Comparing our values to the literature, we find a good agree-
ment but a more precise result. Roman"" found a value of v =
0.47 + 0.028, which is in the same range as our result and
Pritchard et al.'> measured a Poisson’s ratio of v = 0.5 & 0.002
with half of the measurements above v = 0.5. Most of the other
values of the Poisson’s ratio found in the literature are estimates
that are close to 0.5 without an exact value, e.g. Schneider et al.:
v=0.49,° Du et al.: v = 0.499,” Studer et al. and Sasoglu et al.:
v = 0.45">"® or Johnston et al.: v = 0.499.°

This journal is © The Royal Society of Chemistry 2019
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Fig. 7 Poisson’s ratio, v, for Sylgard 184 and Sylgard 182 at six different
temperatures with the obtained mean value. The shaded areas show the
error of the mean values.
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Fig. 8 Coefficient of thermal expansion, «, for Sylgard 184 and Sylgard
182 at six different temperatures with linear fits.

We further fitted the coefficient of thermal expansion

~ & . . . .
5% =0+ - which includes a contribution due to the poly-

AT
merisation shrinkage and the temperature ramp &, to the

measurement results, and found that ¢, is in the order of
polymerisation shrinkage around 0.1%, which is clearly smaller
than the measurement uncertainty and was thus further
neglected. In Fig. 8, we find an approximately linear decrease
in the coefficient of thermal expansion with increasing curing
temperature. For Sylgard 184, we extrapolated the coefficient of
thermal expansion at 25 °C from our measurement to be
(309.63 + 6.91) ppm °C ™, which is approximately 9% less than
the value given in the data sheet (340 ppm °C™!).2* It decreases
to a coefficient of (—0.65 & 0.07) ppm °C ™2, For Sylgard 182, it is
(289.55 + 4.44) ppm °C™", which is approximately 11% less
than the data sheet value (325 ppm °C™"),>* and it decreases to
(-0.51 + 0.05) ppm °C 2.

6 Conclusions

We found a new method to accurately determine the Poisson’s
ratio using the thermal expansion properties of PDMS and an optical
surface scanning device. The Poisson’s ratio for Sylgard 184 is

This journal is © The Royal Society of Chemistry 2019
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v=0.4950 £ 0.0010 and for Sylgard 182, it is v = 0.4974 % 0.0006.
The results are in good agreement with the literature.® 416
In addition to the Poisson’s ratio, we also found the coefficient
of thermal expansion and observed a linear decrease with
increasing temperature. For Sylgard 184, we found an extrapolated
value of (309.63 + 6.91) ppm °C™ " at 25 °C with a decreasing trend
of (—0.65 % 0.07) ppm °C > and for Sylgard 182, we found (289.55 +
4.44) ppm °C " and (—0.51 + 0.05) ppm °C" 2, respectively.

One main advantage of this new method is that it only needs
a profilometer, FEM simulations and numerical mathematics
to determine the Poisson’s ratio, without any additional tensile
testing setup or advanced tracking methods, in particular since
tracking the transverse deformation of elastomers to such an
accuracy is non-trivial. With our method, we can measure in a
very small strain regime compared to standard tensile tests. We
assume that our method can also be used for other polymers
that are produced by curing from a liquid. In these cases, one
needs to take into account the possible absorption of humidity,
which may lead to swelling. PDMS, however, does not show a
significant swelling with a relative weight change of 0.03 & 0.02%.>
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