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Ideal circle microswimmers in crowded media

* and Thomas Franosch

Microswimmers are exposed in nature to crowded environments and their transport properties depend
in a subtle way on the interaction with obstacles. Here, we investigate a model for a single ideal circle
swimmer exploring a two-dimensional disordered array of impenetrable obstacles. The microswimmer
moves on circular orbits in the freely accessible space and follows the surface of an obstacle for a
certain time upon collision. Depending on the obstacle density and the radius of the circular orbits, the
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microswimmer displays either long-range transport or is localized in a finite region. We show that there
are transitions from two localized states to a diffusive state each driven by an underlying static
percolation transition. We determine the non-equilibrium state diagram and calculate the mean-square

displacements and diffusivities by computer simulations. Close to the transition lines transport becomes
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1 Introduction

Microswimmers are active agents able to self-propel when
moving in an aqueous fluid and display non-equilibrium
transport properties in striking contrast to the equilibrium
dynamics of passive particles."™ Biological microswimmers
include bacteria,>” sperm cells,>™" amoebae and protozoa,
as well as certain algae,>'* etc. Recent technological advances
have allowed the fabrication of artificial microswimmers, such
as Janus particles,"'® Quincke rollers,"””° or particles with
artificial flagellas,?® which have opened the possibility to study
non-equilibrium phenomena in a well-defined setup. Artificial
microswimmers are also expected to play a fundamental role in
the nanotechnology of the 21st century, in particular, for bio-
medical engineering, controlled drug delivery,>**> and environ-
mental cleansing of soil** and polluted water.

Natural environments for microswimmers are often
crowded and strongly heterogeneous such that the motion is
confined to ramified structures bound by obstacles. Then the
available space typically consists of well-separated compartments
weakly connected by narrow channels. A minimal theoretical
framework for such crowded environments is provided by the
Lorentz model®® where a single tracer explores a disordered
environment consisting of impenetrable randomly distributed
obstacles. The tracer is confined to the void space which consists
of finite pockets and, at low enough obstacle densities, of an
infinite component spanning the entire system. At a certain critical
obstacle density a percolation transition of the underlying space
occurs such that the infinite component becomes fractal. This, in
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subdiffusive which is rationalized as a dynamic critical phenomenon.

turn, induces anomalous transport as manifested in a subdiffusive
growth of the mean-square displacement. So far, transport proper-
ties have been studied mostly for passive tracers, obeying Newtonian
dynamics and specular scattering from the obstacles, or Brownian
dynamics in excluded volume. Although the underlying percolation
transition is universal, characterized by universal critical exponents
for the fractal dimension and for the growth of the static correlation
length, the corresponding dynamic universality classes may depend
on the microdynamics.>”* Experiments and simulations on active
particles in heterogeneous environments® have revealed trapping in
long-lived orbits,****® rectification of transport'**”*® and ratchet
effects,>*° sorting of active particles,”’ as well as anomalous
transport.*” In particular, subdiffusive motion has been investi-
gated via simulations for active Brownian particles with specular
scattering®” and both numerically and experimentally for Quinke
rollers’® in a two-dimensional Lorentz model in the vicinity of
the percolation transition. However, the universality class
appears to be the same as for passive particles.

For more complex dynamic rules of the microswimmers and
their interactions with the obstacles, new universality classes
may nevertheless emerge. In particular, more realistic models
for microswimmers should include the particularities of swimmers
that have been unraveled in experimental and theoretical investi-
gations. First, many biological and artificial microswimmers tend
to move in circles®”**™*® rather then in straight trajectories due to
some asymmetries. Second, the interactions between particles
and obstacles are of hydrodynamic origin and depending on
the swimming mechanism may lead to an effective attraction or
repulsion between swimmers and obstacles. Often the micro-
swimmers tend to follow the boundary of obstacles'®'**”~>!
rather than being merely reflected. In this regard, also the recently
proposed analogy®® between magnetotransport of electrons in
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disordered impurity arrays in perpendicular magnetic field needs
to be reconsidered.

Here, we follow the studies performed for the magneto-
transport problem®” and consider an ideal circular microswimmer
in an array of randomly placed obstacles. Yet, we account for the
experimental insight that the swimmers stick to the edges of
the obstacles and move along the border before reorienting and
thereby leaving the boundary. We show that this changes the
dynamic properties of the transition at low densities from an
‘orbiting state’ where the swimmers orbit around isolated
obstacle clusters to a ‘diffusive state’ where long-range trans-
port exists. At high densities we find a transition to a localized
state where all swimmers are confined to finite compartments.
In contrast to magnetotransport, we find an enhancement of the
diffusivity upon increasing obstacle density except for the close
vicinity of the localization transition. We also provide evidence
that the transport properties close to the transition for these
ideal circle microswimmers are governed by a new dynamic
universality class.

2 Model and simulation details

We consider a tracer particle moving in circular orbits of radius
R counter-clockwise with fixed speed v (corresponding to an
angular velocity v/R) in a plane crowded with randomly and
independently placed obstacles of radius ¢. In particular, the
obstacles may overlap and form clusters of excluded volume.
The obstacle radius ¢ sets the unit of length and /v the unit of
time. The structural properties of the disorder are characterized
in terms of the reduced obstacle density n* = No*/L*> where N is
the number of obstacles and L the linear size of the box.

After hitting an obstacle with an incident angle o the particle
becomes attached to it and starts to move counter-clockwise
with the same linear speed v around the edge (corresponding
to an angular velocity v/g). We choose a random exit angle
A € [—m/2,n/2] while keeping the initial direction 0 of the
velocity (with respect to a reference axis) unchanged. This
implies that the particle follows the edge until it reaches an
angle ¢ = 0 — 4(mod 2m), see Fig. 1. After escaping from the
edge, the particle again performs a circular orbit until it hits
an obstacle. It may occur that before escaping, the particle
arrives at a ‘corner’ where two obstacles intersect. In this case
a new random exit angle 4 is drawn, such that the particle
follows the new obstacle as described above and the procedure
is repeated. The interaction rule with boundaries is what
essentially distinguishes our model from magnetotransport, where
tracer particles exhibit specular reflections upon collisions with
obstacles.

Choosing a random exit angle 4 is introduced to prevent
strictly or almost circular orbits, e.g. trajectories barely touch-
ing an obstacle or periodic pathways as in microswimmer
billards.>® These rare instances would give rise to long-living
orbits, where the swimmer does not significantly advance and
cause numerical difficulties. In our simulations we use 4 €
[—0.97m/2,0.97/2] to avoid these numerical complications. Here
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Fig. 1 Illustration of particle—obstacle interaction. The obstacle is shown
as a gray circle of radius ¢. The particle trajectory is shown in blue, dashed
parts represent free motion in an orbit of radius R, the solid part represents
sliding along the obstacle surface. The incident angle is denoted by «, 4 is
the escape angle measured against the normal, and A¢ represents the
displacement along the surface. The direction of motion 0 of the particle
with respect to an axis does not change during the sliding motion, such
that the two red arrows are parallel.

we choose a box size of L = 10%¢ and periodic boundary
conditions, large enough to minimize finite-size effects. The
simulations rely on an event-driven scheme and are performed
up to times ¢ = 10’-10"%s/v, depending on the combination of
parameters, until the system reaches a steady state.

Different wall following rules are conceivable, for example,
orientational diffusion during the wall following would change
the direction of motion. Similarly, including explicitly hydro-
dynamic or phoretic interactions can induce rather compli-
cated dependences of the exit angle on the incident angle. Our
choice is motivated by computational simplicity while capturing
the essence of microswimmer-specific dynamics.

In the magnetotransport problem there is an additional
field-induced transition which is also of a percolative character,
with a dynamic scaling scenario similar to the one for the
localization transition.”®** When the density is decreased,
there is a critical slowing down of transport and exactly at the
transition density anomalous transport, in particular subdiffusion,
occurs. In the diffusive regime there exists an infinite cluster
(component) of the accessible void space, while at both localized
states there are only isolated clusters of the void space. For
densities higher than the percolation transition these clusters
are formed by the overlapping obstacles. For densities lower than
the magnetic transition the particles are localized around obstacle
clusters due to the magnetic field. The transition is of a percolative
character and it can be characterized by scaling exponents, both
static and dynamic ones. The static exponents characterize the
scaling properties of the underlying geometrical structure, the
infinite void space cluster which is self-similar to the critical
density. The dynamic exponents characterize the subdiffusion
and the suppression of the diffusivity at the critical point.
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The latter ones depend on the dynamic rules and the former
ones purely on geometrical properties. In the magnetotransport
problem®” it was shown that the static exponents coincide with the
ones of a percolation transition, while the dynamic exponents
differ drastically. As we consider here a dynamic interaction rule
which is significantly different from the known ones, we expect the
dynamic exponents also to be different. The determination of
these exponents is a large part of the present study.
Our simulations focus on the mean-square displacements

8r*(t) = ([R(6) — R(O)), (1)

in the stationary state, where R(t) denotes the position of the
microswimmer at time t. The average (-) includes averaging
over time, and different initial positions and orientations of the
microswimmer, as well as over different realizations of the
disorder. In particular, it includes all swimmers both trapped
in finite regions as well as particles meandering through the
entire system. Hence, we discuss all-cluster averages in the
following, if not explicitly specified otherwise.

The simplest indicator to quantify the transport properties is
the long-time diffusion coefficient

D := lim 7(%6;’ (0, (2)

[—00

and we characterize different states by finite or vanishing
diffusion coefficients.

y )
d) Rw=05,n*=0.172
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Fig. 2

(d) for R = 2.00. (a) Trajectory for density n* = 0.172, close to the meandering transition n*(R = 0.5) =~
0.039898. (c and d) Trajectories at high density, n* = 0.35, close to the percolation transition value nc.

corresponding transition density n,*(R = 2.0) =~

R/0=2.0, n*=0.039...
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3 Results

The non-equilibrium state diagram depends on two dimensionless
parameters, the reduced obstacle density n* = No*/L* and the
reduced orbital radius R/c. The state diagram displays an ‘orbiting
state’ at low obstacle densities where the swimmers circle around
isolated obstacle clusters and therefore do not display long-range
transport. At intermediate densities a ‘diffusive state’ emerges where
the swimmer can meander from one obstacle cluster to the next
thereby traversing arbitrarily large distances. Last, at high densities
the conventional ‘localized state’ arises where all swimmers are
confined to finite pockets in the disordered array of obstacles.

Typical trajectories in the three respective states are dis-
played in Fig. 2. One infers that it is more difficult for a particle
to jump’ from one obstacle cluster to another for small orbital
radii [Fig. 2(a)] as the positions for a successful jump are
limited and might be skipped when the particle follows the
wall. At high densities, in the vicinity of the ‘localization
transition’ [Fig. 2(c) and (d)], the interaction with the obstacles
amplifies transport providing means for a quick escape from
pockets formed by obstacles. Below a ‘meandering transition’,
particles orbit around finite obstacle cluster without long-range
transport [Fig. 2(e)]. Last, above the localization transition all
orbits are confined to finite pockets [Fig. 2(f)].

3.1 Non-equilibrium state diagram and diffusivity map

We have extracted diffusivities for various obstacle densities
and orbital radii from the simulations and constructed a color

AR
E) R/0=2.0, n*=0.035
-

\\\\s'#’ Vs
9

Illustrative snapshots of trajectories of a circle swimmer in a disordered environment. Panels (a) and (c) are for orbital radius R = 0.5¢, and (b) and

0.159592. (b) Trajectory almost at the

The configuration of obstacles and starting point is the same for both cases. (e) Orbiting state at R/¢ = 2.0 and n* = 0.035 < n*(R/0). (f) Localized state at

Rle =2.0and n* = 0.4 > n.*.
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Fig. 3 Diffusivity map in terms of the reduced density n* and the inverse
reduced orbital radius ¢/R. The color coding is in decadic logarithms (log;o)
of the diffusivity D in units of gv. The line for the meandering transition is
defined by eqn (3). Orbiting state means that the particle ‘orbits” around
isolated obstacle clusters and the trajectory does not span the whole
system. Diffusive state means that the particle can explore all available
space. In the localized state the microswimmer is trapped in pockets
formed by overlapping obstacles.

map for the diffusivities [Fig. 3], which includes the transition
lines to states of vanishing diffusivity. The highest values of
the diffusion coefficients are found for fairly high obstacle
densities n* ~ 0.3 quite close to the localization transition.
This is rather distinct from the corresponding state diagram of
magnetotransport, where the maximum of the diffusivity is
found at intermediate densities.>”> Therefore we infer already
here that the detailed rules of interactions with the boundaries
do have a significant impact on the transport properties.

Nevertheless, the localization transition in the state diagram
at high densities coincides with the geometric percolation
transition of the void space as for all Lorentz models for single
particle transport. In particular, the transition line is indepen-
dent of the orbital radius. The critical reduced density is well
known n.* = 0.359081. ...2%°%%%57 For this transition line, it is
irrelevant whether the swimmers move in circular orbits and
how they interact with the hard boundaries, since all swimmers
are confined to finite pockets whose size is determined by the
distribution of obstacles only.

The second ‘meandering transition’ from the diffusive state
to the orbiting state is anticipated to depend on the detailed
rules of how the swimmer escapes from one obstacle cluster to
the next. For magnetotransport, where the particles undergo
specular scattering, it has been shown that the location of the
transition line is provided by the percolation of obstacles with
an effective radius®*** ¢ + R. Thus the space traversed by the
particles consists of the ‘halos’ around the obstacles, and it is
sufficient to decide if there is a connecting path through the
entire system via these halos. Implicitly, this picture relies on
ergodicity, i.e. the particle explores all accessible regions of the
halo structure and finds eventually the connecting path to the

This journal is © The Royal Society of Chemistry 2019
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next obstacle cluster. Then the critical density for the mean-
dering transition can be related to the percolation density>*

o’ o’

R ey 2 (3)

nm' (o, R) = ng'

This relation is justified by the fact that transport can only
occur if the microswimmers are able to jump from one
obstacle cluster to another. A necessary condition is that the
disks composed of obstacles and the halos of radius ¢ + R
percolate.’>”* For our circle microswimmers we find that the
transition line is identical to the one predicted for magneto-
transport, hence the condition is also sufficient. Thus,
although the dynamic rules to interact with the obstacles are
changed drastically, the ergodicity still holds and the micro-
swimmer enters the connecting paths. Let us emphasize, that
for the state diagram it is irrelevant, how long it takes for
the swimmer to find the connecting region, yet, this will be
important for the diffusivities and their behavior close to the
transition lines.

The evolution of the diffusion coefficient with obstacle
density is exemplified in Fig. 4 for selected orbital radii. The
maximal diffusivities are found close to the localization transi-
tion, in striking contrast to magnetotransport, where it has
been argued that the maximal diffusivity occurs at the geo-
metric mean of the two transition densities at the same orbital
radius.>® For microswimmers it appears that these maxima are
shifted to higher densities, which we refer to as crowding-
enhanced transport. By following the boundaries before detach-
ing and undergoing a circular motion again, the swimmer
covers larger distances at higher obstacle densities. Reversely,
to benefit from this mechanism the density of the obstacles has
to be higher than in magnetotransport. Obviously crowding-
enhanced transport works only below the localization transi-
tion, therefore the densities have to be not too large.
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Fig. 4 Diffusion coefficient D as a function of obstacle density n* for
different orbital radii R. In general, the diffusivity grows with the density of
obstacles n* up to the vicinity of the percolation transition. For rather small
interval of values of density just before the transition, the diffusion
coefficient quickly drops down. The critical density, nc.* = 0.359081 is
shown as a black line.
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A new feature emerges at large orbital radii R/c 2 2, where
two maxima emerge upon increasing the obstacle density
[Fig. 4]. We rationalize this finding in terms of a competition
of the conventional orbiting transport and the crowding
enhanced transport due to following the boundaries. Corre-
spondingly there is a minimum in between where the swimmer
cannot benefit either from the orbiting nor the crowding
enhanced transport.

3.2 Mean-square displacements and critical behavior

More quantitative information is provided by the mean-square
displacement (MSD) 8r%(£) = ([R(¢) — R(0)]?). In particular, the
MSD varies drastically as the transition lines are approached
and critical slowing-down of the dynamics is expected. Here we
focus on the meandering transition and elucidate the critical
properties.

For small times the MSD displays persistent swimming
motion 87%(¢) = v*¢* [Fig. 5(a and b)] which holds up to times
t < min(o/v,R/v) where the curvature of the orbits or the
collisions with the walls can be ignored. For certain densities
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the MSD displays a maximum at intermediate times ¢ ~ 105V ™"
and intermediate length scales 87 =~ (4.56)% (6> = ¢(R + (N.)o)?)
where (N,) is the average number of particles in a cluster. This
non-monotonic behavior reflects the orbiting around small
clusters of obstacles [compare Fig. 2(a) and (b)]. We estimate
the local maximum to be proportional to the cluster perimeter
squared, the perimeter being proportional to the average
number of obstacles in a cluster. We measure the phenomeno-
logical coefficient of proportionality to be around ¢ = 0.9.
The estimated values for these local maxima are shown as
blue horizontal lines in Fig. 5(a and b) respectively. Our
estimated values intercept roughly the MSD curves for 7,,*(R)
at the local maxima.

Then a window of subdiffusive transport becomes apparent
until an obstacle-density-dependent crossover to either a linear
increase or a saturated MSD is reached. The linearly increasing
MSD occurs in the diffusive state only, however, as all-cluster
averages are considered, only a small fraction of tracer particles
display long-range transport. Therefore we refer here to hetero-
geneous diffusion, a superposition of localized particles and
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Fig. 5 Panels (a) and (b): mean-square displacement &r(t) vs. time for (a) R/a = 0.5 with the transition density n,,*(0.5) = 0.15959 and (b) R/a = 2.0 with
Nm*(2.0) = 0.039898. Density decreases from top to bottom in terms of the separation parameter ¢ = (n — n,)/nNpm,. The panels (c) and (d) represent the
time dependence of the diffusivity D(t) in the meandering state ¢ > O for R/o = 0.5 and R/ = 2.0 respectively. The blue lines in panels (a) and (b) represent
the values for estimated local maxima of the MSD (when initial ballistic regime changes to subdiffusive) at respective values of critical densities. Estimation

is descibed in the main text.
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particles meandering through the entire system. In contrast,
for densities below the meandering transition, n* < n,*R),
all particles orbit around finite clusters of obstacles and no long-
range transport occurs. The window of subdiffusion grows as the
transition density is approached indicative of critical behavior.

An equivalent quantity to the MSD is the time-dependent
diffusion coefficient

(1) ==+ 352),

" 4de (4)

which highlights the suppression of transport as the mean-
dering transition is approached. As can be inferred from Fig. 5,
the time-dependent diffusion coefficient slows down for times
larger than a few orbiting periods by orders of magnitude upon
diluting the obstacle density. The curves display data collapse
for intermediate times but fan out to saturated values for very
long times. The crossover time scale from subdiffusive transport
to heterogeneous diffusion exceeds microscopic times by several
decades and signals critical slowing-down of the dynamics. In the
orbiting state [not shown] the time-dependent diffusion coefficient
rapidly goes to zero for times larger than the corresponding
crossover time.

The anomalous diffusion at the meandering transition can
be monitored conveniently in terms of the local exponent of the
mean-square displacement

~ dlog(8r(1))

70 = groan 6

as shown in Fig. 6(a). The local exponent at the meandering
transition is connected to the dynamic exponent z := lim 2/y(z)
1—00

as it is expected that
3r3(t) oc %, fort —» oo.

(6)

The local exponent close to the meandering transition
remains significantly below unity for several decades in time

(a)

il L)
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t/ov1
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and even below the suggested exponent for magnetotransport®>
Vmagn = 2/Zmagn X 0.581..., where zyaen X 3.44.... Thus the
interaction rule with the boundaries now strongly slows down
transport and is a relevant perturbation for the dynamic
universality class, which is one of the most important results
of this work. Yet, for the time windows considered, there is no
clear plateau emerging and it is hard to extract a dynamic
exponent characterizing the anomalous increase of the mean-
square displacement. Furthermore, the minima arising in the
local exponent do not coincide, prohibiting the drawing of a
solid conclusion on a universal exponent for circle swimmers in
crowded environments.

Better statistics for anomalous transport can be collected
by restricting the swimmers to the infinite cluster only. The
corresponding mean-square displacement is

8r%(£) = ([R(®) = RO)) s, )

where the brackets (-) ., indicate an average over swimmers on
the infinite cluster only. We collect all trajectories at the critical
density n,(R) where the individual mean-square displacement
does not saturate in the simulation time and take their mean to
estimate 8r..%(f). The expectation is that transport on the
infinite cluster at the critical point becomes also anomalous

®)

58-60

32, () oc 2% fort > oo,

with a critical exponent d,, referred to as walk dimension.
By scaling arguments one can connect the walk dimension with
the dynamic exponent by the relation

2dy,

Tiyd—a

)

where d; is the fractal dimension®" of the infinite cluster at the
critical point and d is the spatial dimension. We have extracted

(b)

1

0.8 .
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Fig. 6 (a) Time-dependent local exponent y(t) for three different values of R/a. The critical value for magnetotransport>? Ymagn = 0.581 is given as a black
horizontal line as a guide to the eye. (b) Time-dependent local exponent for the transport on the infinite cluster y, (t) for different values of reduced radii
R/s. Filled symbols show data for simulation run times T = 10'°/v, open symbols for shorter runs T = 10%/v.
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the local exponent for the infinite-cluster dynamics

dlog(drs?(1))
dlog(r)

for three orbital radii [Fig. 6(b)]. The data show a trend to
convergence to a single value up to a certain time after which
they start to increase again. This increase is attributed to finite
simulation times, since for shorter simulations this increase is
shifted to earlier times [Fig. 6(b)]. Hence we conclude that the
scenario of a single critical exponent 2/dy, := 11m Yoo (2) is con-
sistent with the data. Our best estimate is d =4.90 + 0.45
which yields together with the known fractal dimension
dr = 91/48 in 2D and eqn (9) the estimate for the dynamic
exponent z = 5.17 & 0.48, also consistent with the all-cluster-
averaged data [Fig. 6(a)].

Next we corroborate that the meandering transition is
governed by an underlying percolation transition. The critical
properties of the geometric transition are governed by two
independent exponents. One may be taken as the fractal dimension
dr of the infinite cluster at criticality. The second exponent f8
characterizes how the weight of the infinite cluster is expected
to grow ~ ¢# where ¢ = (n* — ny*)/ny* is the reduced distance to
this transition point. The linear size of the largest finite cluster
grows as ¢ ~ |¢]7” and by standard scaling arguments®* one
derives the exponent relation /v = d — dg The average square
cluster size /> then is anticipated to diverge as

Tooll) ==

(10)

1* ~ (—e) B P fore - 0,¢ < 0,

(11)
upon approaching the transition from the orbiting state. In
percolative transport ¢ plays the role of a localization length
and it can be extracted directly from the saturation of the MSD
2 = lim 8(1),

1—00

(12)

assuming that the swimmers sample the finite clusters uni-
formly. The critical exponents for 2D percolation are known
exactly®® v = 4/3, f§ = 5/36.

Inspection of Fig. 5 shows that the localization length
diverges upon approaching the transition. We have extracted the
localization lengths by extrapolating the MSD to infinite times and
rectified the data such that the theoretical prediction yields a
straight line /2®"~# ~ ¢ fore — 0, & < 0. The result is shown and
consistent for three radii, R = 0.5, R = 0.9, and R = 2.0 [Fig. 7].

In the diffusive state the time-dependent diffusion coefficients
extrapolate to finite values at long times [Fig. 5]. Approaching
the meandering transition the diffusion coefficients decrease
by orders of magnitude. From dynamical scaling®® a power-law
critical behavior

D~¢, ¢—-0,¢6>0,

(13)

is anticipated. The conductivity exponent y should be related to
the dynamic exponent z via®

u=(z—2)(v— p2) ~ 4.0 £ 0.38. (14)

This value is significantly higher than the known conductivity
exponent of random resistor networks for percolative transport on
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Fig. 7 Rectification of the localization lengths / (circles, negative side),
and diffusivities D (squares, positive side) for different radii.

2D lattices,"** . = 1.310, as well as the one for magneto-

transport,”” fimagn = 1.82. We rectify the data for the diffusion
coefficients by plotting D'* vs. ¢, the theoretical expectation is then
a straight line. Our data are consistent with this prediction for the
different radii considered [Fig. 7], yet there remain large numerical
uncertainties.

4 Discussion and conclusions

We have investigated the dynamics of an ideal circular micro-
swimmer in a crowded environment and elaborated the non-
equilibrium state diagram as well as the critical behavior close
to the meandering transition. Our model incorporates the
experimental insight that microswimmers tend to follow the
boundaries for a certain time before entering the bulk again.
This new mechanism has drastic ramifications for the transport
properties although the non-equilibrium state diagram remains
unaffected. The diffusivities become maximal close to the localiza-
tion transition which entails crowding-enhanced transport.

The model also displays a meandering transition from an
orbiting to a diffusive state upon increasing the obstacle
density. This transition corresponds to a critical phenomenon
with an underlying geometric percolation transition, yet, the
dynamics is strongly slowed down due to the following of the
boundaries. We have extracted the dynamic critical exponents
and corroborated the dynamic scaling scenario by relating the
anomalous increase of the mean-square displacement to the
vanishing of the diffusion coefficient as the transition is
approached. The values of the dynamic critical exponents differ
significantly from the known ones for random resistor net-
works or magnetotransport and we conclude that our model
belongs to a new universality class. Universality has been tested
by considering different values of the orbiting radius.

It is interesting to ask how a new universality class can
emerge in percolative transport. The standard picture is that
one can map the structure to an electric network that encodes
the same critical dynamics as the original model.*® Then
initially the links display a distribution of conductances p(I'),

This journal is © The Royal Society of Chemistry 2019
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while after coarse-graining all connections behave identically.
Thus, this distribution renormalizes to a delta function, and
the system belongs to the same universality class as the random
resistor network. Yet, if the initial distribution displays a power-
law tail p(I') ~ I'"*, 0 < o < 1 for weak conductances, I' — 0,
the weak links may dominate the transport properties of the
system.®® In this case the power-law tail persists even upon
coarse-graining and the entire distribution becomes self-
similar. A hyperscaling relation separates the two cases and
the conductivity exponent is determined by®>®°

= max{ia,(d — 2)v + 1/(1 — )], (15)

where d is the spatial dimension of the surrounding space and
Wae is the universal conductivity exponent of the random
resistor network. Reversing the argument for our case (d = 2),
yields that there are weak links in the transport problem
characterized by an exponent
1 3
0=1--=075£0.07~-. (16)
u 4

The power-law tail in the conductivities reflects that a particle
may follow the boundary of an obstacle cluster for a long time
before finally jumping to a neighboring one. Thus, there are
narrow passages connecting the clusters and the swimmer has
to find the right transition pathways. The mechanism of following
the boundaries rather than specular scattering in magneto-
transport appears to render the power-law tails even steeper.

The simple fraction value for « ~ 3/4 is deceptive, since its
value is sensitive to the large value of the conductivity exponent
i =~ 4.0. In particular, the large value implies that the critical
region is small, the diffusion coefficient decreases drastically
within a rather narrow interval close to the meandering transi-
tion. This is compatible with our observation that achieving
convergence and reaching the critical region is extremely
demanding. From our simulation data there remains a signifi-
cant uncertainty for the values of the dynamic critical exponent,
which affects the value a.

A natural extension of the model is to include the orienta-
tional or translational diffusion of the circle swimmer while
orbiting in the bulk. Clearly, the sharp meandering transition
will be lost, since the swimmer can explore the entire system
without relying on jumping from one obstacle cluster to
another. Yet, if the diffusion coefficients are small, transport
is anticipated to be strongly suppressed for low densities, while
the behavior in the diffusive state will be changed only slightly.
To make comparison to experimental realizations these diffu-
sive processes have to be accounted for properly.

Our model constitutes the first step to describe relevant
biological systems. Different regimes of the model regarding
the ratio of orbit radius and obstacle size, as well as the density
of obstacles can be connected to various biological processes,
that occur on micro- to mesoscopic scales. Then the high-
density regime may be linked to the transport of the micro-
organisms through porous media or rough channels. In particular,
the results can be explored in connection to the problem of sperm
navigation, guidance, in the channels. Recently, the problem was

This journal is © The Royal Society of Chemistry 2019
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approached theoretically and experimentally,”"**%” and is impor-
tant for different medical aspects including precise drug delivery.®®
Similarly, the low-density regime might be applied to animals
migrating on vast planes with natural obstacles, such as trees,
rocks, or predators.

Further extensions of the model may take into account the
interactions among microswimmers. The simplest way is to
consider them as hard disks or interacting via short-range
repulsion. This might lead to clogging® " and other additional
obstructions of transport. Similarly, incorporating an external
driving force’>”> might result in additional enhancement
or decrease of diffusivity as negative differential mobility was
reported in similar cases for passive and active systems.
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