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Controlling the dynamics of colloidal particles
by critical Casimir forces
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Critical Casimir forces can play an important role for applications in nano-science and nano-technology,
owing to their piconewton strength, nanometric action range, fine tunability as a function of temperature,
and exquisite dependence on the surface properties of the involved objects. Here, we investigate the
effects of critical Casimir forces on the free dynamics of a pair of colloidal particles dispersed in the bulk
of a near-critical binary liquid solvent, using blinking optical tweezers. In particular, we measure the time
evolution of the distance between the two colloids to determine their relative diffusion and drift velocity.
Furthermore, we show how critical Casimir forces change the dynamic properties of this two-colloid
system by studying the temperature dependence of the distribution of the so-called first-passage time,
i.e., of the time necessary for the particles to reach for the first time a certain separation, starting from an
initially assigned one. These data are in good agreement with theoretical results obtained from Monte
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1 Introduction

Critical Casimir forces (CCFs) arise in a binary liquid mixture
close to its critical point."™ Upon approaching the critical
point, fluctuations of the composition of the mixture emerge.
If these critical fluctuations are confined between neighboring
objects (e.g., two colloids, or a colloid and a planar surface),
they lead to effective forces between these objects. These
so-called CCFs were first predicted theoretically in 1978 by
M. E. Fisher and P. G. de Gennes' in analogy to quantum-
electrodynamical (QED) Casimir forces.® Only recently have
they been measured directly’® and proved to be relevant for
soft matter."®"> These CCFs have been enjoying significant
interest both from basic research and because they are promising
candidates for applications in nano-science and nano-technology,
in order to manipulate objects (e.g., by controllable periodic
deformations of chains), to assemble devices (e.g., via the self-
assembly of colloidal molecules™*'*), and to drive machines
(e.g., by powering rotators'®) at the nano- and micro-meter scale.
In fact, their piconewton strength and nanometric ranges of
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Carlo simulations and Langevin dynamics.

action match the requirements of nano-technology. Furthermore,
these forces show an exquisite dependence on the temperature of
the environment and on the chemical surface properties of the
objects involved.*>*'%1” For example, if composition fluctuations
are confined between particles with the same surface property
(e.g, hydrophilic), attractive CCFs take hold, while they are
repulsive between particles with opposite surface properties
(e.g., hydrophilic vs. hydrophobic particles). With the exception
of ref. 18, until now, the experimental studies have focused on the
time-independent properties of CCFs and thus keeping their
dynamics hidden. Here, we use blinking optical tweezers to reveal
how CCFs affect the free dynamics of a pair of colloidal particles
immersed in a binary solution.

2 Experimental setup and methods

In our experiment, we use silica microspheres with diameter
d = 2.06 £ 0.05 pm (Microparticles GmbH), dispersed in a
critical mixture of water and 2,6-lutidine at the critical lutidine
mass fraction ¢y, = 0.286, corresponding to a lower critical point
at the temperature T, ~ 34 °C."*?° In the bulk of the critical
mixture, we generate two holographic optical traps®™** at
positions Ry ; and Ry, in order to fix the positions R; and R,
of the centers of two spherical colloids at their initial values,
approximately equal to Ry; and Rg,, respectively, with a
specified center-to-center distance r, = 2.40 um (Fig. 1a). We
have chosen this value for r, such that the resulting surface-to-
surface distance between the two colloids is of the order of
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Fig. 1 Schematic presentation of the design of the experiment. (a) Two equal spherical silica colloids (blue spheres, diameter d = 2.06 + 0.05 pm) are
optically trapped by two traps (green laser beams focused on the points Rg 1 and R ) in the bulk of a binary liquid mixture of water and 2,6-lutidine. The
centers of the two colloids shown in the figure are located at positions Ry, (rather close to Rg; and R ), and the lateral distance between them, i.e.,
projected onto the xy-plane which the laser beams are orthogonal to, is indicated by the black arrowed line r. (b) If the temperature of the mixture T is
sufficiently far away from the critical temperature T¢ (i.e., T. — T = AT 2 500 mK), upon switching off the optical tweezers by blocking the laser beam, the
two colloids start to diffuse freely in the solvent. The positions of the colloids change from their initial values ~Rg; and ~Rg », indicated by the black dots,
to the final ones Ry and R,, respectively, indicated by the white dots, following the irregular white trajectory. (c) As T approaches T, attractive CCFs (white
arrows) arise and affect the dynamics of the particles such that there is a large probability for them to approach each other.

300 nm. Accordingly, the latter is significantly larger than the
range of the electrostatic repulsion (which holds up to a
surface-to-surface distance of about 100 nm, because the Debye
screening length is /p, ~ 13 nm®?°) and comparable with the
largest range of the CCFs achieved in the present experiment
(which here are always negligible beyond & 300 nm). Given the
sensitivity of CCFs to temperature, the sample temperature is
stabilized to within 2 mK® via a feedback controller, through
the microscope objective. Although the objective is the closest
metallic element to the trapping region, the actual temperature
of the liquid mixture may differ slightly from the one measured
at the objective. The values of the temperature reported in
this paper are those of the mixture, which we infer a posteriori
from the data analysis according to the method discussed
in detail in ref. 9. The scheme of the experimental setup is
presented in Fig. 2.

We periodically chop the laser beam at the blinking
frequency fi, = 1.3 Hz so that the optical traps are periodically
switched on and off (blinking optical tweezers>>>°). We have
chosen this value of f;, because it is sufficiently low in order to
be able to observe the effects of CCFs on the particle dynamics
in the xy-plane and high enough to permit us to neglect the
effects of gravity on the vertical position z of the particle. We
record the ensuing motion of the colloids at 300 fps during the
time windows in which the beam is blocked and hence the
optical potential is not present. When the traps are turned on
again, the two colloids are brought back to their initial positions by
the restoring forces of the optical potentials. If the temperature T of
the mixture is sufficiently far from 7T, (i.e., AT=T. — T 2 500 mK),
the two particles freely diffuse in the solution as long as the optical
traps are off (Fig. 1b). When AT — 0, critical order parameter
fluctuations take hold associated with an increasing correlation
length £ As ¢ becomes comparable to the inter-particle
distance r, the two hydrophilic particles experience attractive
CCFs, which affect their dynamics and reduce their inter-
particle distance (Fig. 1c). The entire blinking process is
repeated about 400 times for each fixed value of AT — 0 in
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order to acquire sufficient statistics for the dynamics of
the colloids.

We have analyzed the acquired videos using digital video
microscopy”>>° in order to determine the trajectories ry(¢) and
1,(t) of the centers of the two particles projected onto the
xy-plane, where r,t) = (x/(¢),y/(t)) with [ = 1,2 labelling the
particles. We correct the relative position of the particles
r(t) = ry(¢f) — ry(¢) and their relative distance r(¢) = |r(f)| to
account for artefacts which appear in digital video microscopy
due to the proximity between the two particles.”?”

3 Data analysis and results

3.1 Particle trajectories and time evolution of the inter-particle
distance probability density

In Fig. 3 several inter-particle projected distances r(¢) are reported
for decreasing values of AT. For each value of AT, we plot the
evolution of the inter-particle distance probability density as a
function of time obtained from 400 particle trajectories by
binning (colored background). We highlight a few selected trajec-
tories to illustrate typical behaviors of the particles (solid lines).
For AT = 456 + 2 mK (Fig. 3a), the particles are diffusing freely
and the CCFs do not affect their behavior. Heuristically, this is
suggested by the fact that the probability density of the inter-
particle distance is rather broad compared to what is observed
closer to criticality. More quantitatively, the absence of CCFs is
proved by the analysis presented further below. When AT is
reduced to AT = 200 + 2 mK (Fig. 3b) and 163 + 2 mK (Fig. 3c),
the CCFs arise and affect the dynamics of the colloids. Occasion-
ally they cause adhesion as can be inferred from the emergence
of a peak in the inter-particle distance probability density at
r ~ 2.16 pm. If AT is reduced further to AT = 108 + 2 mK
(Fig. 3d), strong attractive CCFs hinder the free diffusion of the
particles, which often adhere to each other so that the values of
r lie within a small region in which there is a balance between
the repulsive electrostatic forces and the attractive CCFs.
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Fig. 2 Scheme of the experimental setup. The experimental setup con-
sists of three main parts: holographic optical tweezers, a digital video
microscope, and a temperature control unit. The holographic optical
tweezers generate two optical traps by imposing a phase-only hologram
on an incoming laser beam via a spatial light modulator (SLM) and by
focusing the resulting beam through an oil-immersion objective (Obj)
(with magnification 100x and numerical aperture NA = 1.30). The laser
beam with a wavelength of 532 nm is generated by a laser diode (LD) and
the traps are periodically switched on and off by a chopper (Ch). A
telescope consisting of two lenses (L1 and L2) is used to overfill the
active area of the SLM. Two other lenses (L3 and L4) and a pinhole
(PH) are used for blocking the zeroth order (ZO) of the reflected
beam. The digital video microscope is used to track the positions of
the colloidal particles by illuminating the sample with a white light source
(LS), focused by a condenser (C). A dichroic mirror (DM) is used to
combine the optical paths of the laser and of the white light. The entire
trapping process is imaged by a CMOS camera. The temperature of the
whole sample stage (ST) is stabilised with a precision of 50 mK. It is
located inside an enclosed chamber indicated by the shaded, pink area
with a dashed contour. The temperature of the focal region (inset) is
stabilised to within £2 mK through the microscope objective with a
feedback controller.

3.2 Equilibrium distributions and parameter fitting

At a specific temperature A7, the initial values r; 5(0) of the
recorded trajectories are sampled from the equilibrium distri-
bution of the two trapped particles exposed to the optical
potentials Vo 1(R1) + Voeo(Rz), to the electrostatic repulsion
Ves(p), and possibly to CCFs V(p), i.e., to the total potential

V(R,R,) = Ve 1(Ry) + Vo 2(Ra) + Ves(p) + Vel(p), ()

where p = |R, — R,| — d is the actual surface-to-surface distance
between the two colloids, and R; = (x;,y;,2;) with [ = 1, 2 are their
initial positions. Note that the projected distance r introduced
above is generically smaller than the actual center-to-center
distance |R, — Ry|, due to possible displacements of the colloids
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along the vertical z direction. The optical potentials Vo ; and Vo,
reported in eqn (1) are assumed to be harmonic, ie.,

1
Voui(Ry) = Ek/ (R, — Ro,/)z, (2)

where the center Ry; of trap [ = 1, 2 and the stiffnesses k; , are
determined experimentally by the calibration of the two optical
traps separately, as described in ref. 9. These values are then
used and fixed in all the subsequent analyses.

For the electrostatic repulsion potential V.g, we consider the
simple expression®*°

Veslp) = ke 0P, 3)

where p is the surface-to-surface distance between the colloids,
Pes is an effective parameter, which depends on the surface
charges, while 7}, is the Debye screening length.”>°

For the potential V¢ of the CCFs, we adopt the theoretical
prediction

Velp) = knTef 0(p/2), @

based on the Derjaguin approximation (see, e.g:, ref. 20). @ is a
universal scaling function, inferred from the numerical estimates
available in the literature,”*®*3° and ¢ is the bulk correlation
length of the critical fluctuation of the order parameter of the
binary liquid mixture. During the time windows when the
optical traps are switched on, the positions of the particles evolve
under the action of the total potential V(Ry,R;), and, after a
sufficiently long time, they reach the equilibrium distribution
Peg(R,R,) o exp[—V(Ry,R,)/(kgT)]. Accordingly, when the
optical traps are switched off, the distribution of the initial
positions of the particles renders Pey(r), which follows from
Peq(Ry,R;) by integrating over all the possible configura-
tions with projected center-to-center distance equal to r, ie.,
ch(l‘) = J.d3R1d3R2PCq(R1,R2)5(V — |l‘1 — rzD, where we remind
that r; is the projection of R; onto the xy-plane. These distribu-
tions are reported in Fig. 4 for the same values of AT as
considered in Fig. 3. The histograms represent the experimentally
measured data, and the solid lines are the corresponding theoretical
results obtained from the Monte Carlo integration of Pey(Ry,Ry),
introduced above.

For AT = 456 4+ 2 mK (Fig. 4a), Peq(r) can be very well
approximated by a Gaussian distribution centered at the value
r ~ 2.40 um, corresponding to the distance r, between the
minima of the two optical potentials. This result is expected for
two optically trapped particles which do not interact with each
other.>® Reducing AT (Fig. 4b-d), a peak arises at 7 ~ 2.16 pm
on the left flank of the Gaussian distribution, becoming more
dominant at the expense of the Gaussian distribution. This is
due to the gradual emergence of attractive CCFs between the
particles, which causes them to adhere to each other also in the
presence of the optical potentials. The peak position indicates
the region where the repulsive electrostatic forces and the
attractive CCFs are balanced.

By using Monte Carlo integration, we also calculated the
distribution Peq(r) on the basis of the theoretical potential

This journal is © The Royal Society of Chemistry 2019
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Fig. 3 Time evolution of the projected inter-particle distances r(t) after the optical tweezers are switched off at t = O for decreasing values of AT:
(@) AT = 456 + 2 mK, (b) 200 £+ 2 mK, (c) 163 &+ 2 mK, and (d) 108 & 2 mK. The solid lines indicate representative individual trajectories while the intensities
of the background colors represent the evolution of the particle position probability distribution obtained from 400 different trajectories. From (a to d),
the free diffusion of the colloids is increasingly affected by the emergence of attractive CCFs upon approaching criticality. The dashed horizontal line
indicates the projected inter-particle distance r corresponding to the diameter d of the colloids. Sometimes r(t) is smaller than d because a displacement
of the colloids along the vertical z-axis causes their projections onto the xy-plane to overlap. This occurs more frequently in the presence of CCFs and
particularly if the particles are stuck together. These cases, however, are rare compared to those in which the particles do not leave the xy-plane.
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Fig. 4 Equilibrium distribution Peq(r) of the inter-particle distance r(0) (i.e., when the optical tweezers are switched off) for two optically trapped colloids
at temperatures (a) AT = 456 + 2 mK, (b) 200 + 2 mK, (c) 163 + 2 mK, and (d) 108 + 2 mK. Each histogram is obtained from 400 different experimental
values. The solid black lines are the theoretical distribution of r(0), obtained via Monte Carlo integration (10° samples) of two optically trapped particles

subjected to the theoretical total potential V(Ry,R5) (egn (1)).

V(Ry,R,). In particular, we have used Vo /(R; (eqn (2)) and
O(p/&) (eqn (4)) as input functions and pes, /p, and ¢ as fitting
parameters. It is worth noting that the fitting parameters peg
and /p are assumed to take the same values for all experimental
acquisitions at the various temperatures, while the correlation
length ¢ is specific to each temperature and the corresponding
values are determined from the best fit to the experimental
data. Adjusting these fitting parameters of the theoretical
potential, it is possible to match the experimental distribution
Pcy(r) at t = 0. By doing so, we have obtained the correlation
length ¢ of the order parameter fluctuations for each value of
the temperature set at the objective,” the constant parameters
/p ~ 13 nm and pes ~ 95 nm, which are in line with the values
found in previous investigations.”*® As anticipated in Section 2,
the actual temperature T of the sample is expected to be a linear

This journal is © The Royal Society of Chemistry 2019

combination of the temperature Top; set at the microscope
objective, which is varied during the experiment, and the fixed
temperature Tsr = 304.65 K of the sample stage, i.e.,

T= (1 — OC)TST + OCTobj (5)
with 0 < « < 1. Furthermore, the theoretically expected
temperature dependence of ¢ can be expressed as’

aTw:@(l—Z)_i ©

T,

where the non-universal length &, = 0.20 & 0.02 nm has been
determined by light-scattering experiments for the water-2,6-
lutidine mixture,®* and v = 0.63 is a universal bulk critical
exponent for the Ising universality class valid for classical
binary liquid mixtures.>® Eqn (5) and (6) can be combined in

Soft Matter, 2019, 15, 2152-2162 | 2155
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Table 1 First column: values of the bulk correlation length & as explored
in the present experiment and obtained from the best fit to the experi-
mental distribution Peq(r), corresponding to various sample temperatures,
which are reported in the second column. In the third column, the
corresponding values of AT = T. — T are reported, with T. = 307.01 +
0.17 K

¢ (nm) T (K) AT (mK)
10 306.55 0.456
18 306.74 0.273
22 306.81 0.200
24 306.85 0.163
30 306.88 0.127
32 306.90 0.108

order to fit the experimental values of ¢, obtained before and
corresponding to the various experimentally set and controlled
temperatures Topj, using Topj, Tst, &0, and v as input para-
meters with « and T, as fitting parameters. In particular, we
obtained T, = 307.01 £+ 0.17 K and « = 0.367 =+ 0.074. This value
of o was used, according to eqn (5), in order to calculate the
actual sample temperature corresponding to each value of ¢
reported in Table 1.

Once these parameters are fixed to their best-fit values, the
resulting total potential V.5 + Vg, reported in Fig. 5 for the
values of the parameters relevant for the current experi-
ment, is used to simulate the ensuing evolution by Brownian
dynamics, taking into account the distribution of the initial
conditions. The core of a Brownian dynamics simulation is
given by the Langevin equation, which is a stochastic differ-
ential equation describing the time evolution of a particle

10 T T T
— 5 -
&~
m
=,
~—~ 0
«
N—
O
~
+ 5 ]
—
«
N—
S"i -10 1
-15 1 L 1 1 1
2.1 22 2.3 2.4 25 2.6

r (um)
Fig. 5 Total potential in the absence of the optical tweezers, resulting
from the electrostatic and critical Casimir forces acting on the particles for
various values of the correlation length ¢ = 10 nm (blue), 18 nm (light blue),
22 nm (green), 24 nm (yellow), 30 nm (orange), and 32 nm (red), where all
the other relevant parameters (such as pes ~ 95 nm and /p ~ 13 nm) have
been fixed at their best-fit values. Upon increasing the correlation length
(i.e., upon approaching T), the total potential is reduced compared to its
value far from criticality, and it assumes negative values within those
ranges of distances, where the particles tend to be confined. When the
interparticle distance is larger than ca. 2.3 um, the total potential (and
therefore the force) practically vanishes for all values of the correlation
length explored in the present experiment.
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performing Brownian motion. It is integrated in time in order
to create trajectories of the particle.**

We emphasise that, while the optical tweezers are switched
off, i.e., with V., = 0, the particles undergo Brownian motion
and diffuse under the influence of the CCFs (due to V) and of
the electrostatic interaction (due to V).

3.3 Diffusion and drift velocity

The relative position and the distance between the two particles
can be used to determine the values of their diffusion constant
D(r) and of their drift velocity v(r) as functions of r.>* Given the
experimental trajectories of the particles as a sequence of
values r;, numbered by i and acquired at times i x t;, where ¢
is the time between sampling, one has

)2
D(r) = %<7(r’+”ms ") ri € [r—orr+ 51‘]> (7)
and
Fign —Ti
v(r) = <7nt ri € [r—or,r+ 5r]>, (8)
where (...|...) denotes the average over the various trajectories

under the specified condition; 6 = 10 nm is the spatial
resolution for D(r) and v(r), with n = 3 for determining the
diffusion coefficient and n = 10 for the drift. These values of n
have been chosen separately as the smallest integers which
render statistically meaningful, almost n-independent values
for D(r) and v(r). In particular, in order to estimate the actual
diffusion coefficient via the estimator D, it would be desirable
to consider small values of n in such a way that the potential
effects of a deterministic drift are negligible (see also the
discussion below). On the contrary, for the calculation of v, it
would be preferable to consider larger values of n, in order for
the effects of diffusion to average out. However, exceedingly
small values of n yield numerical data for D with large statistical
fluctuations, while exceedingly large values of n would not allow
for a proper identification of the spatial dependence of v(r). The
choices indicated above emerge from a compromise between
these competing requests. In eqn (7) [and in, ¢f, eqn (11) and (12)],
the actual diffusion constant is determined from the experimental
data via the estimator D = ((Ar)*)/(2A¢), in terms of the (condi-
tional) average of the displacement Ar observed within a
suitable time interval At (= nt; in eqn (7)). However, an alter-
native estimator for the same quantity is D = [{(Ar)*) — (Ar)?]/(2A¢),
which is closer to the common definition of the diffusion
constant and which highlights the sole effect of the Brownian
noise, as it subtracts a possible mean drift (Ar) of the particles
due to the action of external forces in the presence of over-
damped dynamics. These two estimators are actually related by
D =D — At*/2 + O((At)*), where v = (Ar)/At is the average relative
velocity of the particles, and therefore they render the same value
for sufficiently small A¢ or whenever v vanishes due to the
absence of external forces. In the present experiment, we con-
sidered the estimator D instead of D for three reasons: (a) Since
(Ar), i.e., vAt is affected by statistical errors, subtracting it from
((Ar)®) increases the resulting statistical error of D compared to

This journal is © The Royal Society of Chemistry 2019
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that of Dj (b) at distances r larger than ca. 2.2 pm, we expect all
deterministic forces involved to vanish in the absence of the
tweezers and therefore v = 0, such that D = D; (c) at smaller
distances, but for sufficiently small values of At, i.e., for At « Dh?,
the two estimators D and D are anyhow approximately equal. Both
estimators D(r) and D(r) render the actual diffusion coefficient as
At — 0 but they are generically affected by (different) finite-time
corrections which depend on r, are linear in At for small A¢, and
are related as discussed above.f

Due to the hydrodynamic interaction between the two
colloids, the actual diffusion constant of these particles differs
from the free one they would have in the bulk.’ As a result, the
diffusion along the direction connecting the centers of the
particles occurs with a diffusion constant which differs from
that in the direction perpendicular to it (see eqn (5.5) in ref. 34).
In order to compare our experimental results with these theo-
retical predictions, we decompose the ith displacement Ar!” =
.., — I; into its parallel and perpendicular components:

Ar%) = Ar).; 9)
and

A = ArE”)-(i x 1), (10)

where t; = r;/r; and Z is the unit vector along the z-direction,
which is perpendicular to the xy-plane of observation where the
position vectors r; lie. With these definitions, we can obtain the
parallel and perpendicular diffusion coefficients defined with
respect to the direction connecting the centers of the two
particles:

(n=3)|?
1 ‘A’”fu ’
D) = 5| € lr—onr o), (11)
S
and
a2
1 )Ai‘fjﬁi:;)‘
Du(r) =5 5| €lr—orr+ar), (12)
N

+ In order to illustrate the emergence of these corrections via using a simple
example, we assume that the dynamics of the distance r under the sole effect of
the interparticle potential Vs + V¢ is described by the overdamped Langevin
equation i = f(r) + 1/2%(r)n(t), where f(r) is proportional to the deterministic
forces acting on the particles (due to that potential), #(¢) is a Gaussian noise with
(n(®)) = 0, and (n(e)n(t")) = 6(¢t — ¢'), while Z(r) > 0 is the position-dependent
diffusion constant. This stochastic differential equation is interpreted according
to the Ito convention, while here we neglect the fact that r is actually the
projection of the interparticle distance onto the xy-plane. A relatively simple
but lengthy calculation shows that by defining D(r) as in eqn (7), i.e., from the
conditional expectation of the increments Ar of the variable r within a time
interval of finite duration At, one finds D(r) = Z(r) + (At/2)cs(r) + O((At)*), where
ci() =f2(r) +22(r) f'(r) + 2'(r) f(r) + 2(r)2"(r) is the leading finite-time bias of the
estimator D of the actual diffusion . We emphasize that ¢;(r) vanishes at large
separations because, correspondingly, f(r) generically decays to zero while %(r)
approaches its bulk, r-independent value. In addition, the sign of ¢;(r) may
change as a function of r. In particular, one has ¢;(r) < 0 when r approaches a
point r, of stable mechanical equilibrium [i.e., with f(r,) = 0 and f'(r,) < 0] with
92"(ro) < 0, as in the case of the theoretical diffusion coefficients reported in
Fig. 6.

This journal is © The Royal Society of Chemistry 2019
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respectively, and the parallel and perpendicular drift
velocities:
Ar(n:m)
v (r) = <—10'|>< . ri € [r—or,r+ (5r}>7 (13)
and
(n=10)
vl(r)=<A1r0’les rie[rér,r+5r]>, (14)

respectively. The remark about the use of the estimator D
instead of D, stated after eqn (7), here applies to D, while D |
is not affected by the choice of the estimator because no forces
are expected to act along the direction perpendicular to the
segment joining the centers of the colloids. In Fig. 6 we report
the experimental data (symbols) for D, (upper set) and D,
(lower set) as functions of the ratio r/d, together with the
theoretical prediction obtained in ref. 34 (solid line) for no-
slip boundary conditions. These quantities are normalized by
the bulk inter-particle diffusion constant given by (see, e.g,
eqn (5.6) in ref. 34)

kgT

Dy =—"=
0 3nnd/2

~0.22 (um)? s, (15)
in terms of the viscosity n ~ 2 x 10~ Ns m™? of the mixture
close to T..>> (The expected singularity of D, and 5 upon

approaching criticality is so mild that it can be neglected for

D/Dy

0.4+ -
* D,
00
0839 ©
01 1.65 1:1 1.I15 1:2 1.I25 1.3

r/d

Fig. 6 Experimental values of the normalized parallel D;/Dq (circles) and
perpendicular D, /Dq (triangles) diffusion constants as functions of the
ratio between the inter-particle center-to-center distance r and the
particle diameter d. The parallel and perpendicular directions refer to the
line connecting the centers of the two colloids, and Dy is the bulk diffusion
constant determined by egn (15) and from available experimental data. The
various colors refer to data taken at AT = 456 + 2 mK (blue), 273 +£ 2 mK
(light blue), 200 + 2 mK (green), 163 + 2 mK (yellow), 127 + 2 mK (orange),
and 108 + 2 mK (red). The solid lines represent the theoretical predictions
accounting for the effect of the hydrodynamic interaction between the
colloids.>* Error bars represent the standard deviation of the experimental
values. There is good agreement between the theoretical predictions and
the experimental results, which neither exhibit an appreciable dependence
on temperature. The nature of the deviations observed in D at short and
long distances is discussed in the main text.
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all practical purposes.’®*”) Both for D, and D| Fig. 6 shows
satisfactory agreement, with a systematic discrepancy emer-
ging only in D for r/d < 1.05. This discrepancy is due to the
limited experimental acquisition rate, which does not allow us
to resolve times shorter than 3 ms. In fact, the same discre-
pancy is encountered in simulations when we consider trajec-
tories sampled with the same time step ¢; as the one used in
the experiment. If we reduce significantly the time step ¢, in
the simulations, the discrepancy with the theoretical line is
much less pronounced and eventually disappears, as it is
expected from the fact that the latter should be recovered as
ts — 0. Similarly, at large values of r/d, the experimental values
of the parallel diffusion D coefficient differ from the corres-
ponding theoretical prediction (Fig. 6) because of the finite
experimental time during which the data are acquired, ie.,
because of the finite size of the sample of data over which the
average is calculated. This discrepancy could be reduced by
acquiring the experimental data for a longer time. In addition,
we note that both in experiment and simulation, values of r/d
which are smaller than 1.05 are obtained only when the tem-
perature T is sufficiently close to T, and, thus, sizable CCFs are
present, especially at such short distances. Their presence
implies v # 0 and therefore we expect finite-time corrections
to appear in D; ~ D; + v;*A¢/2 in addition to those which
characterize D,. The experimental data for D,  reported in Fig. 6
do not show any significant dependence on AT and ¢&, apart from
the finite-time effects mentioned above. A genuine temperature
dependence of D,  could be expected for Brownian particles
diffusing near T, in an external potential, provided by strongly
temperature-dependent critical fluctuations which alter the
dynamics (see, e.g., ref. 38 and 39 for a single trapped colloid).
Accordingly, the absence of this dependence suggests that the
effective interaction V(. is valid, for all practical purposes, as if
the colloidal particles were at rest in their instantaneous posi-
tion. In our specific case, in fact, the typical timescale of colloid
diffusion is 50 times larger than the relaxation time of critical
fluctuations. Similarly, the distortion of the equilibrium order
parameter profile around the colloids due to their deterministic
motion is negligible, because the Péclet number which quanti-
fies the magnitude of this effect (see ref. 40 for details) turns out
to be at most 4 x 103, which is extremely smallf. This also

i The typical timescale of a colloidal diffusion process can be estimated by the time
teon the colloid takes to diffuse across a reference distance L (e.g., its radius d/2):
teon = L*/Dy, where Dy = kgT/(6nnd/2) is the diffusion constant of a colloid with
diameter d in a fluid with dynamic viscosity #. Similarly, according to mode
coupling theory,” the mutual diffusion constant D: of the order parameter
fluctuations is given by D; = kgT/(6mn¢&), where ¢ is the correlation length of the
critical fluctuations, which in the present experiment ranges between 10 and 30 nm
(see Table 1). Accordingly, the typical timescale t; of the diffusion of critical
fluctuations is ¢; = LZ/DQV and the ratio of these two typical timescales is t.ou/t; =
D¢/Dy ~ 50, as reported in the main text. Similarly, the deterministic motion of the
colloid may cause a distortion of the order parameter profile around the colloids,
which was investigated in ref. 40. The magnitude of this effect turns out to be
quantified by the Péclet number™® Pe = &|v,|/D;, where vy, is the typical velocity of the
motion, which, in the present experiment (see Fig. 7), takes a maximal value of
approximately 0.5 pm s~ '. Accordingly, the maximum value of Pe turns out to be
approximately 4 x 102, which is an extremely small value.
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implies that for the present experimental conditions the effects
of retardation, observed numerically in ref. 41 during the
aggregation of two identical colloids due to CCFs, are negligible.

In the first two columns of Fig. 7, we report the values of
the experimental and simulated drift velocities v and v, as
functions of r/d and for decreasing values of AT from top to
bottom. The theoretical values of the drift velocities are
calculated by employing eqn (13) and (14) for the simulated
trajectories. These trajectories are obtained from Brownian
dynamics simulations of two particles interacting via the total
potential V = V¢ + V. We simulate a Langevin equation along
the lines of ref. 32, with the diffusion coefficients D ,
following from eqn (5.5) and Fig. 3 in ref. 34 (see also Fig. 6
here) and based on the value of D, as given by eqn (15).
The parameters &, /p, and p.s are fixed to their best-fit values
obtained by fitting the initial distribution P.q(r) as described
above [see eqn (4) and (3)].

At large values of AT (Fig. 7a and d), the parallel drift velocity
v is positive at small values of r/d because, on average, the
particles are pushed away from each other by the dominating
repulsive electrostatic potential V.. Increasing the value of 7/d,
v rapidly vanishes because, correspondingly, the electrostatic
repulsion decays exponentially on a scale set by /p ~ 13 nm,
corresponding to /p/d ~ 6 x 10~ on the scale of the plot. Upon
decreasing AT, as in Fig. 7g and j, v| becomes negative within a
certain range of values of r/d. At these distances, the particles
move on average towards each other due to the attractive
critical Casimir interaction V¢, which competes and eventually
overcomes the electrostatic interaction V,.;. However, at smaller
values of r/d, V., dominates and v| is no longer negative. If AT is
reduced further, v becomes quickly more negative (Fig. 7m and p),
because the attractive critical Casimir interaction is so strong that it
moves the particles towards each other until their velocity vanishes
at contact. At larger distances, instead, v vanishes and the particles
undergo Brownian diffusion. We note that this range of distances
can actually be explored only via numerical simulations with
sufficiently high statistics. In the experiment, instead, the particles
turn out to stick almost always together, and they explore the very
limited range of distances indicated on the solid horizontal axes.

The experimental and numerical determination of the ortho-
gonal component v, of the drift velocity (eqn (14)) is reported in
the second column of Fig. 7. Here, v, vanishes in all the cases
investigated because all the forces at play in the present experi-
ment act along the direction which connects the centers of the
particles. Accordingly, v, shows no temperature dependence.

The third column of Fig. 7 reports the total force field
(resulting from the sum of the electrostatic force and of the
attractive CCF) in the xy-plane used in the numerical simula-
tion. The length of the arrows corresponding to each point
in that plane is proportional, for the purpose of visualization,
to the logarithm of the magnitude of the total force. Blue
arrows indicate repulsive forces, whereas red arrows indicate
attractive ones.

It is noteworthy that the agreement observed in Fig. 6 and 7
between the experimental and simulated data confirms the
reliability of the model we have used.

This journal is © The Royal Society of Chemistry 2019
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Fig. 7 The drift velocities v, (first column) and v, (second column), parallel and perpendicular, respectively, to the direction connecting the centers of
the two colloids and the total force field (in arbitrary units) used as the basis of the simulations (third column) are represented for (a—c) AT = 456 + 2 mK,
(d=f) 273 £ 2 mK, (g=i) 200 &+ 2 mK, (j-1) 163 &+ 2 mK, (m-o0) 127 + 2 mK, and (p-r) 108 + 2 mK. In the first two columns, the symbols with error bars
represent the experimental data, and the thick, colored lines represent the corresponding simulation results. The shaded areas represent the error of
the numerical estimates due to the uncertainties in the fit parameters. In order to visualize the total force field F resulting from the electrostatic
repulsion and the CCFs (i.e., from the potential Vs + V), in the third column we plot within the Ax—Ay plane (Ax = xo — x; and Ay = y, — yi) the
corresponding vector, indicating repulsion by blue arrows and attraction by red ones. Their length corresponds to 4.6 x 10~ logs(|F|/10fN) for the

scale used.
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3.4 First passage times

In order to highlight the effect of CCFs on the dynamics of the
two colloidal particles, we consider the first-passage time ¢, i.e.,
the time it takes that the particles reach for the first time a
reference separation r,.f, starting from a certain initial distance
rin. Heuristically, this quantity provides a measure of how much
the interaction effectively speeds up or slows down the relative
diffusion process of the two particles, ¢; being the minimal time
required by the colloids to realize a certain configuration.

The first-passage time is a random variable which changes for
each realization of the diffusion process. Accordingly, it can be
characterized by its cumulative probability distribution P;(¢) that
¢, is smaller than a given time ¢, which depends on the choice
of 1y, and rer. (In order to smooth out statistical fluctuations of the
experimental data, it is convenient here to focus on the cumulative
distribution of ¢, instead of its probability distribution p(¢,), which
can in principle be obtained as p(t;) = (dP;(¢)/dt)|~.) In order to
determine P;, for each value of AT and each repetition of the
blinking process, in which the particles are initially separated by a
distance r;,, we measure the time ¢; it takes them to reach the
separation rys for the first time, while the optical traps are turned

100 200 300
t (ms)
400 500
7 26
g 25
= 24
< 23
s 22K
21— : ]
0 100 200 300
0 . . . t (ms)
0 100 200 300 400 500
t (ms)

View Article Online
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off. Based on these data, P;(¢) at a certain time ¢ is determined by
the ratio between the number of occurrences for which ¢; < t and
the total number of collected data. The experimental results are
presented in Fig. 8a and b for r;, = 2.16 pm < rer and 7y, =
2.40 um > ryef, respectively, with e = 2.22 pm in all cases.

First, we consider the case of the first passage time from
Tin = 2.16 um to ryer = 2.22 pm, as shown in Fig. 8a. Far from
criticality (AT = 456 + 2 mK), the repulsive electrostatic inter-
action (see Fig. 5 for the corresponding potentials) dominates
for r < r.rand therefore, as the particles are pushed away from
each other, P,(¢) rapidly reaches its maximal value 1. However,
upon approaching criticality, the increasingly strong, attractive
critical Casimir interaction, acting for r < ry.y, effectively slows
down the separation of the particles, so that P,(¢) approaches its
maximum value 1 only at long times.

Setting the initial condition outside the range of action of
the CCFs, i.e., for r, = 2.40 pm, P;(¢) has a significantly less
pronounced dependence on AT, at least within the range of
parameters explored here (Fig. 8b). This is due to the fact that
the temperature dependent CCFs are actually negligible for
r > rer. In particular, the total potential does not change as a

b [
08} ]
—~ 06 1
04f N M\,\ |
02} 21 ]
0 100 200 300
0 ‘ . . t (nps)
0 100 200 300 400 500
t (ms)

0.8+ 1
— 0.6 ]
A

0.4+ 1
0.2+ 2.1 : : 1

0 100 200 300

0 ‘ . t (rps)
0 100 200 300 400 500
t (ms)

Fig. 8 Cumulative probability P4(t) of first-passage times at a certain inter-particle distance as a function of time for various temperatures. (a and b)
Experimentally and (c and d) numerically determined probability distribution P4(t) to reach the reference distance r,er = 2.22 um for the first time earlier
than a given time t, when the particles start from an initial distance (a and c) rin = 2.16 pm < rer and (b and d) ri, = 2.40 pm > rer. The lines of various
colors refer to AT = 456 + 2 mK (blue), 0.2730 + 2 mK (light blue), 200 + 2 mK (green), 163 4+ 2 mK (yellow), 127 &+ 2 mK (orange), and 108 + 2 mK (red).
The insets in the various panels show, on the same scale, representative trajectories of r(t) for various temperatures (the horizontal solid lines correspond
to ryef). In panel (d) and on that scale, the various curves are almost indistinguishable.
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Fig. 9 Mean first-passage time (t;), as a function of the correlation length ¢, to reach for the first time the reference distance r.f = 2.22 pm from the
initial distance (a) ri, = 2.16 um and (b) 2.40 um. Symbols with error bars represent the experimental data while black solid lines with greyly shaded area
correspond to simulation data and their uncertainties. The color code for the temperatures is the same as the one used in Fig. 6 and 7. Here, (t;) is
reported as a function of the associate correlation lengths & instead of AT; specifically, ¢ = 10 nm (blue), 18 nm (light blue), 22 nm (green), 24 nm (yellow),

30 nm (orange), and 32 nm (red).

function of temperature, because this range of distances is
anyhow much larger than that of the correlation length of the
critical fluctuations explored in the present experiment. In fact,
a behavior similar to that reported in Fig. 8a can be observed
for r > rr only for values of the correlation length ¢ signifi-
cantly larger than those achieved here.

The results of corresponding Langevin-dynamics simula-
tions are presented in Fig. 8c and d. These simulations are in
very good agreement with the experimental data presented in
Fig. 8a and b, respectively. This agreement further validates our
simulation model, which is based on an interaction potential
V(p) = Vclp) + Ves(p), as a function of the surface-to-surface
distance p between the particles, with a diffusion term described
according to eqn (11) and (12).°

The results reported in Fig. 8 can be made more quantitative
by calculating the mean first-passage time (¢;) = .J”goodtltl p(t) =

3’ *dt[1 — P;(1)], which is reported in Fig. 9 as a function of the
correlation length ¢ corresponding to the values of AT used in
Fig. 8. For ri, = 2.16 pm and s = 2.22 pm (Fig. 8a and c), (¢;)
increases upon increasing the correlation length ¢ (Fig. 9a),
because the attractive interaction due to V¢ slows down the
diffusion of the particles. Instead, for rj;, = 2.40 pm and
Tret = 2.22 pum (Fig. 8b and d), no significant dependence of
(t;) on ¢ is observed (Fig. 9b), because the CCFs are negligible
for r 2 s within the range of values of ¢ explored here.

4 Conclusions

We have shown that by using blinking optical tweezers it is
possible to investigate the dynamics of a pair of colloidal
particles, dispersed in a critical, binary liquid solution of water
and 2,6-lutidine, in the absence of optical potentials and, thus,
occurring under the influence of their effective inter-particle
interaction only. Digital video microscopy facilitated to track

This journal is © The Royal Society of Chemistry 2019

the positions of the particles and to determine the effects of
the CCFs on the time evolution of their center-to-center
distance r upon approaching the critical temperature of the
solvent. In order to infer the correlation length ¢ of the critical
fluctuations and the strength of the corresponding CCF, we
have compared the experimental data for the equilibrium
distribution of the inter-particle distance in the presence of
optical traps with the results of a Monte Carlo integration of
the expected Boltzmann distribution. The resulting fitted
parameters have been used to perform a simulation of the
dynamics of the two interacting colloids immersed in the
same solvent. The very good agreement between the experi-
mental data and the corresponding numerical simulations
based on Langevin dynamics has validated the theoretical
description of the forces involved and of the dynamics, which
does not require accounting for the possible effects of
retardation.*' This holds at least within the range of parameters
explored here. The agreement between theory and experiment
has also provided information about the correlation length ¢ of
the critical fluctuations and about the CCF field, for various
temperatures approaching the critical point. Moreover, the
knowledge of the first passage time relative to a start and a
final configuration, in which the particles are essentially fully
separated, is crucial for understanding the dynamics and to
eventually control the self-assembly process of many colloidal
particles. In particular, the model used here can be exploited to
create a base protocol for the application and for the fine tuning
of CCFs towards their use for nanotechnology. This offers new
possibilities for the design and realization of self-assembled
nano-structures and for driving nano-devices.
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