

Cite this: *Sustainable Energy Fuels*, 2019, **3**, 875

DOI: 10.1039/c9se90006c

rsc.li/sustainable-energy

Correction: A 3D petal-like $\text{Ni}_3\text{S}_2/\text{CoNi}_2\text{S}_4$ hybrid grown on Ni foam as a binder-free electrode for energy storage

Fangshuai Chen,^a Hui Wang,^a Shan Ji,^{*b} Vladimir Linkov^c and Rongfang Wang^{*a}

Correction for 'A 3D petal-like $\text{Ni}_3\text{S}_2/\text{CoNi}_2\text{S}_4$ hybrid grown on Ni foam as a binder-free electrode for energy storage' by Fangshuai Chen *et al.*, *Sustainable Energy Fuels*, 2018, **2**, 1791–1798.

The authors wish to correct Fig. 2 of the manuscript and the corresponding explanation in the text.

Fig. 2 should appear as follows:

Fig. 2 XRD patterns of the NCN-2 samples (a) and XPS spectra of Co 2p (b), Ni 2p (c) and S 2p (d).

The section of text beginning with the sentence "In the Fig. 2c..." should read:

"In the Fig. 2c, the XPS spectra of Ni 2p can be well matched with two shakeup satellites and two spin-orbit doublets characteristic of $\text{Ni}^{2+}/\text{Ni}^{3+}$ using Gaussian fitting. As shown in Ni 2p XPS, the binding energies of Ni 2p peaks at *ca.* 855.4 and 875.0 eV are ascribed to Ni^{2+} , and peaks at 857.9 and 876.5 eV to Ni^{3+} correspondingly. In the Fig. 2d, the S 2p XPS spectra can be fitted into a main peak and a shakeup satellite peak, in which the peak at 162.0 eV is ascribed to the binding energy of Ni-S and Co-S bonds."

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aCollege of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. E-mail: wrf38745779@126.com; Fax: +86-931-7971533; Tel: +86-931-7971533

^bCollege of Biological, Chemical Science and Chemical Engineering, Jiaxing University, Jiaxing, 314001, China. E-mail: jishan@mail.zjxu.edu.cn; Fax: +86 15024355548; Tel: +86 15024355548

^cSouth African Institute for Advanced Materials Chemistry, University of the Western Cape, Cape Town, 7535, South Africa

