
## Chemical Science



## CORRECTION

View Article Online
View Journal | View Issue



Cite this: Chem. Sci., 2019, 10, 6736

## Correction: Enhancement of CO<sub>2</sub> binding and mechanical properties upon diamine functionalization of M<sub>2</sub>(dobpdc) metal-organic frameworks†

Jung-Hoon Lee, <sup>ab</sup> Rebecca L. Siegelman, <sup>cd</sup> Lorenzo Maserati, <sup>a</sup> Tonatiuh Rangel, <sup>ab</sup> Brett A. Helms, <sup>ad</sup> Jeffrey R. Long <sup>cde</sup> and Jeffrey B. Neaton \*\*abf

DOI: 10.1039/c9sc90145k

www.rsc.org/chemicalscience

Correction for 'Enhancement of  $CO_2$  binding and mechanical properties upon diamine functionalization of  $M_2$ (dobpdc) metal-organic frameworks' by Jung-Hoon Lee *et al.*, *Chem. Sci.*, 2018, **9**, 5197–5206.

Regrettably, in the original manuscript, an error was made in the calculations of the zero-point energy (ZPE) and thermal energy (TE) of gas-phase  $CO_2$ . After evaluating eqn (9)–(13) in the ESI,† the authors found that the computed ZPE and TE corrections were in error by around 6.4 kJ mol<sup>-1</sup> and 1.6 kJ mol<sup>-1</sup>, respectively. These ZPE and TE contributions alter the predicted  $CO_2$  binding enthalpies ( $H_B$ ) in Table 2. Please see below an updated Table 2, which includes the updated values for the ZPE and TE corrections and the  $CO_2$  binding enthalpies ( $H_B$ ).

The conclusions in the original manuscript remain unchanged upon consideration of these modified corrections, and the computed  $CO_2$  binding enthalpies still compare quite well with experiments, within 8 kJ mol<sup>-1</sup> in the worst case (Fe) but typically better.

Table 2 A comparison of computed CO<sub>2</sub> binding energies ( $E_B$ ) and enthalpies ( $H_B$ ) (in kJ mol<sup>-1</sup>) in mmen–M<sub>2</sub>(dobpdc) (M = Mg, Mn, Fe, Co, Zn) with the experimental values at a CO<sub>2</sub> loading of 2 mmol g<sup>-1,37</sup> Zero-point energy (ZPE) and thermal energy (TE) corrections of ammonium carbamate and mmen are considered. All ZPE and TE values are computed at 298 K

|    | This work  |               |     |            | P                |
|----|------------|---------------|-----|------------|------------------|
|    | $E_{ m B}$ | ZPE           | TE  | $H_{ m B}$ | $Exp$ $H_{ m B}$ |
| Mg | 74.7       | -9.2          | 2.7 | 68.1       | 71               |
| Mn | 68.9       | -8.6          | 2.2 | 62.5       | 67               |
| Fe | 56.2       | -8.3          | 2.3 | 50.3       | 58               |
| Co | 52.4       | -7 <b>.</b> 7 | 2.0 | 46.8       | 52               |
| Zn | 62.4       | <b>−7.</b> 9  | 2.8 | 57.3       | 57               |

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

<sup>&</sup>quot;Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. E-mail: jbneaton@lbl.gov

<sup>&</sup>lt;sup>b</sup>Department of Physics, University of California, Berkeley, California 94720, USA

Department of Chemistry, University of California, Berkeley, California 94720, USA

<sup>&</sup>lt;sup>d</sup>Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA

<sup>&</sup>lt;sup>5</sup>Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, USA

<sup>†</sup> Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc05217k