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Deep-blue thermally activated delayed fluorescence (TADF) emitters are promising alternatives for
conventional fluorescence and phosphorescence materials for practical application in organic light-
emitting diodes (OLEDs). However, as appropriate bipolar hosts for deep-blue TADF-OLEDs are scarce,
the development of efficient deep-blue TADF emitters that are applicable to both doped and non-doped
systems is an urgent task. In this study, we developed a new family of blue TADF emitters that
demonstrated high photoluminescence (PL) and electroluminescence (EL) quantum efficiencies in both
doped and non-doped (neat) systems. Four new donor—acceptor (D-A)-type TADF molecules
incorporating phenazasiline, phenazagermine, and tetramethylcarbazole as weak D units and
phenothiaborin as a weak A unit were designed and synthesized. By varying the structural rigidity/
flexibility as well as the electron-donating ability of the D units, the resulting photophysical and TADF
properties of the D—A molecules could be systematically regulated. A comprehensive photophysical
investigation revealed that phenazasiline and phenazagermine-based emitters concurrently exhibit blue
TADF emissions (464-483 nm), high PL quantum efficiencies (~100%), extremely fast spin-converting
reverse intersystem crossing rates (>10” s~%), and suppressed concentration quenching. These fascinating
features in conjunction produced high-performance doped and non-doped blue TADF-OLEDs. The
doped and non-doped TADF-OLEDs using the phenazasiline-based emitter demonstrated extremely
high maximum external EL quantum efficiencies (nex) of 27.6% and 20.9%, with CIE chromaticity
coordinates of (0.14, 0.26) and (0.14, 0.20), respectively. Further, ultra-low efficiency roll-off behavior for
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a leap forward in the resulting device efficiency. Phosphores-
cent emitters based on noble metal complexes have become

Introduction

The development of high-performance blue organic light-
emitting diodes (OLEDs) is of vital importance for practical
applications in full-color flat-panel displays and white lighting
sources, and has been attracting growing interest both
academically and commercially.’ In recent years, considerable
research efforts have been devoted to boosting the exciton
utilization for electroluminescence (EL) and thereby making
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indispensable for this task since 1998,> because of their capa-
bility of harvesting both singlet and triplet excitons with almost
100% internal quantum efficiency (9, in OLEDs. Among the
three primary colors, green and red phosphorescent emitters
have already shown high performance in terms of both effi-
ciency and stability, and have been successfully incorporated
into commercial OLED products. Recently, highly efficient
deep-blue phosphorescent OLEDs with narrow EL emissions
have been produced by employing rigid tetradentate Pt(u)
complexes®* and N-heterocyclic carbene coordinated Ir(ur)
complexes.* However, even state-of-the-art deep-blue phospho-
rescent OLEDs have still lagged behind the green and red
counterparts in their operational lifetime and stability, and
thus, further development of deep-blue emitters via innovative
molecular design remains an ongoing challenge.

The replacement of noble metal-containing phosphors with
metal-free pure organic fluorophores is a challenging task, but
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one of high priority, for realizing future low-cost OLED appli-
cations. It was not until 2012 that purely organic thermally
activated delayed fluorescence (TADF) emitters were first
adopted in OLEDs® and demonstrated high 7;,. of nearly 100%.
Over the last few years, a number of organic TADF materials
displaying various emission colors have been developed, and
TADF-OLEDs with high external EL quantum efficiencies (7ex)
of up to ~38%, comparable to those of phosphorescent OLEDs,
have been achieved.® However, deep-blue TADF materials
capable of exhibiting high 7.y exceeding 20% (corresponding to
Nine Approximating 100%) in OLEDs as well as appropriate color
purity (with Commission Internationale de 1'Eclairage (CIE)
chromaticity coordinates of x =< 0.15 and y = 0.20) are still
scarce.”

To achieve deep-blue EL, TADF molecules are required to
have a wide energy gap between the highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO), as well as high lowest-excited singlet (S;) and triplet
(Ty) energies (=2.8 eV). Typically, TADF molecules adopt
a donor-acceptor (D-A) electronic system, in which the HOMO
and LUMO are mainly distributed on the donor and acceptor
moieties, respectively, giving rise to intramolecular charge-
transfer (ICT) states. Therefore, the combination of a donor
having a deeper HOMO level with an acceptor having a shal-
lower LUMO level is prerequisite for the design of deep-blue
TADF emitters. While various types of acceptor units, such as
triazine,”/7 pyrimidine,’ diphenylsulfone,” benzophenone,’®
triarylborane,” and heteraborins,””*! have been used for the
design of deep-blue TADF molecules, candidates for relatively
weak donors have been limited to carbazole and 9,10-dihy-
droacridine (acridan) derivatives, which restricts diversity in
material design. In this regard, 5,10-dihydrodibenzo[b,e][1,4]
azasiline (phenazasiline), which is a heavy-atom analogue of
acridan, has recently been introduced for the design of blue
TADF emitters by Kim and co-workers.”®* As the C-Si bonds,
which are longer than C-C bonds, reduce the electron-donating
effect arising from hyperconjugation, phenazasiline can func-
tion as a weaker donor compared to acridan, and lead to blue-
shifted emissions. So far, there are no systematic studies on
the structural, electronic, and photophysical properties of TADF
emitters based on acridan-analogous donors with heavier group
14 elements.

Another inherent bottleneck for developing efficient and
stable deep-blue TADF-OLEDs is the lack of suitable host
materials with a high triplet energy (Er) and balanced charge
transport properties. An ideal host for deep-blue TADF emitters
requires a high Er level surpassing 3.0 eV to facilitate triplet
energy transfer from the host to the emitters and prevent back
energy transfer. However, it is technically difficult to obtain
bipolar high-Er host materials owing to the limited availability
of suitable building blocks.® This issue can be circumvented by
adopting non-doped (neat) emission layers instead of conven-
tional guest-host systems. The non-doped devices require
advanced blue TADF emitters with (i) a high photo-
luminescence (PL) quantum yield (®py) in the neat film, (ii)
short excited-state lifetime to alleviate concentration quench-
ing, and (iii) a favorable bipolar charge transport property.
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Except for a few recent examples,' most reported blue TADF
emitters bearing carbazole-based donors undergo severe
aggregation-caused emission quenching (ACQ) and red-shift or
broadening of the PL emission caused by intermolecular
interactions in the condensed phase. Recent works by our
group”™'*? and Wu, Wong, and co-workers** reported non-
doped and heavily-doped TADF-OLEDs with acridan-based
emitters, which achieved rather high maximum 7. values.
We also revealed the ACQ mechanism for TADF systems and
succeeded in retaining high ®pp, in the pure neat films without
using any host materials."* Hence, the utilization of acridan-
based donors is regarded as a versatile design strategy for effi-
cient non-doped TADF systems; however, achieving blue TADF
with a CIE-y value (<0.20) remains a major challenge because of
the strong electron-donating characteristics of the acridan-
based donors. More recently, aggregation-induced delayed
fluorescence (AIDF) has been proposed as a new viable meth-
odology to avoid ACQ and hence produce efficient non-doped
OLEDs." However, thus far, efficient deep-blue AIDF systems
that are capable of fulfilling the aforementioned criteria have
not been attained.

In this study, we focused on the electronic and structural
features of a set of acridan-analogous donors with different
group 14 (crystallogen) elements, and systematically designed
new TADF emitters 1-4 by combining them with phenothia-
borin (BS) as the common acceptor unit (Fig. 1). Having weak-
ened electron-donating abilities, 1-4 indeed showed blue-
shifted TADF emissions (by 20-35 nm) in comparison to that
of the parent acridan-appended TADF emitter 5. In addition,
effects of their unique conformational heterogeneity on the
photophysical properties and EL characteristics were system-
atically investigated by changing the bridging group 14
elements for the phenazasiline- and phenazagermine-appended
TADF emitters. Of this new family of blue TADF emitters, 1 and
3 were found to exhibit suppressed ACQ behavior and therefore
high @, values even in their neat films. Owing to this advan-
tageous attribute, non-doped TADF-OLEDs based on 1 and 3

N= weaker stronger
O donor donor Q
N b
N = g ¢ Nt
i OEBD O3
MCz-BS (4) MPAC-BS (5)
E12=0.68 V E12=049V
MPAGe-BS (3) MPASI-BS (1)
E12=061V MFASl BS(2) E12=059V
E12=061V

Fig. 1 Molecular structures of blue phenothiaborin-based TADF
emitters incorporating acridan-analogous donors with different group
14 elements. Ey/, values represent the half-wave oxidation potentials
vs. Fc/Fc* determined by cyclic voltammetry and differential pulse
voltammetry (ESIT), as a measure of the electron-donating ability.
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demonstrated remarkable EL performances with high
maximum 7y of 20.9% and 17.4%, respectively, and blue
emission CIE coordinates of (0.14, 0.20), along with suppressed
efficiency roll-off. This study provides a new universal guideline
for the design of high-performance blue TADF materials
applicable to both doped and non-doped blue OLEDs.

Results and discussion
Synthesis and characterization

Aiming to produce efficient deep-blue TADF emitters, green-
emitting MPAc-BS (5)*> was selected as a prototypical material
(Fig. 1) and its donor unit was displaced by less electron-
donating analogues such as 2,8-dimethyl-10,10-
diphenylphenazasiline (MPASi for 1), spiro[2,8-dimethylphe-
nazasiline-10,5’-dibenzo[b,d|silole] (MFASi for 2), and 2,8-
dimethyl-10,10-diphenylphenazagermine (MPAGe for 3), as well
as 1,3,6,8-tetramethylcarbazole (MCz for 4). The target
compounds 1-4 were synthesized through the procedures out-
lined in Scheme 1. The detailed synthetic procedures and
chemical characterization data are given in ESI. The N-benzyl-
protected precursors were prepared by dilithiation of N,N-bis(2-
bromo-4-methylphenyl)benzylamine, followed by nucleophilic
substitution reactions with dichlorodiphenylsilane, 5,5-
dichlorodibenzo[b,d]silole, or dichlorodiphenylgermane. The
catalytic hydrogenation reactions afforded the deprotected
donors (MPASi, MFASi, and MPAGe). Finally, 1-4 were obtained
via Buchwald-Hartwig amination of the mono-brominated
phenothiaborin acceptor (Br-BS) with the corresponding
donors in good yields (58-89%). Compounds 1-4 showed
sufficient tolerance toward air, moisture, and heat, and could be
purified by column chromatography and temperature-gradient
vacuum sublimation. Thermogravimetric analyses revealed
that 1-4 had good thermal stability, with 5% weight-loss

Br-BS

Scheme 1 Synthetic schemes for 1-4. Reagents and conditions: (a) (i)
n-Buli, Et,O, 0 °C, 1 h, (ii) Ph,ECL, (E = Si, Ge), 35 °C, 2 h; (b) (i) n-Buli,
Et,O, 0 °C, 1 h, (ii) 5,5-dichlorodibenzolb,d]silole, 35 °C, 2 h; (c) H,, Pd/
C, CH,Cl/AcOH, RT, 15-24 h; (d) Pd,(dba)s, t-BusPH-BF,4, NaOt-Bu,
toluene, 100 °C, 6-17 h. Bn = benzyl, MCz = 136,8-
tetramethylcarbazole.
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temperatures (T4) of 368, 380, 371, and 343 °C, respectively
(ESIY), rendering these materials suitable for the fabrication of
OLEDs using the vacuum deposition method.

The variations of the electron-donating ability for the present
acridan analogues with different bridging group 14 elements
along with MCz were verified by cyclic voltammetry and differ-
ential pulse voltammetry (Fig. 1 and ESIT). The half-wave
oxidation potentials (Ey, vs. Fc/Fc') increased in the order of
5 (0.49 V) <1 (0.59 V) < 2 (0.61 V) = 3 (0.61 V) < 4 (0.68 V); this
trend reflects the variation of their electron-donating ability. As
compared to the case of acridan-appended 5, the introduction
of heavier group 14 elements (i.e., Si for 1 and 2, and Ge for 3)
gradually elevated E;, to more positive potentials, indicating
less electron-donating features of the MPASi, MFASi, and
MPAGe donors. As expected, introducing MCz donor made it
more difficult for 4 to be electrochemically oxidized, which was
indicative of its lower electron-donating ability. These redox
processes of 1-4 are essentially reversible and stable, which is
a favorable attribute especially for their utilization as non-
doped emitters.

Molecular structures and conformational analyses

The X-ray crystallographic analyses provided valuable structural
information for 1-5 (Fig. 2 and ESIt), which was strongly
influenced by the subtle difference in the bridging moiety of the
donor units. Unlike the rigid planar MCz donor in 4, all phe-
nazasiline and phenazagermine donors in 1-3 were largely

quasi-axial (QA)

N7

quasi-equatorial (QE)
: @ slightly crooked D unit

BN
&

E highly crooked D unit

MPASI-BS (1)

planar D unit

orthogonal

)
@

Fig. 2 X-ray crystal structures of 1-5 (CCDC 1948037-1948040,
18253827) showing different conformers. Thermal ellipsoids are drawn
at 50% probability. Hydrogen atoms, solvent molecules, and disor-
dered isopropyl groups are omitted for clarity. Atom color code: C,
gray; B, pink; N, blue; S, yellow; Si, red; Ge, green.
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folded along their central N---Si or N---Ge axis and adopted
‘quasi-axial (QA)’ conformations with small D-A torsion angles
(C8-C9-N-C28) of 5.1-15.8° in the crystalline states. The crystal
structures of 1-3 were in marked contrast to that of 5, which
preferentially formed a typical ‘quasi-equatorial (QE)
conformer having a large torsion angle of —114.0°."* Such
conformational heterogeneity (i.e., capability to form QA and
QE conformers) of this series of D-A molecules can be attrib-
uted to the mismatch of the bridging bond lengths in each
acridan-analogous donor unit; namely, Ge-C (~1.94 A) > Si-C
(~1.86 A) > C-C (~1.54 A) > N-C (~1.44 A). Some TADF
molecules, most frequently those with a sulfur-containing
phenothiazine donor, reportedly show intriguing dual CT
emissions arising from two different conformers.''® Despite
the similarity in the covalent radii of sulfur and silicon, effects
of such conformational heterogeneity of phenazasiline and its
derivatives on the optical and electronic properties have never
been clarified.

To gain further insight into the QA-QE conformational
interconversion, we performed computational simulations
using density functional theory (DFT), as presented in Fig. 3 (see
ESI for detailst). For the MPASi-appended 1 as a representative
example, three stable conformations with different D-A torsion
angles were predicted in the ground (S,) state, which corre-
sponded to one QA and two QE conformers (Fig. 3a). The torsion
angle of the QA conformer for 1 was as small as 6.0°, consistent
with the foregoing crystal structure. In contrast, much larger
torsion angles (—93.4° and 88.3°) were estimated for its two QE
conformers (QE1 and QE2). In this case, the free energy differ-
ences (AG) between the QA and QE conformers were estimated
to be considerably small (<0.6 kcal mol ™). The interconversion
energy barriers calculated for 1 (4.8-5.7 kcal mol ) appeared to
be small enough for allowing free conformational changes in
solution at room temperature. Likewise, the geometry optimi-
zations for 2, 3, and 5 performed following the same protocol
indicated three local minima corresponding to one QA and two
QE conformers (Fig. 3b). For 5 with the less crooked MPAc
donor, two QE conformers were further energetically stabilized
(by 2.7-2.8 kcal mol ") with respect to the corresponding QA
conformer. This suggests that the QE conformer with the nearly
orthogonal D-A arrangement should have a higher population
at equilibrium. Contrary to 1, 2, and 5, the calculated free
energies of the two QE conformers for 3 were higher than the QA
one (by 2.1-2.4 keal mol "), implying that the QA conformation
was thermodynamically more preferable for the phenaza-
germine derivative. As the interconversion energy barriers did
not change significantly with the variation of the donor units,
the population ratios of the QA and QE conformers for 1, 2, 3,
and 5 could be estimated using their AG values by assuming
Boltzmann distribution. Consequently, for 1, 2, and 5, the
orthogonal QE conformers were expected to have much higher
populations (QE = 70%, 87%, and 99%, respectively); in
contrast, the QA conformer for 3 predominated over the QE
conformer (QA = 98% and QE = 2%) at room temperature.
These results unambiguously indicate that a structural modifi-
cation in the bridging moiety of the donor units has a marked

10690 | Chem. Sci., 2019, 10, 10687-10697

View Article Online

Edge Article

HOMO
-5.30 eV

Fig. 3 (a) Molecular geometrical changes in 1 along the interconver-
sion between its quasi-equatorial (QE) and quasi-axial (QA)
conformers through the transition states (TS). (b) Energy profiles for
the interconversion processes of 1-3 and 5 in their ground states at
298 K and 1 atm, calculated at the B3LYP/6-31G(d) level of theory. (c)
Spatial distribution of the frontier orbitals (HOMOs and LUMOs) for the
ground-state QE and QA conformers of 1.

impact on the intrinsic conformational
heterogeneity.

Fig. 3c depicts the HOMO and LUMO distributions of both
QE and QA conformers of 1 in the S, state. Similar to common
TADF molecules with an orthogonal D-A arrangement, there
was negligible spatial HOMO-LUMO overlap in the QE
conformer for 1, in which the HOMO and LUMO were localized
on the phenazasiline donor and phenothiaborin acceptor
moieties, respectively, exhibiting evident ICT characteristics. In
contrast, the QA conformation of 1 could reduce the D-A
distortion and thereby facilitate the conjugation of the lone pair
of the nitrogen atom with the adjacent phenothiaborin moiety.
Consequently, its HOMO and LUMO were overlapped on the
acceptor moiety, giving them a more localized electronic tran-
sition character. Furthermore, this QA conformer was found to
have a deeper (or more stabilized) calculated HOMO level and
also wider HOMO-LUMO energy gap (E,) compared to the QE
conformer. Very similar computational results were obtained
for 2 and 3 as well (ESIf), revealing the notably different elec-
tronic transition characteristics between the interconvertible
QE and QA conformers.

flexibility and

This journal is © The Royal Society of Chemistry 2019
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Photophysical properties in solutions

Fig. 4a shows a comparison of the UV-vis absorption spectra of
1-4 in toluene solutions. The phenazasiline-appended 1 and 2
exhibited very weak absorption bands in a lower-energy region
of 390-430 nm, in addition to major intense absorptions
ranging from 330 to 390 nm. Meanwhile, the phenazagermine-
appended 3 exhibited much stronger absorption bands
centered at 366 nm with a molar absorption coefficient (&) as
high as 3.8 x 10" M~' em ™. To further understand the origin of
their different absorption behavior, the absorption spectra of 1-
4 were theoretically simulated by taking the population ratios of
QA/QE conformers into account, using time-dependent DFT
(TD-DFT) with the long-range corrected functional (LC-wPBE)"
and the 6-31+G(d) basis set (Fig. 4b and ESIT). It was found that
the electronic excitations of the QE conformers occurred at
lower energies than those of the QA conformers in the calcu-
lations, even though the oscillator strength of the former is
close to zero. On this basis, the weak absorption bands observed
with 1 and 2 in the range of 390-430 nm were assigned to the
ICT transitions of their QE conformers. Further, the strong
absorption peak at 366 nm in 3 was mainly attributable to the
m-m* transition of its predominant QA conformer having
a larger oscillator strength. The overall spectral profiles for 1-4
could be theoretically reproduced, thus testifying that the
differences in their transition energies and strengths primarily
originated from the different population ratios of the QA/QE
conformers in the S, states.

The effect of this conformational heterogeneity was also
observed in the PL spectra in dilute solutions (Fig. 4c). The MCz-

@, ‘ (©
Y —1
) QE 2
(7]
c —3
E QA —a
S
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©
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Fig. 4 (a) UV-vis absorption spectra of 1-4 in toluene (10~° M). The
inset shows a magnified view of the lower-energy ICT absorption
bands. (b) Theoretical absorption spectra of 1-4 with different pop-
ulations of QE/QA conformers simulated using TD-DFT (LC-wPBE/6-
31+G(d)). (c) Steady-state PL spectra of 1-4 in the deoxygenated
toluene solutions. (d) Solvatochromic PL responses of 1 in different
solvents upon excitation at 350 nm.
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appended 4 exhibited a typical single emission with the peak
(ApL) at 458 nm and ®p; of 22%, which originated from the
twisted ICT state. In contrast, 1-3 clearly displayed dual emis-
sions consisting of a main peak at 472-482 nm (blue region) and
a shoulder peak at 403-410 nm (violet region) in deoxygenated
toluene solutions (overall @p;, = 46%, 27%, 42%, respectively).
The corresponding excitation spectra of 1-3 monitored at these
two emission bands showed prominent differences (ESIT),
supporting the notion that the dual emissions arose from
different conformers. To verify the ICT character of the dual
emissions, we compared the PL spectra of 1-3 in four solvents of
different polarities (Fig. 4d and ESIt). In non-polar cyclohexane,
the higher-energy emission centered at ~400 nm was dominant.
Upon increasing the solvent polarity from cyclohexane (E(30) =
30.9)*® through toluene (33.9) to ethyl acetate (38.1) and
dichloromethane (40.7), the relative intensity of the higher-
energy emission was sharply reduced, and at the same time,
the lower-energy broad emission emerged and became
predominant. Furthermore, the lower-energy emission showed
significant bathochromic shift (i.e., positive solvatochromism)
with an increase in the solvent polarity, indicating obvious ICT
nature. On the other hand, the higher-energy emission under-
went less solvatochromic effect, as a consequence of its locally
excited (LE) or mixed LE and ICT character. This solvent-
dependent dual PL behavior in 1-3 thus indicated that the
higher- and lower-energy emissions primarily originated from
the QA and QE conformers having different electronic charac-
teristics, respectively.

However, one question now arises for the phenazagermine-
appended 3: why did the QE emission become predominant
over the QA emission in spite of the negligible population of its
QE conformer in the S, state? This may be caused by a change in
the thermodynamic equilibrium between the QA and QE
conformers of 3 in the S, state. According to the Forster cycle,*
the energy differences (AG*) between the QA and QE
conformers in the S; state can be estimated by the following
equation:

AG* = AG — (AEga — AEqr) (1)

where AEqs and AEqg are the excitation energies of the QA and
QE conformers, respectively. The AEqy and AEqg values of 3
were estimated as 3.19 and 2.76 eV, respectively, from the
average of the corresponding absorption and emission maxima.
Given the AG of +0.10 eV (Fig. 3b), AG* of 3 was calculated to be
—0.37 eV. As schematically shown in Fig. 5, the QE conformer is
energetically more stable than the QA conformer in the S; state,
likely owing to its prominent ICT character. Therefore, the QA
conformer readily undergoes excited-state structural relaxation
(or photo-induced isomerization) and transforms into the QE
conformer beyond a small energy barrier to emit the lower-
energy blue PL.** Indeed, the optimized S; geometries of 1-3
were calculated to have orthogonal D-A structures with the
torsion angle of almost 90° (Fig. 5 and ESIT), similar to the
corresponding ground-state QE conformers. This computa-
tional result supports the experimental observation of the
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the S state and the orthogonal conformation in the S, state calculated
at the B3LYP/6-31G(d) level are presented.

predominant blue emissions from the QE conformers in the
solution PL spectra of 1-3.

Photophysical properties and exciton dynamics in thin films

To unveil their potential as blue TADF emitters prior to device
fabrication, the photophysical properties of 1-4 were investi-
gated in both doped and neat films, as presented in Fig. 6. For
doped films, bis(diphenylphosphoryl)dibenzo[b,d|furan (PPF,
Er = 3.1 eV) was employed as a wide-gap high-T; host to effec-
tively confine the S; and T, excitons in the TADF emitters. The
detailed photophysical data are summarized in Table 1. All
doped films of 1-4 displayed intense blue PL emissions (Ap;, =
468-483 nm) with notably high absolute @5, values of 92-100%
under N, atmosphere (Fig. 6a and c). Interestingly, unlike dilute
solutions, the emission from the QA conformers completely
disappeared in the doped films of 1 and 2. Given that large
structural relaxation cannot occur easily in the solid state, the
intensified QE emissions likely originated for another reason.
Because of the spectral overlap between the QA emission and
QE absorption, the excited energy of the QA conformer could be
transferred to the QE conformer by Forster resonance energy
transfer (FRET), dissipating the emission from the QA
conformer in these doped films. However, only the doped film
of 3 exhibited a clear QA emission at ~400 nm as a shoulder,
which was ascribed to an incomplete FRET due to a tiny
proportion of the QE conformer in its initial S, equilibrium. The
absorption spectra of the neat films of 1-3 (Fig. 6d) were nearly
the same as those measured in toluene solution, which suggests
that the neat films were composed of mixtures of their QA and
QE conformers having population ratios equivalent to those in
the solution. As listed in Table 1, the AEg; values of 1-4 were
estimated as small as 0.08, 0.06, 0.11, and 0.11 eV, respectively,
from the energy differences between the onsets of the fluores-
cence and low-temperature phosphorescence spectra of the
doped films (ESIt).

Interestingly, the PL spectra of 1-3 were blue-shifted and
became narrower in the neat films (Fig. 6b and Table 1), as
compared to those of the doped films. This behavior can be
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explained by the difference in the polarity of the surrounding
solid host media. Compared to the highly polar PPF host, the
less polar nature of 1-3 as host media implied a lower degree of
stabilization for the polar ICT excited states, thus leading to
hypsochromic shifts of PL emissions in the neat films. More-
over, owing to their terminal bulky substituents, 1 and 3 were
capable of suppressing ACQ and thereby exhibited considerably
high &y, of 74% and 83%, respectively, even in the aggregated
neat films (Fig. 6¢). This feature is favorable for the fabrication
of non-doped blue OLEDs (as will be discussed later). In
contrast, the neat film of 4 bearing the planar MCz donor gave
a broadened PL spectrum and a much lower ®py, similar to the
cases of conventional TADF emitters, presumably because of
intermolecular electron-exchange interactions between the
neighboring MCz moieties in the aggregated state."**

To verify the TADF nature, the transient PL characteristics of
1-4 were examined in both doped and neat films (Fig. 6a and b,
right). All transient PL decay curves could be fitted using
a double-exponential model, giving prompt fluorescence life-
times in the nanosecond regime (t, = 0.5-3.4 ns) and delayed
fluorescence lifetimes in the microsecond regime (t4 = 1.7-10.4
us). It is worth noting that each decay curve of the doped films

This journal is © The Royal Society of Chemistry 2019
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contained a trace portion of prompt fluorescence with a very
small fractional quantum yield (¢, = 0.5-1.5%) while most of
the PL originated from delayed fluorescence (&4 = 91-99%).
This ideal TADF behavior can be attributed to their capability of
fast intersystem crossing (ISC) and reverse ISC (RISC). Indeed,
extremely large ISC and RISC rate constants (kisc and kgisc)
exceeding 10® and 107 s~* were evaluated for 1-4, as listed in
Table 1. These kisc and kgysc values were approximately one and
two orders of magnitude greater, respectively, than the corre-
sponding fluorescence radiative decay rate constant (k. ~ 10°-
107 s~ ). Therefore, the rate-limiting step in the TADF processes
of 1-4 is now the fluorescence radiative decay (S; — S,) rather
than RISC (T; — S,), which is completely opposite to conven-
tional TADF materials that have much lower kgsc (<10° 7). To
the best of our knowledge, the krjsc values obtained for 1-4
(>10” s") are the highest among all TADF emitters ever re-
ported, irrespective of the emission colors. This result is closely
associated with the fact that the ¢4 dominated the overall @y,
values, enabling nearly 100% ISC efficiencies (P;sc = 1 — @p)
and 92-100% RISC efficiencies (Prisc = Pa/Prsc) for 1-4.2°

We further investigated the excited-state electronic proper-
ties of 1-4 using TD-DFT (LC-wPBE/6-31+G(d)) calculations. As
can be seen from Fig. 7, the optimized S; states of 1-4 (with the
emissive QE conformation) were dominated by the HOMO —
LUMO ICT transitions ("CT). In contrast, their optimized lowest
T, states were mainly associated with the HOMO-1 (or
HOMO-2) — LUMO transitions (*LE), corresponding to the -
m* transition of the phenothiaborin acceptor moiety. Indeed,
the measured Ey of the phenothiaborin precursor (Br-BS, 2.78
eV) was nearly the same as those of 1-4 (E; = 2.76-2.81 eV,
ESIT), supporting the implication that the -m* transition of
the phenothiaborin moiety was from their most relevant T,
states. The adiabatic AEg; values for 1-4 were calculated to be
37, 61, 146, and 112 meV, respectively, which are in satisfactory
agreement with the experimental AEgy values. It was also found
that the upper-lying T, states, which are represented by triplet
ICT (3CT), lay at slightly higher energies than the corresponding
T; states. One can anticipate that RISC is intrinsically allowed
between the *LE and 'CT states with effective spin-orbit
coupling (SOC), {*CT|Hsoc|’LE), because of the vanishing of the
SOC between *CT and "CT states having the same spatial orbital
occupation (i.e., ('CT|Hsoc|’CT) = 0).>*' The predominant *LE
component (79-97%) in the lowest T; states of 1-4 is thus
beneficial to the spin-converting RISC processes, in addition to
having small AEgy values.

OLED device performance

To evaluate the EL performances of 1-4 as blue TADF emitters,
we first fabricated doped OLEDs (devices A-D) employing
50 wt%-emitter:PPF doped films as the emission layer (EML).
The fabricated device structure was indium tin oxide (ITO, 50
nm)/HAT-CN (10 nm)/TAPC (50 nm)/CCP (10 nm)/EML (20 nm)/
PPF (10 nm)/B3PyPB (30 nm)/Liq (1 nm)/Al (100 nm), where
2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene (HAT-
CN), 1,1-bis[4-[N,N-di(p-tolyl)Jamino]phenyl]cyclohexane (TAPC),
9-phenyl-3,9’-bicarbazole ~ (CCP), 1,3-bis[3,5-di(pyridin-3-yl)
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phenyl]benzene (B3PyPB), and 8-hydroxyquinolinolato lithium
(Liq) layers play the roles of hole injection, hole transport,
exciton and electron block, electron transport, and electron
injection, respectively. A detailed energy level diagram of the
devices is provided in ESL{ As the HOMO and LUMO energy
levels of emitters 1-4 (Eyomo = —5.7 to —5.9 eV and Epymo =
—2.7 to —3.0 eV) are shallower and deeper, respectively, than
those of the PPF host (—6.7 and —2.7 eV), electrically injected
holes and electrons can be directly trapped on the guest emitter
molecules to effectively generate excitons with in the EML.
Fig. 8a-c shows the EL spectra, current density-voltage-
luminance (J-V-L) characteristics, and ney versus L plots for the
doped devices A-D, while Table 2 compiles the key EL param-
eters. Devices A-D displayed blue to sky-blue EL with the
emission peaks (Ag) ranging from 476 to 484 nm, similar to the
corresponding PL spectra. The turn-on voltages (V,,) of these
devices were as low as 2.8-3.2 V, which were comparable to the
photo-excited S; energies of 1-4 (Es = 2.8-2.9 V), suggesting
a direct charge recombination and exciton generation mecha-
nism. Comparing the performances of the TADF emitters 1-4
among devices A-D, the maximum 7.y values were in the order
of 1 (27.6%) > 2 (23.9%) > 4 (21.6%) > 3 (15.7%). Particularly,
device A using 1 achieved the best EL performance with
a maximum 7. of 27.6%, current efficiency (n.) of 48.7 cd A",
power efficiency (n,) of 48.7 Im W', and CIE coordinates of
(0.14, 0.26). Furthermore, device A demonstrated ultra-low
efficiency roll-off; the 7.y values remained as high as 27.5% at
100 cd m™" (for display), 26.1% at 1000 cd m~" (for lighting),
and 18.7% even at 10000 cd m™", corresponding to approxi-
mately 0.3%, 5%, and 32% roll-offs, respectively, relative to the
maximum 7. value. This suppressed efficiency roll-off in

10694 | Chem. Sci., 2019, 10, 10687-10697

device A is even smaller than those of state-of-the-art blue TADF-
OLEDs.” In spite of the same @y, values for the doped films of 3
and 4, device C using 3 exhibited much lower 7¢ (=15.5%) over
the entire luminance range, which was attributed to the low
population of its emissive QE conformer causing a reduced
exciton generation probability, even in the heavily-doped EML.
In device C, the excitons are formed mainly on the major QA
conformer of 3, and then excited energy transfer to the emissive
QE conformer takes place. As the population of the QE
conformer is significantly low, the generated excitons are lost to
some extent via incomplete energy transfer, resulting in lower
EL efficiencies.”” In addition, the different length dependence
of the energy transfer processes for singlet and triplet excitons
seems to be relevant to the discrepancy of the trend between the
PL and EL efficiencies.”> Since only the singlet excitons are
initially generated upon photoexcitation, effective energy
transfer from the QA to QE conformers takes place via long-
range Forster mechanism and hence, efficient TADF emission
from the QE conformer can be achieved in the PL process with
a high ®p;, value. In contrast, under electrical excitation in
OLEDs, additional short-range Dexter energy transfer, which is
much more sensitive to the interchromophore distance, should
cause incomplete energy transfer to the emissive QE conformer
and lowering the EL efficiency. This can be supported by the fact
that the non-doped OLED (device F) with a higher content of the
QE conformer within the EML exhibited a higher EL efficiency
than the corresponding doped OLED (device C).

The specifically low ACQ characteristics of 1 and 3 in the neat
films prompted us to further evaluate the EL performance in the
host-free non-doped devices. To this end, we fabricated the non-
doped TADF-OLEDs (devices E and F) by adopting the neat films

This journal is © The Royal Society of Chemistry 2019
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and f) ney versus L plots.

Table 2 EL performances of the TADF-OLEDs based on 1-4

and photos of blue EL emissions, (b and e) J-V-L characteristics, and (c

ApL Epwnm® Arwrm® 77ext,maxf 77ex:,100/1000/10000g ﬂch "7pi
Device EML* [nm] [eV] [nm] CIE? [, y] Von' [V] [%] [%] [cdA™] [Imw]
A 1:PPF 478 0.33 61 (0.14,0.26) 3.0 27.6 27.5/26.1/18.7 48.7 48.7
B 2:PPF 484 0.32 62 (0.14,0.32) 3.0 23.9 23.7/21.9/12.9 47.8 45.0
C 3:PPF 476 0.33 62 (0.14,0.22) 3.2 15.7 15.5/13.2/— 24.8 22.5
D 4:PPF 478 0.34 64 (0.14,0.26) 2.8 21.6 21.3/20.4/14.4 39.0 41.9
E 1 473 0.31 57 (0.14,0.20) 3.6 20.9 20.7/18.2/— 30.1 23.8
F 3 473 0.32 59 (0.14,0.20) 4.4 17.4 17.4/14.9/— 25.7 16.9

% Emission layer consisting of a codeposited 50 wt%-emitter:PPF doped

film (for devices A-D) or a non-doped neat film (for devices E and F). * EL

emission maximum at 10 mA cm 2. ¢ Full width at half-maximum of the EL spectrum given in energy (eV) or wavelength (nm). ¢ CIE chromaticity

coordinates. ® Turn-on voltage at a luminance above 1 cd m~2./

.7 Maximum external EL quantum efficiency. ¥ External EL quantum efficiency at the

luminance of 100, 1000, and 10000 cd m 2. * Maximum current efficiency. ' Maximum power efficiency.

of 1 and 3 instead of the doped films as the EML, with the same
device configuration. Devices E and F exhibited slightly blue-
shifted Ag;, of 473 nm with narrower bandwidths (Egpwuym =
0.31-0.32 eV and Agpwym = 57-59 nm, Fig. 8d) compared to the
corresponding doped devices (A and C). Consequently, both
devices E and F achieved blue CIE coordinates of (0.14, 0.20).
Remarkably, 7.y of the non-doped devices E and F reached
20.9% and 17.4%, respectively (Fig. 8e and f and Table 2).
Moreover, the efficiency roll-off of device E was rather low,
retaining high 7.y values of 20.7% and 18.2% even when driven
at practically high luminances of 100 and 1000 c¢d m™*,
respectively, which are among the best performing values for
the reported non-doped blue TADF-OLEDs.'*™ It is also

This journal is © The Royal Society of Chemistry 2019

noteworthy that device F using 3 exhibited superior EL perfor-
mance to the corresponding doped device C. This result may be
explained by the increased emissive QE conformers within the
non-doped EML.

Conclusions

In this study, we systematically designed and synthesized new
blue TADF emitters featuring acridan-analogous donors con-
taining silicon and germanium bridging atoms. Incorporating
larger silicon and germanium atoms enhanced the structural
flexibility of the donor units, leading to conformational
heterogeneity as well as dual fluorescence capability of the
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resulting TADF emitters. While all these TADF molecules
adopted dual conformations in both solution and thin film
states, efficient excited energy transfer from the QA to QE
conformers took place and the latter displayed obvious TADF
characteristics. As phenazasiline and phenazagermine acted as
weaker electron donors than the commonly used acridan unit,
bluer TADF was attained. Additionally, the direct electronic
coupling between the close-lying local triplet (*LE) and charge-
transfer singlet ("CT) excited states via SOC greatly enhanced
the RISC rates (kgisc > 107 s~ ') and thereby TADF efficiencies of
the emitters. It was also found that blue TADF emitters 1 and 3
with the diphenyl-substituted phenazasiline and phenaza-
germine donors demonstrated surprisingly small concentration
quenching behavior and were applicable to both doped and
non-doped systems as efficient bifunctional emitters. The
doped and non-doped blue TADF-OLEDs fabricated using 1
demonstrated excellent EL performances, with maximum 7.y as
high as 27.6% and 20.9%, respectively, and suppressed effi-
ciency roll-off at a practically high luminance. We believe that
this systematic study can offer a general guideline toward
precise control of the structures and photophysical and TADF
properties. By utilizing the design concept demonstrated here
and improving the intrinsic stability and device architectures,
outstanding deep-blue TADF-OLEDs can be developed.
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