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A series of unique C,P3-ring compounds [(ADC*)P3] (ADCA" = ArC{(DippN)C},; Dipp = 2,6-iProCeHs; Ar =
Ph 4a, 3-MeCgH,4 4b, 4-MeCgH,4 4c, and 4-Me,NCgH4 4d) are readily accessible in an almost quantitative
yield by the direct functionalization of white phosphorus (P4) with appropriate anionic dicarbenes
[LI(ADC™)]. The formation of 1,2,3-triphosphol-2-ides (4a—4d) suggests unprecedented [3 + 1]
fragmentation of P, into Ps* and P~. The Ps* cation is trapped by the (ADC*)~ to give 4, while the
putative P~ anion reacts with additional P4 to yield the LizP; species, a useful reagent in the synthesis of
organophosphorus compounds. Remarkably, the P, fragmentation is also viable with the related
mesoionic carbenes (iMICs™) (iIMICA = ArC{(DippN),CCH}, i stands for imidazole-based) giving rise to 4.
DFT calculations reveal that both the CsN, and C,Pz-rings of 4 are 67-electron aromatic systems. The

natural bonding orbital (NBO) analyses indicate that compounds 4 are mesoionic species featuring
Received 3rd September 2019

Accepted 16th October 2019 a negatively polarized C,P3-ring. The HOMO-3 of 4 is mainly the lone-pair at the central phosphorus

atom that undergoes c-bond formation with a variety of metal-electrophiles to yield complexes

DOI: 10.1039/c9sc04441h [{(ADC*)P5IM(CO),] (M = Fe, n = 4, Ar = Ph 5a or 4-Me-CgHy 5b; M = Mo, n = 5, Ar = Ph 6; M = W, n

rsc.li/chemical-science =5, Ar = 4-Me,NCgH,4 7).

Introduction

The direct conversion of white phosphorus (P,) into useful
organophosphorus compounds (OPCs) is of significant
interest because this excludes the involvement of corrosive
Cl, gas that is required to convert P, into PCl;, a common
starting material for OPCs, and thus minimizes the waste
and energy consumption." The activation and subsequent
functionalization of P, has therefore become a topical
objective.> Both transition metal® as well as main-group
element* compounds have been shown to activate or func-
tionalize P,.* In particular, compounds featuring a low-
valent main-group element have made significant advances
over the past years.®

Among nonmetals, the use of singlet carbenes’ has given
new impetus to the field of P, activation as it leads to the direct
C-P bond formation (Fig. 1).® Several stable carbenes (L1-L7)
undergo reactions with P, and the fate of P, fragmentation to
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give P, (n = 1, 2, 4, 8 or 12) containing products II-IX depends
on the relative o-donor/m-acceptor (ambiphilic) property as well
as the steric demand of carbenes.” Weakly m-accepting NHCs
such as IPr (IPr = C{(DippN)CH},) do not react with P,, however,
related derivatives containing the [P,] or [P;] moiety are
accessible by alternative methods.® Sterically demanding 1,3-
bis(tBu)imidazol-2-ylidene (IBu’) activates P, in combination
with B(CeFs); to give X.°* This frustrated Lewis pair (FLP) type
reactivity'® led to the transformation of the classical NHC (IBu’)
into the mesoionic carbene (iMIC) L8 based on an 1,3-imidazole
framework.

iMICs are very potent c-donor ligands with almost negligible
m-acceptor properties."” Nonetheless, no reaction of an iMIC
alone with P, has been described so far. This is most likely due
to their limited synthetic accessibility."** We recently reported*?
C5-protonated iMICs™" (XI) as well as C4/C5-ditopic anionic
dicarbenes [Li(ADC"")] XII (Fig. 1) by the deprotonation of C2-
arylated 1,3-imidazolium salts.”® The dicarbenes XII feature
two adjacent C4/C5-nucleophilic sites, and thus are well
endowed to affect unique dual P, functionalization.*'* Herein,
we showcase the direct functionalization of P, via unprece-
dented [3 + 1] fragmentation with [Li(ADC*"] and iMICs*" to give
the 1,2,3-triphosphol-2-ide derivatives [(ADC"")P,] (ADC*" = ArC
{NDipp)C},; Dipp = 2,6-iPr,C¢Hj; Ar = C¢Hjs 4a, 3-MeCgH, 4b, 4-
MeC¢H, 4c¢, and 4-Me,NCgH, 4d) (Scheme 1).

This journal is © The Royal Society of Chemistry 2019
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Fig. 1 Singlet carbene-mediated P, activation and fragmentation to
II-X and a plausible intermediate I. Mesoionic carbenes (iMICs™", XI)
and anionic dicarbenes (XII) ([Li*] = solvated lithium ion) investigated in
the current study.
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Scheme 1 Synthesis of 1,2,3-triphosphol-2-ide derivatives 4a—4d by
the direct fragmentation of white phosphorus with [Li(ADC"")] (2a—2d).
Reaction of iMICs"" 3a and 3c with P4 to form 4a and 4c.

Results and discussion

Treatment of [Li(ADC*")] (2a-2d),"> which are readily accessible
by the double deprotonation of C2-arylated 1,3-imidazolium
salts 1a-1d with n-BuLi, with P, at room temperature afforded
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the 1,2,3-triphosphol-2-ides 4a-4d as crystalline solids in
almost quantitative yields (Scheme 1). Compounds 4a-4d are
indefinitely stable (as solids as well as in solutions) under an
inert gas atmosphere. The formation of 4a-4d indicates formal
[3 + 1] fragmentation of P, into P;* and P~. The cationic P;"
species is captured by the ADCs to give 4a-4d, whereas the P~
nucleophile reacts with additional P, to eventually form the
phosphide (P,)*~ anion, a very common species in metal
mediated fragmentation of P,." Indeed, LizP; can be isolated as
a red-brown solid,'>*® which was confirmed by its reaction with
(IPr)HCI to give (IPr)PH, reported previously using NazP,."”

Interestingly, treatment of iMICs*" 3a and 3c with P, also
afforded, albeit in a lower yield, the corresponding products 4a
and 4c, respectively. "H NMR analyses of the crude reaction
product indicate the presence of a 1 : 1 mixture of 4a : 1a and
4c : 1c, suggesting the reprotonation of iMICs*" 3a and 3b to 1,3-
imidazolium salts 1a and 1c. Pure 4a and 4c can be extracted
from the mixture using toluene.

The "H NMR spectra of 4a-4d are very symmetric and show
two doublets and one septet for the isopropyl groups along with
the signals due to the aryl protons. The *C{"H} NMR reso-
nances for 4a-4d are fully consistent with their "H NMR spectra.

e *C{'"H} NMR spectrum of 4a-4d each exhibits a doublet at
167 ppm (Jp_c = 84 Hz) for the backbone carbon atoms due to
coupling with the *'P nucleus. The *'P{'"H} NMR spectrum of
4a-4d each shows a doublet at ~73 ppm and a triplet at 325 +
6 ppm in 2 : 1 ratio (Jp_p = 500 Hz), indicating the presence of
an AB, type system with unsaturated P-P bonds.*®

Solid-state molecular structures’ of 4a (Fig. 2), 4b
(Fig. S477), and 4c (Fig. S481) reveal the presence of a C,P5-ring
that is coplanar with the imidazole C;N,-ring plane. The
metrical parameters of 4a-4c are comparable (Table S1f) and
hence, for brevity, only 4a is discussed here. The P1-P2 bond
length of 4a (2.103(1) A) is intermediate of the sum of covalent

Fig. 2 Solid-state molecular structure of 4a. Hydrogen atoms are
omitted for clarity. Symmetry code: 1 — X, +Y, 3/2 — Z. Selected
experimental and calculated [M06-2X/def2SVP] bond lengths (A) and
angles (°): C1-C1’ 1.395(5) [1.402], N1-C1 1.404(3) [1.399], P1-C1
1.757(3) [1.764], P1-P2 2.103(1) [2.112], C1-P1-P2 94.9(1) [94.8], and
P1-P2-P1’' 104.0(1) [104.1].
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Scheme 2 (a) Calculated Wiberg Bond Indices (WBIs) and (b) NPA

atomic charges of 1,2,3-triphosphol-1,2-ides 4. (c) Schematic repre-
sentation of 4 with atom numberings.

radii for P=P double (2.04 A) and P-P single (2.22 A) bond
lengths,* indicating a partial mw-bond character. Similarly, the
C1-P1 (1.757(3) A) bond length of 4a is shorter compared to
a classical C-P single bond length (1.85 A)"* but compares well
with C=P bond lengths (ca. 1.75 A) of inversely polarized
phosphaalkenes.'” The C1-C1’ (1.395(5) A) and C2-N1 (1.404(3)
A) bond lengths of 4a are elongated in comparison with those of
1a (1.350(2) and 1.344(2) A, respectively).”* The C1-C1/, C1/C2-
P1 and P1-P2 bond lengths of 4a-4c are comparable with the
corresponding bond lengths of triphospholide anions [P;C,R,] ™
(R=H, C-P 1.726(2) and 1.781(3), and P-P 2.081(1) and 2.094(1)
A; R = Ph, C-P 1.760(2) and 1.762(2), and P-P 2.091(2), 2.098(2)
A).>* Thus, 4a-4d may be considered as the neutral analogues of
the triphospholide anions.

To gain further insight into the electronic structures of 4a-
4d, we performed DFT calculations at the M06-2X/def2-TZVPP//
MO06-2X/def2-SVP level of theory. The computed NPA charges
(Table S71) at the P2 (—0.10¢) and the C1/C2 (—0.24¢e) atoms are
negative, whereas both the P1 atoms bear a positive charge
(0.12€) (Scheme 2). The Wiberg Bond Indices (WBIs) of 1.40 (P-
P), 1.18 (C-P), and 1.31 (C-C) indicate a partial double bond
character. The WBI for the C1-C2 bond of 4a (1.31) is signifi-
cantly smaller compared to that of the imidazolium salt 1a (WBI
= 1.64). The WBIs for the C3-N1/2 bonds in 1 (1.28) and 4 (1.26)
are, however, almost equal. Thus, compounds 4 may be
described as mesoionic species with 67-electron C,P; and C;N,
aromatic systems (Scheme 2c). The nitrogen atoms contribute
4m-electrons to the C3N;3-ring, whereas the P; unit shares 47-
electrons with the C,P;-ring. The 2m-electrons of the C1=C2
bond are pooled by both the ring systems. Indeed, calculated
nucleus-independent chemical shift (NICS)** values for 4a-4d
(Table 1) suggest the aromaticity of the C3N,- and C,Ps-rings.
For comparison, we also calculated the NICS values for C¢Hs
and cyclobutadiene (CBD) molecules.

The anisotropy of current-induced density (AICD) has been
used to study the aromatic behavior of several molecules.”® The
AICD plots of 4a (Fig. 3) and 4b-4d (Fig. S62%) clearly show
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Fig. 3 AICD plot (based on M06-2X/def2-TZVPP//def2-SVP calcula-
tions) of the CsN,Ps core of compound 4a. The isovalue was arbitrarily
chosen to be 0.03, the magnetic field is orthogonal to the C,P3-plane
and points towards the viewer, and thus clockwise ring currents
represent aromatic systems, whereas counter-clockwise ring currents
are indicative of antiaromatic systems. AICD plots of the complete
molecules 4a—4d are given in the ESI.{

significant delocalization of the m-electrons of both the C;N,
and the C,P; heterocycles, forming one coherent 7-system.

The HOMO of compounds 4a (Fig. 4) and 4b-4c (Fig. S58-
S607) corresponds to the m-orbitals of the C-P bonds with
a small contribution from the lone pairs at the nitrogen atoms.
The HOMO—1 corresponds mainly to the -orbitals of the P;
and the C, moieties of the C,P;-ring. Like in alkali metal 1,2,3-
triphospholides,*? the analyses of frontier molecular orbitals,
HOMO and HOMO-1 in particular, of 4a-4d reveal the mixing
of phosphorus orbitals with lone-pair character amongst the -
manifold frontier orbitals. The HOMO—3 and HOMO-2 are the
lone pairs on the central and neighbouring P atoms, respec-
tively. The LUMO of 4a-4d corresponds to the 1t* orbital of the
aryl group on the C3 carbon atom along with a p-orbital at the
central phosphorus atom. The LUMO+2 corresponds mainly to
the m*-orbitals of the C,P; unit.

The intriguing electronic structures of 4 prompted us to
investigate their ligand properties as they may function as
neutral two electron o-donors (via phosphorus atoms) and/or
6m-electron m>-donors (C,Ps-ring) like triphospholide* and
cyclopentadienyl anions. Treatment of 4a, 4b, and 4c with
Fe,(CO)y or M(CO)5(THF) (M = Mo or W) led to the formation of
related complexes 5a, 5b, 6, and 7 (Scheme 3). In all complexes,
the central phosphorus atom functions as a two-electron o-
donor ligand to bind to the M(CO),, moiety. This is consistent
with the NBO analysis, which suggests higher charge accumu-
lation at the central phosphorus atom with respect to that of the

Table 1 Calculated NICS values for the C3N,/C,P3 units of 4a—4d at the M06-2X/def2TZVPP//M06-2X/def2SVP level of theory

C;3N,/C,P; 4a 4b 4c ad 5a C¢H¢/CBD*
NICS(0) —7.08/—10.19 —7.29/-10.31 —7.29/-10.31 —6.77/—10.37 —7.57/—9.95 —7.53/33.21
NICS(1) —5.94/—10.18 —6.11/—10.28 —6.11/—10.23 —5.64/—10.21 —6.29/—9.58 —10.19/21.09
NICS(2) —2.43/-5.51 —2.53/—5.21 —2.53/—5.53 —2.36/—5.52 —2.52/—5.12 —5.22/4.98

“ CBD (cyclobutadiene).
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HOMO (-6.08 eV)

HOMO-3 (-7.50 eV)

Fig. 4 Selected MOs of 4a calculated at the M06-2X/def2-TZVPP//
def2-SVP level of theory with an isovalue of 0.04. Hydrogen atoms
were omitted for clarity.

neighbouring phosphorus atoms. The *'P{*"H} NMR spectrum
of 5a, 5b, 6, and 7 each exhibits one doublet (5a: 145; 5b: 145; 6:
160; 7: 157 ppm) and one triplet (5a: 316; 5b: 315; 6: 299; 7: 250
ppm), which have been upfield shifted with respect to that of 4a
(173, 332 ppm), 4b (173, 331 ppm), and 4d (173, 319 ppm). In

e *'P{'H} NMR spectrum of 7, the triplet at 250 ppm is
accompanied by the %W satellites (Jp_y = 202 Hz).

The iron atom in 5a (Fig. 5) and 5b (Fig. S497) each features
a trigonal-bipyramidal geometry. Three equatorial positions are
occupied by CO ligands, whereas one CO and one 4a or 4b are
present at the axial positions. The P-Fe bond length of 5a
(2.240(1) A) compares well with that of triphosphaindane-
derived P;Fe; iron-carbonyl clusters (av. 2.244 A).>* Interest-
ingly, the metrical parameters of the C3N,- and C,P;-rings of 5a
and 5b are very similar to those of the precursors 4a and 4b,
respectively. This indicates that the aromatic 7-systems remain
virtually intact upon complexation of 4a and 4b with the
Fe(CO), fragment. As expected, the molecular structures of 6
(Fig. S507) and 7 (Fig. S51%) feature six-fold coordinated Mo
and W atoms, respectively.

Dipp
Fe,(CO)g \N b
or M(CO)5(THF) \
dadbordd ——— » Ar%@[ P—M(CO),
- Fe(CO)s or THF N -
(M =Mo or W) Dipp/ (n=4or5)

5a: M = Fe, Ar = Ph; 5b: M = Fe, Ar = 3-MeCgH,
6: M = Mo, Ar = Ph; 7: M = W, Ar = 4-Me,NCgH,

Scheme 3 Synthesis of complexes [((ADCAV)P3)M(CO),7] 5a, 5b, 6, and
7.
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Fig.5 Solid-state molecular structure of 5a. Hydrogen atoms and one
solvent toluene molecule are omitted for clarity. Selected bond
lengths (A) and angles (°): C2-C3 1.394(2), C2-N1 1.399(1), C3-N2
1.403(1), C2-P1 1.756(1), C3-P3 1.764(1), P1-P2 2.081(1), P2-P3
2.089(1), P2—Fel 2.240(1), Fel-C34 1.791(1), Fe1l-C35 1.797(2), Fel-
C36 1.810(1), Fe1-C37 1.783(1), P1-P2-P3 109.1(2), and P2-Fel-C37
178.5(1).

DFT calculations suggest that the HOMO of 5a (Fig. 6) is
mainly located at the iron atom and has some contribution
from the m-orbitals of the C-C and one P-P bond. The LUMO is
comparable to that of 4a but is lower in energy by —0.26 eV,
indicating metal-to-ligand m-back bonding. The aromaticity of
the C,P; moiety in 5a remains almost unchanged as indicated
by NICS(0) = —9.95, NICS(1) = —9.58, and NICS(2) = —5.12
values. The aromaticity of 5a is also corroborated by the AICD
plot (Fig. S627).

Experimental

All syntheses and manipulations were carried out under an inert
gas atmosphere (Ar or N,) using standard Schlenk techniques or
a glove box (MBraun LABMasterPro). Solvents were dried over
appropriate drying agents, distilled, and stored over a 3 A
molecular sieve prior to use. Deuterated solvents were dried
over appropriate drying agents, distilled, and stored inside
a glove box. NMR spectra were recorded on a Bruker Avance I1I
500 or a Bruker Avance III 500 HD spectrometer. Chemical
shifts (in ¢, ppm) are referenced to the solvent residual signals
of CD,Cl,: 'H 5.32; *C 53.84 and Cg¢Dg: 'H 7.16; **C 128.62 ppm.
ESI mass spectra were recorded using an Esquire 3000 ion trap
mass spectrometer (Bruker Daltonik GmbH, Bremen, Germany)
equipped with a nano-ESI source. Samples were dissolved in
CH,Cl, and introduced by static nano-ESI using in-house pulled
glass emitters. Nitrogen served as a nebulizer gas as well as a dry
gas and was generated by a Bruker nitrogen generator NGM 11.
Helium served as a cooling gas for the ion trap. The mass axis
was externally calibrated with ESI-L Tuning Mix (Agilent Tech-
nologies, Santa Clara, CA, USA) as the calibration standard. UV/
vis spectra were recorded on a ThermoFisher Evolution 300
spectrophotometer. Infrared spectra were recorded using
a Bruker Alpha-T FTIR spectrometer equipped with a Bruker
Platinum diamond ATR unit. Melting points were measured

Chem. Sci, 2019, 10, 11078-11085 | 11081
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Fig. 6 Frontier molecular orbitals of 5a calculated at the M06-2X/
def2-TZVPP//def2-SVP level of theory. The isovalue was arbitrarily
chosen to be 0.04. Hydrogen atoms were omitted for clarity.

with a Biichi B-545 melting point apparatus. (IPr*")Br salts 1a-
1d (Ar = Ph, 3-MeCg¢H,, 4-MeCgH, or 4-Me,NC¢H,) were
synthesized following the reported method."** n-BuLi (2.5 M
solution in hexanes, Sigma-Aldrich) was used as received. White
phosphorus was sublimed and stored inside a glovebox.
Commercially available Fe,(CO)y (Sigma-Aldrich), Mo(CO)s
(Fluorochem), and W(CO)s (Sigma-Aldrich) were used as
supplied.

Synthesis of compound (ADC*")P; (4a)

To a 15 mL THF suspension of 1a (0.88 g, 1.6 mmol), n-BuLi
(2.5 M, 1.4 mL, 3.5 mmol) was added at —40 °C. The resulting
reaction mixture was stirred at —20 °C for 1 h and then at room
temperature (25 °C) for 15 minutes to obtain a clear light brown
solution of 2a.” To this solution, solid P, (0.4 g, 3.2 mmol) was
added in one portion and then stirred overnight at rt. The
resulting dark suspension was refluxed for 2 h and the red
insoluble material (probably a mixture of LizP; and other pol-
yphosphides) was removed by filtration. The volatiles from the
filtrate were removed under vacuum to give a brown residue,
which was extracted with dichloromethane, dried under
vacuum, washed with toluene (2 x 10 mL), and re-dried to
obtain compound 4a as a yellow solid. Yield: 96% (0.86 g).
Single crystals suitable for X-ray diffraction analysis were grown
by storing a saturated toluene solution of 4a at —24 °C for three
days. Mp: 343 °C. Elem. anal. (%), caled for C33H30N,P; (556.6):
C, 71.21; H, 7.06; N, 5.03; found: C, 71.02; H, 6.84; N, 4.87. 'H
NMR (500 MHz, CD,Cl,, 298 K): 6 = 7.59 (t,J = 7.7 Hz, 2H, p-
CeH3), 7.38 (d,J = 7.8 Hz, 4H, m-C¢H};), 7.34 (t, ] = 6.6 Hz, 1H, p-
CeHs), 7.23-7.18 (m, 4H, o-, m-C¢Hs), 2.62 (sept, ] = 6.6 Hz, 4H,
CH(CH3),), 1.26 (d, J = 6.6 Hz, 12H, CH(CH3),), and 1.03 (d, ] =
6.7 Hz, 12H, CH(CH3),) ppm. *C{'"H} NMR (126 MHz, CD,Cl,,
298 K): 6 = 167.6 (d, Jp_c = 84.4 Hz, CP); 149.2 (NCN); 146.2,
133.5, 132.0, 131.8, 129.8, 129.1, 125.8, and 123.8 (C¢H, CeHs);
29.7 (CH(CH,),); 26.1 and 23.5 (CH(CH3),) ppm. *'P{"H} NMR
(202 MHz, CD,Cl,, 298 K): 6 = 332.3 (t, Jp_p = 506 Hz) and 173.7
(d, Je-p = 506 Hz) ppm. MS (ESI, positive mode): m/z = 557.3 [4a
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+H]". UV-vis (/nm e (M~ ' em ™ 1)): 282 (22336), 346 (31017), and
361 (31397).

Compounds 4b-4d were prepared by employing a similar
protocol to that described for 4a using the appropriate
precursor 1b, 1c or 1d, n-BuLi, and P,.

(ADC*™p, (4b)

Yield: 98% (0.90 g). Mp: 338-341 °C. Elem. anal. (%), calcd for
4b, C3,H,N,P;, (570.6): C, 71.56; H, 7.24; N 4.91; found C,
70.64; H, 7.33; N 4.68. "H NMR (500 MHz, CD,Cl,, 298 K): § =
7.57 (t,] = 7.8 Hz, 2H, p-CeH3), 7.35 (d, ] = 7.8 Hz, 4H, m-C¢H,),
7.14 (d,] = 7.6 Hz, 1H, 0-CH,), 7.08 (t,] = 7.8 Hz, 1H, m-CcH,),
7.02 (s, 1H, 0-CgH,), 6.96 (d, ] = 7.8 Hz, 1H, p-CeH,), 2.60 (sept, J
= 6.7 Hz, 4H, CH(CH3),), 2.10 (s, 3H, CH3), 1.24 (d, ] = 6.7 Hz,
12H, CH(CHj3),), and 1.03 (d, J = 6.8 Hz, 12H, CH(CH;),) ppm.
BC{'H} NMR (126 MHz, CD,Cl,, 298 K): 6 = 167.5 (d, Jp.c =
84.5 Hz, CP); 149.6 (NCN); 146.3, 139.3, and 133.6 (i-C¢H, and i-,
m-CgHs); 132.7 (0-CeHy); 131.7 (p-CeHs); 130.5 (0-CeH,); 129.5
and 128.9 (m-CeH,); 126.9, 125.8, and 123.71 (m-CeH,); 29.7
(C(CH3),); 26.2 and 23.5 (C(CHs),); 21.2 (CH3) ppm. *'P{'H}
NMR (202 MHz, CD,Cl,, 298 K): 6 = 331.1 (t, Jp_p = 506 Hz) and
173.6 (d, Jp_p = 506 Hz) ppm. MS (ESI, positive mode): m/z =
571.3 [4b + H]". UV~vis (/nm e (M~ em™1)): 280 (25637), 345
(36323), and 361 (36539).

(ADC*™P, (4¢)

Yield: 93% (0.85 g). Single crystals suitable for X-ray diffraction
were obtained by storing a saturated toluene solution of 4c for
three days at —24 °C. Mp: 339-343 °C. Elem. anal. (%), calcd for
C34H41N,P; (570.6): C, 71.56; H, 7.24; N, 4.91; found C, 71.11; H,
7.06; N, 4.65. "H NMR (500 MHz, CD,Cl,, 298 K): 6 = 7.59 (t, ] =
7.8 Hz, 2H, p-CeH3), 7.38 (d, ] = 7.8 Hz, 4H, m-C¢H3), 7.05 (d, ] =
8.4 Hz, 2H, C¢H,), 7.02 (d, J = 8.3 Hz, 2H, C¢H,), 2.61 (sept, ] =
6.8 Hz, 4H, CH(CHj,),), 2.23 (s, 3H, CH;), 1.26 (d, ] = 6.7 Hz, 12H,
CH(CHj,),), and 1.03 (d, J = 6.9 Hz, 12H, CH(CH,),) ppm. *C
{'"H} NMR (126 MHz, CD,Cl,, 298 K): 6 = 167.5 (d, Jp.c =
84.1 Hz, CP); 146.2 (NCN); 143.1, 133.7, 131.7, 129.8, 129.7,
125.8, and 120.9 (CeH3 and CgH,); 29.7 (CH(CHj),); 26.1 and
23.5 (CH(CH,3),); 21.7 (CH;) ppm. *'P{"H} NMR (202 MHz,
CD,Cl,, 298 K): 6 = 329.9 (t, Jp_p = 506 Hz) and 173.6 (d, Jp_p =
506 Hz) ppm. MS (ESI, positive mode): m/z = 571.3 [4¢ + H]". UV-
vis (/nm e (M~ em ™ Y): 283 (23295), 336 (28771), 346 (29238),
and 362 (29676).

(ADC*"MP)p; (4d)

Yield: 94% (0.93 g). Mp: 270-273 °C (decomp.). Elem. anal. (%),
caled for C35H,44N3P;5 (599.3): C, 70.10; H, 7.40; N, 7.01; found: C,
69.66; H, 7.18; N 6.59. "H NMR (500 MHz, CD,Cl,, 298 K): 6 =
7.56 (t,] = 7.8 Hz, 2H, p-C¢H3), 7.35 (d, ] = 7.8 Hz, 4H, m-C4Hs),
6.90 (d,J = 9.0 Hz, 2H, C4H,), 6.28 (d, ] = 9.0 Hz, 2H, CcH,), 2.88
(s, 6H, N(CH3),), 2.67 (sept, J = 6.8 Hz, 4H, CH(CH,),), 1.24 (d, ]
= 6.7 Hz, 12H, CH(CHs),), and 0.97 (d, J = 6.8 Hz, 12H,
CH(CHj;),) ppm. *C{"H} NMR (126 MHz, CD,Cl,, 298 K): 6 =
167.0 (d, Jp_c = 82.8 Hz, CP); 151.9 (NCN); 146.2, 138.4, 134.6,
131.4, 130.8, 126.3, 125.8, and 111.1 (CsH; and Ce¢H,); 40.0
(N(CH3;),); 29.6 (CH(CH,3),); 25.7 and 23.5 (CH(CH3),) ppm. *'P
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{"H} NMR (202 MHz, CD,Cl,, 298 K): 6 = 319.5 (t, Jp_p = 504 Hz)
and 173.3 (d, Jp_p = 504 Hz) ppm. MS (ESI, positive mode): m/z =
600.3 [4d + H]". UV-vis (A/nm (e M~ ' ecm ™ 1)): 285 (37768), 322
(46655), 343 (47543), 366 (48310), and 398 (45288).

Experimental identification of the insoluble material. A
mixture of the insoluble material (20 mg, 80 umol, calcd for
Li;P;) and IPrHCI (80 mg, 188 umol) was stirred in 3 mL of THF
for three days at rt, resulting in a dark red suspension. A black
solid was removed by filtration and the filtrate was dried in
a vacuum, affording a dark red solid which was identified as
IPr=PH"” by NMR spectroscopy. ‘H NMR (500 MHz, C¢Dy, 298
K): 6 = 7.23 (t,J = 7.7 Hz, 2H, p-C¢H;), 7.14 (d,J = 7.6 Hz, 4H, m-
CeH;), 6.18 (s, 2H, NCH), 3.06 (sept, J = 6.7 Hz, 4H, CH(CH3),),
1.92 (d, Jpy = 165.2 Hz, 1H, PH), 1.47 (d, J = 6.8 Hz, 12H,
CH(CHj3),), and 1.15 (d, J = 6.9 Hz, 12H, CH(CH;),) ppm. *'P
NMR (CgDs, 298 K, 500 MHz): 6 = —134.4 (d, Jp.u = 165.2
Hz) ppm. *'P{'H} NMR (C¢Ds, 298 K, 500 MHz): ¢ =
—134.4 ppm.

Alternative synthesis of 4a and 4c from iMICs*" 2a and 2c

To a 15 mL THF suspension of 1a (0.98 g, 1.8 mmol), n-BuLi
(2.5 M, 0.8 mL, 2.0 mmol) was added at —40 °C. The resulting
brown solution was stirred at —20 °C for 45 min and then for
15 min at rt. Subsequently, P, (0.3 g, 2.4 mmol) was added in
one portion and the resulting reaction mixture was stirred
overnight at rt. The volatiles were removed under vacuum to
obtain a dark residue, which was extracted with toluene (3 x 10
mL). The filtrate was dried in a vacuum to obtain 4a. Yield: 41%
(0.4 ).

(ADC*™)P, (4c). Similarly, treatment of 3¢ with P, gave 4c.
Yield: 36% (0.4 g).

Syntheses of complexes 5a, 5b, 6, and 7

[(ADC™™)P;]Fe(CO), (5a). To a mixture of 4a (651 mg, 1.2
mmol) and Fe,(CO), (510 mg, 1.4 mmol), 30 mL THF was added
at rt. The brown colored solution changed to a dark red colored
solution after 15 min, which was further stirred overnight. The
volatiles were removed in a vacuum to afford a red solid, which
was extracted with 30 mL toluene. The volume of the filtrate was
reduced to 10 mL and stored at —30° for one week to obtained
orange needles of 5a (696 mg, 80%), which were also suitable for
X-ray diffraction. Mp: 167-172 °C (decomp.). Elem. anal. (%),
caled for Cy,H;oFeN,0,P; (724.5): C, 61.34; H, 5.43; N, 3.87;
found: C, 59.66; H, 5.24; N, 3.71. *"H NMR (500 MHz, CD,Cl,, 298
K): 6 = 7.60 (t,J = 7.8 Hz, 2H, p-C¢H3), 7.38 (d, ] = 7.8 Hz, 4H, m-
CeH3), 7.34 (t, ] = 7.5 Hz, 1H, p-C¢Hs), 7.22-7.15 (m, 4H, o-, m-
CeHs), 2.57 (sept, J = 6.7 Hz, 4H, CH(CH3),), 1.27 (d, ] = 6.7 Hz,
12H, CH(CH3),), and 1.01 (d, J = 6.8 Hz, 12H, CH(CHj3),) ppm.
BC{"H} NMR (126 MHz, CD,Cl,, 298 K): 6 = 215.1 (CO); 161.7 (d,
Je-c = 70.3 Hz, CP); 146.0 (NCN), 133.1, 132.2, 129.7, 129.5,
129.3,128.7,126.1, and 123.1 (CsH; and CgHj); 29.8 (CH(CHj,),);
26.0 and 23.5 (CH(CHj),) ppm. *'P{"H} NMR (202 MHz, CD,Cl,,
298 K): 6 = 316.8 (t, Jp.p = 531 Hz) and 145.4 (d, Jp.p = 531
Hz) ppm. MS (ESI, positive mode): m/z = 725.1 [5a + H]". UV-vis
(Anm e (M ' em ™ )): 285 (33061), 328 (31345), and 428 (37184).
IR (ATR, diamond): v/em ' = 2041, 1966, 1937, and 1919.
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[(ADC*™")P,]Fe(CO), (5b). Compound 5b was synthesized
following a similar procedure to that described above for 5a
using 4b (300 mg, 0.53 mmol) and Fe,(CO)y (191 mg, 0.53
mmol) as an orange crystalline solid. Yield: 84% (333 mg).
Crystals suitable for X-ray diffraction were obtained by storing
a saturated toluene solution of 5b overnight at rt. Mp: 180-
182 °C (decomp.) Elem. anal. (%), caled for 5b, C33H4;FeN,0,P;
(738.5): C, 61.80; H, 7.56; N, 3.79; found C, 62.69; H, 5.95; N,
3.45. 'H NMR (500 MHz, CD,Cl,, 298 K): 6 = 7.59 (t, /] = 7.8 Hz,
2H, p-CeH;), 7.37 (d, ] = 7.8 Hz, 4H, m-CeH,), 7.15 (d, ] = 7.4 Hz,
1H, 0-Cg¢H,), 7.08 (t,J = 7.7 Hz, 1H, m-C¢H,), 7.00 (s, 1H, 0-C¢H,),
6.94 (d, J = 7.7 Hz, 1H, p-C¢H,), 2.56 (sept, ] = 6.6 Hz, 4H,
CH(CHz),), 2.09 (s, 3H, CH3), 1.27 (d,J = 6.6 Hz, 12H, CH(CH3),),
and 1.04 (d, ] = 6.7 Hz, 12H, CH(CHj,),) ppm. "*C{'"H} NMR (126
MHz, CD,Cl,, 298 K): 6 = 215.1 and 214.9 (CO); 161.6 (d, Jp_c =
71 Hz, NCP); 147.6 (NCN); 146.1, 139.5, 133.1, 133.0, 132.1,
130.3, 129.9, 129.0, 126.8, 126.0, and 122.9 (C¢H; and C¢Hs);
29.8 (CH(CH3),); 26.1 and 23.6 (CH(CHj,3),); 21.2 (CH;) ppm. *'P
{*H} NMR (202 MHz, CD,Cl,, 298 K): 6 = 315.5 (t, Jp_p = 531 Hz)
and 145.4 (d, Jy_p = 532 Hz) ppm. MS (ESI, positive mode): m/z =
739.1 [5b + H]". UV-vis (/nm ¢ (M~ ecm™)): 282 (35189), 327
(29758), and 416 (37568). IR (ATR, diamond): v/em™ " = 2039,
2007, 1962, and 1921.

[(ADC™™)P;]Mo(CO);5 (6). To a mixture of 4a (447 mg, 0.8
mmol) and Mo(CO)e (212 mg, 0.8 mmol), 20 mL THF was added
at rt. The yellow suspension was stirred for three days at 60 °C.
Filtration through a plug of Celite afforded an orange solution.
The volatiles were removed under vacuum to obtain 6 as
a yellow solid (523 mg, 81%). Crystals suitable for X-ray
diffraction were obtained by a slow diffusion of n-hexane into
a saturated toluene solution of 6. Elem. anal. (%), calcd for 6,
C35H3oMON,O5P; (792.6): C, 57.58; H, 4.96; N, 3.53; found: C,
57.06; H, 4.73; N, 3.25. "H NMR (500 MHz, CD,Cl,, 298 K): 6 =
7.60 (t, ] = 7.8 Hz, 2H, p-C¢H3), 7.38 (d, J = 7.8 Hz, 4H, m-C¢H,),
7.35 (t, ] = 7.6 Hz, 1H, p-Ce¢Hs), 7.21 (t, ] = 7.8 Hz, 2H, m-C¢Hs),
7.17 (d, J = 7.9 Hz, 2H, 0-C¢Hs), 2.58 (sept, ] = 6.7 Hz, 4H,
CH(CHj,),), 1.27 (d, ] = 6.7 Hz, 12H, CH(CH),), and 1.02 (d, ] =
6.8 Hz, 12H, CH(CHj3),). "*C{"H} NMR (126 MHz, CD,Cl,, 298 K):
6 = 206.0 and 201.8 (CO); 164.4 (d, Jp.c = 73 Hz, NCP); 146.1
(NCN); 133.2, 132.2, 132.1, 129.7, 129.2, and 126.1 (C¢H; and
CeHs); 29.8 (CH(CHj),); 26.0 and 23.6 (CH(CHj3),) ppm. *'P{'H}
NMR (202 MHz, CD,Cl,, 298 K): 6 = 299.1 (t, Jp_p = 510 Hz) and
160.2 (d, Jpp = 511 Hz) ppm. IR (ATR, diamond): v/em™" =
2065, 2051, 1945, 1925, and 1911.

[(ADC*PP)P,]W(CO); (7). A 10 mL THF solution of W(CO),
(212 mg, 0.8 mmol) was irradiated under UV light for 3 h and
then combined with a 6 mL THF solution of 4d (447 mg, 0.8
mmol). The yellow solution was stirred overnight at rt. The
volatiles were removed under vacuum to obtain 7 as a yellow
solid (256 mg, 88%). Crystals suitable for X-ray diffraction were
obtained by slow evaporation of a saturated toluene solution of
7 at rt. Elem. anal. (%), caled for 7, C4oH44N305PsW (923.6): C,
52.02; H, 4.80; N, 4.55; found C, 51.40; H, 4.39; N, 4.10. "H NMR
(500 MHz, CD,Cl,, 298 K): 6 = 7.61 (t, ] = 7.8 Hz, 2H, p-C¢Hs),
7.41 (d, J = 7.8 Hz, 4H, m-C¢H3), 6.91 (d, J = 9.2 Hz, 2H, C¢H,),
6.33 (d,J = 9.2 Hz, 2H, C¢H,), 2.88 (s, 6H, N(CH,),), 2.60 (sept, J
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= 6.8 Hz, 4H, CH(CHj;),), 1.26 (d, J = 6.9 Hz, 12H, CH(CH3;),),
and 1.00 (d, J = 6.8 Hz, 12H, CH(CHj),) ppm. "*C{'"H} NMR (126
MHz, CD,Cl,, 298 K): 4 = 197.3 and 192.0 (CO); 152.1 (NCP);
146.1 (NCN); 134.3, 131.8, 130.7, 129.9, 126.1, 111.2, and 108.7
(CeHj and C¢Hs); 40.0 (N(CH3),); 29.7 (CH(CH,3),); 25.6 and 23.6
(CH(CH3;),) ppm. *'P{"H} NMR (202 MHz, CD,Cl,, 298 K): 6 =
250.9 (t, Jo_p = 512 Hz, with %W satellites, Jw_p = 202 Hz) and
157.0 (d, Jp_p = 505 Hz) ppm. MS (ESI): m/z = 924.2 [7 + H]". IR
(ATR, diamond): v/em™ " = 2063, 1978, 1925, and 1907.

Conclusions

In conclusion, the direct functionalization of white phosphorus
(P,) with anionic dicarbenes (ADCs) (2a-2d) as well as with
mesoionic carbenes (iMICs*') (3a and 3c) that leads to the
formation of unique 1,2,3-triphosphol-2-ide derivatives 4a-4d
as crystalline solids up to 98% yield has been reported. The
isolation of C,P;-heterocycles 4a-4d is unprecedented in the P,
activation by singlet carbenes and main-group compounds. The
formation of 4a-4d suggests unique [3 + 1] fragmentation of P,
into P;* and P™. The former species combines with an ADC to
give 4a-4d, whereas the latter reacts with additional P, to form
(P,)*~ that can be isolated as Li;P. Electronic structures of 4a-
4d have been analyzed by computational studies, which, along
with the crystallographic data, show that both C;N,- and C,P;-
rings of 4a-4d are 67-electron aromatic systems. Thus, 4a-4d
can be considered as neutral analogues of cyclopentadienyl
anions. The C,P;-ring of 4a-4d is negatively polarized towards
the central phosphorus atom, and hence 4a-4d may also func-
tion as potent two-electron c-donor ligands. This feature has
been demonstrated with the isolation of transition metal
complexes 5a, 5b, 6, and 7. Consequently, 4a-4d have inter-
esting perspectives as ligands in main-group element as well as
transition-metal chemistry and catalysis. Further investigations
in this direction are currently underway in this laboratory.
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