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Ni-catalyzed 1,2-benzylboration of 1,2-
disubstituted unactivated alkenesT
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Nickel-catalyzed 1,2-carboboration of alkenes is emerging as a useful method for chemical synthesis. Prior

studies have been limited to only the incorporation of aryl groups. In this manuscript, a method for the 1,2-
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benzylboration of unactivated alkenes is presented. The reaction combines readily available alkenes,

diboron reagents and benzylchlorides to generate synthetically versatile products with control of

DOI: 10.1039/c9s5c04199k

rsc.li/chemical-science presented.

Introduction

Development of alkene functionalization reactions has
garnered intense interest for decades. This is largely due to the
availability of alkenes either from commercial sources or from
a plethora of established synthetic strategies. In contrast to
homodifunctionalization reactions (epoxidation, dihydrox-
ylation, bromination, etc.), heterodifunctionalization is less
established." Among known processes, 1,2-carboboration has
emerged as a useful reaction because in addition to the
formation of a C-C bond, a synthetically versatile C-B bond is
generated.”

The incorporation of benzyl groups through 1,2-carbobora-
tion is significant as these motifs are common to numerous
intermediates used in synthesis and molecules of interest (e.g:,
bioactive compounds and/or natural products). While 1,2-ben-
zylboration reactions of activated alkenes have been devel-
oped,**** variants that function with unactivated alkenes are
rare. Yoshida reported a Cu-catalyzed 1,2-benzylboration of
monosubstituted alkenes to generate the internal boronic ester
(Scheme 1A).*» Subsequently, Fu disclosed a related process that
employed homo-allylic ethers and led to the formation of the
terminal boronic ester (Scheme 1A).** Despite these advances,
the 1,2-benzylboration of unactivated internal alkenes is an
unmet challenge. In this manuscript, we address this problem
and report a stereoselective Ni-catalyzed 1,2-benzylboration of
unactivated 1,2-disubstituted alkenes, as well as demonstrate
the synthetic versatility of the products (Scheme 1B).

Recently, our lab introduced a Ni-catalyzed 1,2-arylboration
of unactivated alkenes with arylbromides and diboron reagents
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stereochemistry. The utility of the products as well as the mechanistic details of the process are also

(Scheme 2).>* The reactions likely operate by addition of [Ni]-
Bpin across an alkene followed by capture of the generated
alkyl-[Ni]-complex with an arylbromide (Scheme 2). The result-
ing alkyl-aryl-[Ni]-complex undergoes reductive elimination to
generate a Csp>~Csp” bond. Since Ni-catalysis has been utilized
for Csp®>~Csp® bond formation by reductive elimination of dia-
lkyl-[Ni]-complexes,” we envisioned that if the alkyl-[Ni]-
complex could be captured by a benzyl electrophile, a benzyl-
boration reaction could be developed.

Results and discussion

Under conditions for arylboration described in our initial
study,* substitution of PhBr for BnCl resulted in formation of
benzylboration product 3 in 5% yield but in >20: 1 dr.? Stan-
dard optimization of this reaction resulted in the conditions
shown in Table 1, in which 3 was formed in 72% yield and
>20:1 dr.° Crucial to attaining good yield was the use of
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Scheme 1 1,2-Benzylboration of unactivated alkenes.
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Scheme 2 Ni-catalyzed arylboration of unactivated alkenes.

Table 1 Change from standard conditions®

@ /\© (Bpin), (3.0 equiv)

1 NaOt+Amyl (1.5 equiv)
DMA, 30 °C, 24 h

5 mol % Ni(COD),

-0

Bpin
>20:1 dr

Entry Change from standard conditions Yield” (%)
1 No change 72
2 5 mol% NiCl,(DME) instead of Ni(COD), 53
3 NaOt-Bu instead of NaOt-amyl 65
4 THE instead of DMA 19
5 DMF instead of DMA 54
6 BnBr instead of BnCl <2
7 BnOCO,t-Bu instead of BnCl <2

“ Reaction run on 0.5 mmol scale. ? Yield determined by GC analysis
with a, calibrated internal standard.

dimethylacetamide (DMA) instead of THF as the reaction
solvent, which suppressed the side product derived from
homocoupling of BnCL.*” It is also important to note that while
use of Ni(COD), was deemed the optimal pre-catalyst, the more
user-friendly NiCl,(DME) could be substituted with a modest
decrease in yield (Table 1, entries 1 and 2). The use of BnBr or
BnOCO,t-Bu did not lead to product formation (Table 1, entries
6-7). Finally, attempted reaction with other primary and
secondary alkyl halides did not lead to product formation.®
Under the optimized conditions, the scope of the reaction
was explored. It was found that reaction of cyclopentene with
various benzylchlorides modified with electron-donating
(products 4, 9), electron-withdrawing (products 6-8, 10, 12)
and sterically demanding groups (products 11, 12) led to
product formation. In the case of substituted cyclopentenes,
benzylboration occurs on the opposite face of the alkene with
respect to the substituent (products 14-16). Pyrrolidine and
furan heterocycles could also be used (products 17-20). Finally,
reaction of larger ring sizes or alkenes within aliphatic carbon
chains allowed for product formation, but in reduced yield
(products 21-24). In these cases, the lower yield resulted from
incomplete conversion. However, it should be noted that reac-
tion of E-4-octene and Z-4-octene resulted in formation of
product of two different diastereomers confirming that the
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Scheme 3 Substrate scope.

reactions are stereospecific (products 23 and 24, respectively).’
With respect to the known limitations, reaction of 1,1-dis-
ubtituted alkenes, terminal alkenes, and alkenyl arenes were
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Scheme 4 Further transformations of products.
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poorly reactive and resulted in low yield.® In addition, reaction
of 1-phenylethyl chloride led to only homo-dimerization of the
electrophile.®

Benzylboration of cyclopentenes and related heterocycles
represents a useful method for chemical synthesis, as related
structures are common in natural products and drug-like
molecules (Scheme 4). For example, homologation and oxida-
tion of 18 to the carboxylic acid provided 27, which maps onto
the structure of PPAR a/y agonist 28, disclosed by Bristol-Myers
Squibb.’ In addition, potassium trifluoroborates 29 and 31
could be prepared and subjected to intramolecular cross
coupling catalyzed by [PdPAd;]"* (Ad = 1-adamantyl) to provide
tricyclic structures 30 and 32, respectively.’” The intramolecular
cross coupling shown here deserves further comment. As
previously reported, cross coupling of chiral, non-racemic
secondary alkyl boronic acids under the conditions shown in
Scheme 4 resulted in inversion of stereochemistry. The reaction
shown here proceeded with retention of stereochemistry, likely
a result of the constraints imposed through formation of a 5/5-
ring system.

In accordance with detailed mechanistic studies for the
related Ni-catalyzed arylboration reaction,® the catalytic cycle
shown in Scheme 5A is proposed, in which alkyl-[Ni]-complex 34
undergoes reaction with benzyl chloride. Long-lived radical
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Scheme 5 Mechanistic studies.
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intermediates are unlikely to be involved, as the reaction is
stereospecific (Scheme 3, products 23 and 24). The reaction of
the putative alkyl-[Ni]-complex 34 with the benzyl chloride could
proceed either by a substitution (Path A) or an oxidative
addition/reductive elimination pathway (Path B). With respect
to Path B, the oxidative addition could proceed via a two-
electron or one electron process.

To interrogate Path A and Path B, Hammett analysis of the
reaction was undertaken. If direct substitution was operative,
a “U-shaped” curve would be expected, where both benzyl
chlorides substituted with electron-donating and electron-
withdrawing groups undergo reaction faster than the unsub-
stituted benzyl chloride.”® In the case of an oxidative addition,
a Hammett analysis is not available for comparison for either
the two-electron or one-electron process. For the Ni-catalyzed
1,2-benzylboration, a linear correlation with a p-value of 1.68
(R* = 0.973) was observed, suggesting that substitution might
not be operative (Scheme 5B). However, we caution that this
analysis does not rule out a substitution pathway as the present
system is undoubtedly different than the reactions used for
comparison.”

Conclusions

In summary, a 1,2-benzylboration of unactivated alkenes is
presented. The reaction efficiently transforms several classes of
alkenes and benzyl chlorides into interesting products that can
be elaborated to scaffolds related to biologically active mole-
cules. This study also serves to broaden the scope of Ni-
catalyzed carboboration reactions to now include Csp*-based
electrophiles.
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