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A novel class of cyclic phosphine derived bifunctional catalysts (Le-Phos) is reported, which can be readily
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prepared from inexpensive and commercially available starting materials and exhibit good performances in

enantioselective y-addition reactions of N-centered nucleophiles and allenoates under mild conditions.
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Introduction

Over the past few years, asymmetric phosphine-catalyzed reactions
have emerged as powerful and versatile tools for the construction
of C-C and C-X bonds,"* which relies very much on the evolution of
various new chiral phosphine catalysts.> There are mainly two
types of chiral phosphine catalysts developed: highly nucleophilic
monofunctional phosphine catalysts such as cyclic phosphines
P1-P5 (Fig. 1, Type 1) and diphenylphosphine-derived bifunctional
catalysts bearing a hydrogen donor such as P6-P9 (Fig. 1, Type 2).
Both displayed good catalytic activities and were effective in
enantiomeric control in asymmetric phosphine catalysis.'*?
Recently, we developed several novel diphenylphosphine-derived
bifunctional phosphines from commercially available chiral sulfi-
namide.* To further advance a new catalyst design, we aimed to
combine the advantages of the aforementioned two types of
phosphine catalysts, thus developing a novel bifunctional cyclic
phosphine catalyst. We report herein the design and synthesis of
Le-Phos, and its application in highly enantioselective phosphine
catalyzed y-addition of N-centered nucleophiles to allenoates.

Results and discussion

Fortunately, we found that Le-Phos could be easily prepared
from commercially available inexpensive tert-butylsulfinamide,
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The salient features of this reaction include high product yields, good enantioselectivity, mild reaction
conditions, and broad substrate scope and gram-scale scalability.
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Fig. 1 Different types of chiral phosphine catalysts.
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aldehyde and 1-phenylphospholane borane complexes in
simple steps. Treatment of 1-phenylphospholane borane
complexes® with ‘BuLi in the presence of TMEDA at —50 °C for
4 h gave the lithium intermediate, which added to chiral (Rg)-
sulfinimines, furnishing a pair of major diastereomers of Le-
Phos L1-L5 in 33-65% total yields after removal of borane.® To
our delight, these two major diastereoisomers could be sepa-
rated by flash column chromatography on silica gel. The abso-
lute configurations of (Rp,S,S,Rg)-L2 and (Sp,R,S,Rs)-L2 were
established by single crystal X-ray diffraction analysis.”

Asymmetric phosphine-catalyzed vy-addition reactions of
various nucleophiles to allenoates have attracted much atten-
tion in the past few years.*® In 1998, Zhang and co-workers
reported the catalyzed asymmetric y-addition of 1,3-dicar-
bonyl compounds to terminal allenoates using bicyclic phos-
phine P2 for the first time.® Furthermore, Fu, Jacobsen, Lu and
our groups have successfully expanded the scope of nucleo-
philes such as alcohols, thiols, carbon, amides and ketimines
by the employment of different types of phosphine catalysts.*
The asymmetric y-addition®*** of N-centered nucleophiles with
pK, values between 8 and 10 (in H,O) to y-substituted allenoates
has been only partially realized by the group of Jacobsen, in
which P8 was used as the catalyst.'™ Very recently, Guo and
coworkers successfully extended N-centered nucleophiles to
pyrazoles and imidazoles with the use of (S)-SITCP and (S)-
BINOL as cocatalysts.’* However, there still lacks a robust
catalyst system for the asymmetric y-addition of various N-
centered nucleophiles to allenoates. For example, (S)-SITCP,
P8 and our developed Xiao-Phos P9 could not yield satisfactory
results for the asymmetric y-addition of 2-oxazolidone 1a to
allenoate 2a (Table 1, entries 1-3). Interestingly, (Sp,R,S,Rs)-L1-
L4 showed much higher catalytic activity and much better
enantioselectivity than their diastereoisomers (Rp,S,S,Rs)-L1-L4
(Table 1, entries 4-11). To our delight, 54% yield of 3aa with
97% ee and E/Z > 20 : 1 could be achieved with the use of (Sp,-
R,S,Rs)-L4 (Table 1, entry 11). Due to the competitive isomeri-
zation and partial kinetic resolution,'” increasing allenoate 2a
to two equivalents could improve the 68% yield (Table 1, entry
13). Changing the solvent from toluene to PhCF3;, DCM and DCE
led to around 90% yield with 96-97% ees (Table 1, entries 14—
17).

Having identified the optimal reaction conditions, the
substrate scope was then examined and it proved to be quite
general (Scheme 1). Linear alkyl (3ab-3ad), branched alkyl (3ae),
and various alkyl groups bearing functional groups such as
phenyl (3af), esters (3ag and 3ak), terminal alkenes and alkynyl
(3ah-3ai), and halogen (3aj) were well tolerated and provided
high levels of yields and enantioselectivities (94-98% ees).
Cyclic alkyl groups such as cyclopentyl (3al), cyclohexyl (3am),
and NPhth groups (3an) could also be well compatible, deliv-
ering the corresponding adducts in high yields with 95-96%
ees. It seems that the ester moiety did not affect the reaction
much, furnishing 3ao-3aq in high yields with 93-97% ees and
E/Z>20:1.

The reactions of chiral 2-oxazolidones also proceeded well,
delivering 3ca-3ea in satisfactory yields with high des and E/Z >
20 : 1 (Scheme 2). The addition of racemic 2-oxazolidone 1f did
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Table 1 Screening reaction conditions®

o
Q cat. (10 mol%) P
q,)*o + BT e _COsE N0
solvent, r.t.
H Et/‘\/\COZEt
1a rac-2a 3aa

Entry  Catalyst Solvent E/Z? Yield” (%)  ee® (%)
1 (S)-SITCP Toluene  5:1 39 87
2 P8 Toluene 4:1 11 72
3 P9 Toluene 2:1 21 57
4 (Rp,S,S,Rs)-L1 Toluene 3:1 7 19
5 (Rp,S,S,Rs)-L2  Toluene  — NR —
6 (Rp,S,S,Rs)-L3 Toluene 2:1 5 46
7 (Rp,S,S,Rs)-L4  Toluene 2:1 9 11
8 (Sp,R,S,RsFL1  Toluene  >20:1 40 86
9 (Sp,R,S,Rs)L2  Toluene  >20:1 10 69
10 (Sp,R,S,Rs)-L3 Toluene >20:1 46 97
11 (Sp,R,S,Rs)-L4  Toluene >20:1 54 97
129 (Sp)R,S,Rs)}-L4  Toluene >20:1 60 97
13¢ (Sp,R,S,Rs)-L4  Toluene >20:1 68 97
14¢ (Sp,R,S,RsLA  Et,0 >20:1 60 97
15¢ (Sp,R,S,Rs)-L4  PhCF, >20:1 90 97
16° (Sp,R,S,Rs)}L4  DCM >20:1 89 96
17° (Sp,R,S,Rs)-L4  DCE >20:1 90 97

¢ Reaction conditions: 1a (0.10 mmol), 2a (0.12 mmol), and the catalyst
(0.01 mmol) in toluene (1.5 mL) at room temperature. ° NMR yield with
the use of CH,Br, as the internal standard. ° Determined by HPLC
analysis on a chiral stationary phase. ¢ Performed with 2a (0.15
mmol). ¢ Performed with 2a (0.20 mmol). DCM = dichloromethane,
DCE = 1,2-dichloroethane.

not show good diastereoselectivity but still delivered high
enantioselectivity. Then, the reactions of thiazolidin-2-one (pK,
~ 12.8) with various allenoates also proceeded smoothly,
furnishing products 3ga and 3gc-3gg in 85-99% yields with 95—

Q
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( Ao+ RIS_COR N0
N DCE, rt. X~
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Ko o o o
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Scheme 1 Investigation of the scope by variation of the allenoate
component.
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Scheme 2 Investigation of the scope by variation of 2-oxazolidone.

96% ees. It should be pointed out that these products share the
same skeleton with patented 11B-HSD1 inhibitors (11p-
hydroxysteroid dehydrogenase type 1 inhibitors)."

The scope of N-centered nucleophiles was then extended to
much weak nucleophilic pyrrolidine-2,5-diones (Scheme 3). In
this case, (Sp,R,S,Rs)-L2 was found to be the most efficient
catalyst, indicating that the reaction is quite sensitive to the

RN
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Scheme 3 Investigation of the scope of pyrrolidine-2,5-diones.
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structure of N-centered nucleophiles, which further supports
that the development of new catalysts with structural diversity is
quite important. The reactions of various substituted
pyrrolidine-2,5-diones with 5a delivered the desired y-addition
adducts in 68-91% yields with 87-94% ees. The absolute
configuration of 6ba was established by single crystal X-ray
diffraction analysis.” It is interesting to find that the absolute
configuration of 6ba is different from that of compound 3;
despite this, the catalysts have the same absolute configuration.

We next examined the reaction scope with respect to the
allenoate component (Scheme 4). A variety of y-substituted
allenoates (R") were applicable to this asymmetric y-addition. In
general, both linear and branched cycloalkyl groups at the -
position were well tolerated. For example, allenoates 5b-5g with
various acyclic and cyclic alkyl groups at the y-position could be
well compatible, and the desired adducts were obtained in high
yields with up to 93% ee. Satisfactorily, various functional
groups such as halogens (5h and 5i), ester (5j), phenyl (5k), and
terminal and internal alkenes (51-5n) were well tolerated and
the desired adducts were obtained in moderate to good yields
with up to 92% ee and >20 : 1 E/Z selectivity.

Additionally, the additions of TSNH, (pK, ~ 10.2), PhSO,NH,
(pKa ~ 10.1), (BocNH), (pK, ~ 8.7) and pyrazole (pK, ~ 2.5)*
also proceeded smoothly under the catalysis of Le-Phos with
different R groups (eqn (1)-(3)).

(Se, R, S, Rs)-L5

RS R NHSO,Ar
A (10 mol%)
AISHONH, +  Et” ey CO,Me Z
22 X2 Et,0, rt. Me™ * CO,Me )
2
° 720, Ar = 4-CHyCgHy, 58% yield, 87% ee
7bo, Ar = Ph, 62% yield, 86% ee
(o R S,RLA  BocHN.
10 mol%
(BooNH), + Bt w_COpn —10mo%e) _ @
8 DCM, r.t. Et”« CO2Bn
2q 88% yield, 83% ee °

Ar

/\_\ 7 <
N N\ )

3
Me)\/\COZEt Me)w NHz ()

Janus kinase mhlb:tor

n (Se, R, S, Re)-L4
5
Nt eSS coer 10moE)

H AcOH (10 mol%)
2b
10 Dioxane, r.t.

85% yield, 95% ee

We were pleased to find that the desired product 3ga could
be obtained in 96% yield, 94% ee and E/Z > 20 : 1 with only
2.5 mol% catalyst loading on a 10 mmol scale (Scheme 5). The
synthetic utilities of the representative product 3ga were then
showcased. The hydrolysis of the ester moiety was realized with
NaOH/H,0, " to give acid 12 in 73% yield without loss of
enantioselectivity. The corresponding amide 13” could be
further delivered in 94% yield with 95% ee. The copper-
catalyzed conjugate borylation of 3ga proceeded smoothly at
room temperature, furnishing the desired product 14 in 94%
yield with 98% ee and 5 : 1 d.r.** Reduction of the double bond
furnished the product 15 in 98% yield with 95% ee. Moreover,
we could obtain an amino alcohol derivative 16 through
reductive ring-opening of 15, which afforded the diester 17 after
further esterification. Furthermore, with the use of mCPBA,*
the C-C double bond of 6aa would undergo epoxidation to
deliver the corresponding product 18 in good yield without loss
of the enantioselectivity. The amidation reaction of 6aa with
BnNH,/AcOH" proceeded smoothly at room temperature,

This journal is © The Royal Society of Chemistry 2019
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Scheme 4 Investigation of the scope by variation of the allenoate
component.
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Scheme 5 Elaboration of y-addition adducts.
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Ar= 3,5-(CF3)206H3
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Ar = 3,5-(CF3)206H3
TS-1'
unfavored

Scheme 6 Comparison of two transition states.

delivering the corresponding amide 19 in 85% yield with 89%
ee. The reduction of the double bond of 6lo was achieved via the
Pd/C-catalyzed hydrogenation, furnishing product 20 in 96%
yield without loss of the ee. The corresponding y-aminoacid 21
was obtained in 78% yield by acidic deprotection.'® Then, 21
was reacted with benzoyl chloride to deliver an amino acid
derivative 22 in 63% yield with 87% ee.”

Based on the above experimental results and previous rele-
vant studies, a possible transition state (TS-1) for (Sp,R,S,Rs)-L4
and possible transition state (TS-1') for (Rp,S,S,Rs)-L4 to control
stereoselectivity are proposed in Scheme 6. For the reaction
using (Sp,R,S,Rs)-L4 as the catalyst, the nucleophile and the
double bond are located on the same side (transition state TS-1)
via the hydrogen-bonding between nucleophiles and the NH
moiety, which favors the formation of the R-enantiomer of 3. In
contrast, when (Rp,S,S,Rs)-L4 was used as the catalyst, another
transition state TS-1' was proposed, in which there may exist
a steric repulsion between the phenyl linked to P and the
nucleophile. Additionally, the nucleophile is located on
different sides of the double bond and thus hindered the
addition reaction to give the product in low yield and ee.

Conclusions

In summary, we have developed a novel type of bifunctional
chiral sulfinamide cyclic phosphine catalyst Le-Phos, which can
be easily prepared on a gram scale from inexpensive commer-
cially available starting materials in short steps. (Sp,R,S,Rs)-Le-
Phos has shown excellent performance in the enantioselective
yv-addition reactions of various N-centered nucleophiles to y-
substituted allenoates, acquiring a series of y-addition adducts
in high yields with up to 98% ees and excellent regioselectivity
and diastereoselectivity under mild conditions. Its prominent
characteristics are general substrate scope, mild reaction
conditions, good yields, high enantioselectivities, ease of scale-
up to gram scale, and further synthetic transformations of
products. Further explorations of Le-Phos as the organocatalyst
and chiral ligand of transition metals in asymmetric catalysis
are currently underway in our group and will be reported in due
course.
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