Selectivity of tungsten mediated dinitrogen splitting vs. proton reduction†

Bastian Schluschaß, a Josh Abbenseth, a Serhiy Demeshko, a Markus Finger, a Alicja Franke, b Christian Herwig, c Christian Würtele, a Ivana Ivanovic-Burmazovic, b Christian Limberg, c Joshua Telser d and Sven Schneider a

Mo complexes are currently the most active catalysts for nitrogen fixation under ambient conditions. In comparison, tungsten platforms are scarcely examined. For active catalysts, the control of \(\text{N}_2 \) vs. proton reduction selectivities remains a difficult task. We here present \(\text{N}_2 \) splitting using a tungsten pincer platform, which has been proposed as the key reaction for catalytic nitrogen fixation. Starting from \([\text{WCi}_3(\text{PNP})]^- (\text{PNP} = \text{N}(\text{CH}_3\text{CH}_2\text{PtBu}_3))\), the activation of \(\text{N}_2 \) enabled the isolation of the dinitrogen bridged redox series \([\text{N}_2]([\text{WCi}(\text{PNP})]^-)^{0,+/+2+}\). Protonation of the neutral complex results either in the formation of a nitride \([\text{W}(\text{N})\text{Cl}(\text{HPNP})]^+\) or \(\text{H}_2 \) evolution and oxidation of the \(\text{W}_2\text{N}_2 \) core, respectively, depending on the acid and reaction conditions. Examination of the nitrogen splitting vs. proton reduction selectivity emphasizes the role of hydrogen bonding of the conjugate base with the protonated intermediates and provides guidelines for nitrogen fixation.

Introduction

Homogeneous \(\text{N}_2 \) fixation under ambient conditions has made remarkable progress over the past 15 years.1 Nishibayashi and co-workers recently obtained over 4000 equiv. of \(\text{NH}_3 \) with the proton coupled electron transfer (PCET) reagent \(\text{H}_2\text{O/SmI}_2 \) as \(\text{H}^+/e^- \) sources and a molecular Mo pincer catalyst.2 Accordingly, nitrogen reduction (NR) via electrochemically or light-driven PCET with related systems has attracted a lot of attention.3,4 Lindley et al. estimated a suitable overpotential window of 1–1.5 V for selective NR (in MeCN) prior to competing hydrogen reduction (HR) at a glassy carbon cathode.5 However, besides the thermochemical framework, mechanistic models that account for NR vs. HR selectivities of molecular catalysts are generally poorly developed.

Several \(\text{M(N}_x\text{H}_y \) intermediates relevant to \(\text{N}_2 \) fixation (Scheme 1) exhibit low N–H bond dissociation free energies (BDFEs) below that of free \(\text{H}_2 \) (BDFE(H\(_2,\) gas) = 97.2 kcal mol\(^{-1}\)) as possible branching points into HR.6,7 Computational evaluation of NR vs. HR selectivities for a series of Fe catalysts pointed at binuclear \(\text{H}_2 \) loss from species with low N–H BDFEs,8,9 Attempts to stabilize such \(\text{Fe(N}_x\text{H}_y \) species by hydrogen bonding with pendant bases so far resulted in shutdown of catalysis.8 But, in fact, such secondary interactions might also be relevant for Nishibayashi’s catalyst as indicated by selectivities obtained with 2,6-lutidinium acids ([LutH][X]) as the proton source. These strongly depend on the \(\text{X}^- \) counter anion: \(\text{NH}_3/\text{H}_2 (\text{X}^-) = 7.0 (\text{Cl}^-), 0.9 (\text{OTf}^-), \) and 0.14 (BAr\(_4\)\(^-\))10

In this contribution, we address the role of hydrogen bonding for the selectivity of proton induced \(\text{N}_2 \) splitting into molecular nitrides vs. proton reduction. \(\text{N}_2 \) splitting has evolved as an entry into \(\text{N}_2 \) functionalization for a wide variety of metals11 and was proposed as the key step in \(\text{N}_2 \) fixation with Mo pincer catalysts.12–14 Cleavage of Cummins’ seminal complex 1 (Fig. 1) was attributed to the \(\{\pi_1,\pi_2,\pi_3,\pi_4,\pi_5,\pi_6\} \) configuration of the \(\text{Mo}_2\text{N}_2 \)-core, which enables population of

† Electronic supplementary information (ESI) available. CCDC 1943888-1943892. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c9sc03779a

Scheme 1 Transition metal species relevant to \(\text{N}_2 \) fixation with a low BDFE\(_{\text{N-H}}\).7
formation from N_2 is surprisingly rare.20 We here report tungsten mediated N_2 splitting that competes with proton reduction upon protonation of a $\{\text{W}_3\text{N}_2\}$ pincer complex. Our results provide evidence for the significance of hydrogen bonding for the reaction selectivity.

Results and discussion

Synthesis of the $\{\text{N}_2\}\{\text{WCl(PNP)}\}_2$-$^{22+}$ ($n = 0$–2) redox series

The reaction of WCl_4 with ^{18}PNP in the presence of NET_3 gives the pincer complex $[\text{WCl}_3(\text{PNP})]$ ($\mathbf{5}$) in yields of up to 60%. In the absence of a signal in the $^{31}\text{P}\{^{1}H\}$ NMR spectrum, the paramagnetically shifted ^{1}H NMR signals and the solution magnetic moment derived by Evans’ method ($\mu_{\text{eff}} = 2.8 \pm 0.1 \mu_B$) are in line with a d^{2} high-spin ($S = 1$) configuration. The molecular structure obtained by X-ray diffraction closely resembles previously reported compounds $[\text{MCl}_3(\text{PNP})]$ ($\mathbf{M = Re}$ and Mo).18a,19

Reduction of $\mathbf{5}$ with Na/Hg (2 equiv.) under N_2 (1 atm) in THF gives the green, N_2-bridged dinuclear complex $[\{\text{N}_2\}\{\text{WCl(PNP)}\}_2]$ ($\mathbf{6}$) in up to 66% isolated yield (Scheme 3). In the solid state (Fig. 2) $\mathbf{6}$ is isostructural with the molybdenum analogue $\mathbf{4}$, regarding the N_2 binding mode, the approximate C_3 symmetry due to mutually twisted $\{\text{WCl(PNP)}\}$-fragments (ClI- $\text{W}1\text{-}\text{W}1\text{-}\text{ClII}$: $89.59^{\circ}/92.27^{\circ}$), and the distorted square-pyramidal metal coordination ($r = 0.35$).21 The short $\text{W}–\text{N}_2$ bond (1.78(2)/1.82(4) Å) indicates multiple bonding character. In turn, the $\text{N}–\text{N}$ bond (1.33(4)/1.27(8) Å) is at the higher end for

Table 1 Comparison of the spectroscopic and structural features of Cummins’ $\text{Mo}–\text{N}_2$–dimer redox series ($\text{Ar} = \text{C}_6\text{H}_3–3,5\text{-Me}_2$) with square-pyramidal pincer complexes ($\mathbf{M = Re}$,17Mo,19or W, $^* \text{computed value}$)

<table>
<thead>
<tr>
<th>Compound</th>
<th>1</th>
<th>2$^{2+}$</th>
<th>3 ($\mathbf{M = Re}$)</th>
<th>4 ($\mathbf{M = Mo}$)</th>
<th>6 ($\mathbf{M = W}$)</th>
<th>7* ($\mathbf{M = W}$)</th>
<th>8$^{2+}$ ($\mathbf{M = W}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Configuration</td>
<td>${\tau^{10}}$</td>
<td>${\tau^{9}}$</td>
<td>${\tau^{6}}$</td>
<td>${\tau^{10}}$</td>
<td>${\tau^{5}}$</td>
<td>${\tau^{5}}$</td>
<td>${\tau^{6}}$</td>
</tr>
<tr>
<td>$d(\text{NN})$ [Å]</td>
<td>1.212(2)/1.217(2)</td>
<td>1.239(4)</td>
<td>1.265(5)</td>
<td>1.202(10)</td>
<td>1.258(9)</td>
<td>1.33(4)/1.27(8)</td>
<td>1.277(5)</td>
</tr>
<tr>
<td>$\nu(\text{NN})$ [cm$^{-1}$]</td>
<td>1630</td>
<td>1503</td>
<td>1349</td>
<td>1771*</td>
<td>1343</td>
<td>1392</td>
<td>1414</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Fig. 1 Qualitative molecular orbital schemes for $\mathbf{1}$, $\mathbf{2}^{2+}$, $\mathbf{3}$ and $\mathbf{4}$, illustrating the isolobal relationship of $\{\pi^{10}\}/3$ ($\pi^{10\delta^2}$) and $\mathbf{2}^{2+}$ ($\pi^{6\delta^2}$) complexes ($\mathbf{M = Re}$, Mo or W, $^* \text{computed value}$).
N₂-bridged ditungsten complexes. The two ³¹P{¹H} NMR signals (δ₀ = 92.9, 87.8 ppm) with large trans-coupling (J₆₈ = 147 Hz), the singlet ¹⁵N NMR resonance (δ₅ = 31.1 ppm), and the ¹H NMR signature of 6 support a C₂ symmetric structure also in solution on the NMR timescale.

The N₂ stretching vibration of 6 was assigned to the Raman signal at 1392 cm⁻¹ (λ₅ₙ = 457 nm, THF solution; ¹⁵N₂ isotopologue: 1347 cm⁻¹) supporting strong N₂-activation with a formal N–N bond order below the double bonding character (trans-diazene: r₆₈ = 1529 cm⁻¹). The closed-shell ground state and degree of N₂ activation are in line with the covalent bonding character of the W₂N₂ core can be rationalized to arise from two low-spin WII ions. The twisted conformation enables strong back bonding of each metal ion with one π*-MO of the N₂ bridge, respectively, resulting in net transfer of approximately two electrons as judged from the Raman data. This picture is corroborated by DFT computations, which confirm the (π⁺δ⁺) configuration of the W₂N₂ core, analogous to the Mo analogue 4 and Cummins’ 2⁺. The blue-shifted N₂ stretching vibration of 6 vs. 4 (Δν₅₈ = 49 cm⁻¹; Table 1) indicates slightly reduced back-bonding by the 5d metal.

The redox chemistry of 6 was examined to probe the electronic structure model. Cyclic voltammetry (CV) in THF shows no reduction feature down to −2.9 V (vs. FeCp₂/FeCp₂). In contrast, two reversible oxidation waves (E₁° = −1.39 V; E₂° = −0.91 V) are observed. Both redox events are cathodically shifted by 250 mV with respect to the Mo analogue 4, supporting metal centered oxidation. The oxidation products [(N₂) {WCl(PNP)}₂]⁺⁺ (7⁺) and [(N₂){WCl(PNP)}₂]³⁺ (8²⁺) could be isolated in yields beyond 80% upon chemical oxidation of 6 with one and two equivalents of silver salts, respectively (Scheme 3). Stabilization of 8²⁺ requires a weakly coordinating anion, which was introduced with Ag[Al(O(CF₃)₃)] as the oxidant.

In the solid state, 7⁺ and 8²⁺ resemble the twisted conformation found for 6 (Fig. 2). Distinctly different bond lengths around the two tungsten ions of the mixed-valent complex 7⁺ indicate valence localization, which is further supported in solution by the large comproportionation constant (Kc = 10³) and the X-band EPR spectrum at r.t. The isotropic signal (gav = 1.93) of the low-spin (S = 1/2) complex exhibits hyperfine interaction (HFI) with only one tungsten (A(¹⁸⁵W) = 220 MHz) and two phosphorous nuclei (A(¹⁴P) = 56 MHz), respectively. HFIs with the N₂-bridge are not found and the ¹⁴N₂- and ¹⁵N₂-isotopologues give identical spectra, further supporting metal centered oxidation. In fact, the degree of N₂ activation is almost invariant within the redox series 6/7⁺/8²⁺ as judged from the invariance of the N–N stretching vibrations and the N–N bond lengths of the W₂N₂ cores (Table 1). Notably, the ¹H NMR spectrum of 7⁺ features four signals assignable to 8Bu groups, in agreement with the averaged C₂ symmetry and therefore valence delocalization on the slow NMR timescale.

The double oxidation product 8²⁺ exhibits paramagnetically shifted, yet relatively sharp ¹H NMR signals. Magnetic characterization by SQUID magnetometry reveals a λ₄M₄ product of about 0.6 cm³ mol⁻¹ K⁻¹ at r.t., which gradually drops to 0 at about 20 K. The data can be fitted to a model with two weakly antiferromagnetically coupled (J = −59 cm⁻¹) low-spin (S = 1/2) ions. The g-value (gav = 1.90) indicates an orbital contribution in the typical range for W⁺⁻ complexes with multiply bound hard ligands, such as oxo or nitrido complexes.

Characterization of the redox series 6/7⁺/8²⁺ supports the electronic structure picture with (π⁺δ⁺)/(π⁺δ⁻)/(π⁺δ⁻) configurations for the W₂N₂ core resulting in weak

Fig. 2 Molecular structures of 6, 7⁺ and 8²⁺ in the crystal obtained by single crystal X-ray diffraction. Hydrogen atoms and anions are omitted for clarity.
mutual coupling via the N_2 bridge ($\langle 8^{2+} \rangle = -59 \text{ cm}^{-1}$). In consequence, all three complexes of the redox series exhibit strong back bonding to the N_2 bridge with only weakly affected degrees of N_2 activation. These interpretations are corroborated by DFT (ESI†). Doublet $\{\pi^3\delta_1^3\delta_1^1\} (7^+)$ and open-shell singlet $\{\pi^3\delta_1^1\delta_2^1\} (8^{2+})$ ground states, respectively, were computed with a low lying triplet state for 8^{2+} due to weak antiferromagnetic coupling of the metal centered spins ($J_{\text{DFT}} = -184 \text{ cm}^{-1}$).

Protonation induced N_2 splitting vs. proton reduction

N_2 splitting of 6 into the nitride $[\text{W(N)}\text{Cl(HPNP)}]^{9\text{OTf}^-}$ (Scheme 4) as the only detectable tungsten species (NMR/EPR spectroscopy, HR-ESI-MS) was achieved upon adding 2 equiv. of triflic acid at -78°C and gradual warming to r.t. Complex 9^{OTf^-} could be isolated in over 60% yield and was fully characterized. The tungsten(v) nitride is NMR silent and features an isotropic signal ($g_{av} = 1.93$) in the X-band EPR spectrum (THF, r.t.) with HFIs with the tungsten and phosphorous nuclei ($A(183\text{W}) = 220 \text{ MHz}; A(31\text{P}) = 56 \text{ MHz}$). The $\text{W}=\text{N}$ stretching vibration is found in the IR spectrum at 1058 cm$^{-1}$ ($^{15}\text{N}-9^{\text{OTf}^-}$: $\Delta \nu = 29 \text{ cm}^{-1}$). In the solid state (Fig. 3), 9^+ is isostuctural with the molybdenum analogue, featuring square-pyramidal coordination of the nitride ligand in the apical site. Hydrogen bonding of the amine proton with the triflate anion is indicated by the short NH^- distance ($2.03(3) \text{ Å}$). The $\text{W}=\text{N}$ bond length ($1.679(2) \text{ Å}$) is in the typical range found for the related tungsten nitrides.1,4,7,26

In contrast to the Mo analogue 4 (Scheme 2), the selectivity of protonation induced N_2 splitting strongly varies with the reaction conditions. The addition of HOTf (2 equiv.) to 6 at r.t. results in low nitride yields and substantial amounts of the oxidation products 7^+ and 8^{2+}. Furthermore, 2 equiv. of strong acids with weakly coordinating anions, such as $[\text{H(OEt}_2\text{)}]_2\text{Al(ClCF}_3\text{)}_3$ and $[\text{H(OEt}_2\text{)}]_2\text{BARF}_2\text{Cl}$ ($\text{BARF}_2\text{Cl} = \text{B}(\text{C}_6\text{H}_3\text{-3,5-})(\text{CF}_3)_2\text{Cl}$), exclusively gave dicatonic 8^{2+} both at low (-70°C) and ambient temperatures (Scheme 4). Concomitant H_2 evolution was confirmed by gas chromatography. Reaction of 6 at r.t. with 1 equiv. of these and other acids (HOTf, (2,6-lutidinium) OTf, $[\text{HNEt}_3][\text{BARF}_2]$, $[\text{H(OEt}_2\text{)}]_2\text{BARF}_2$, and $[\text{H(OEt}_2\text{)}]_2\text{Al(ClCF}_3\text{)}_3$) selectively gives the oxidation product 7^+ in all cases.

Mechanistic examinations

Stoichiometric protonation at low temperatures was carried out to obtain spectroscopic information about intermediates. With 1 equiv. of HOTf at low T (-35°C), the NMR data are in agreement with pincer protonation to diamagnetic dinuclear...
was used as the acid, which selectively gives a drop of absorbance without significant change of the absorption allowed for estimating the equilibrium constant and structure. The acid concentration dependence of the absorbance was therefore expressed as eqn (1) which results from the minimum kinetic model outlined in Scheme 7:

$$k_{obs(2)} = \frac{k_2 K_1 [H^+]^2}{1 + K_1 [H^+]} + k_{obs}$$

The first term accounts for the initial protonation of 6 to give 10+, followed by irreversible H₂ release from acid and 10+. Rapid, subsequent comproportionation of the resulting 82+ with 6 to 2 × 7+ is in line with the electrochemical results ($K_e = 10^8$, see above). The second term in eqn (1) is ascribed to bimolecular decay of 10+ as an alternative path at low acid concentrations. The rate constant $k_3 = 0.018 \pm 0.001 \text{ M}^{-1} \text{s}^{-1}$ was derived from fitting the experimental data to eqn (1) (with preserved K_1) under pseudo first order conditions in acid (10–25 equiv.). The rate constant $k_3 = 0.4 \text{ M}^{-1} \text{s}^{-1}$ for the bimolecular path at low acid concentrations was obtained from the initial rate of the reaction of 6 and an equimolar amount of [HNEt₃][BArF₂₄].

Kinetic analysis suggests two pathways for H₂ formation which both go through the spectroscopically characterized common intermediate 10+ (as 10OTf). Path A (Scheme 7) explains the decay of 10+ even in the absence of the acid and reflects a bimolecular H₂ formation route as proposed by Matson and Peters for an iron diazenide N₂-oxo complex. Path B explains the second term in eqn (1) which is in agreement with a slow, irreversible second protonation after the initial, fast pre-equilibrium K_1. However, the non-zero intercept indicates the presence of at least one competitive pathway at a low acid concentration.

Scheme 6 Oxidation of 6 with 1 equiv. of acid at different temperatures.

![Scheme 6](image)

![Scheme 7](image)

![Graph](image)
lower temperatures. These effects are rationalized computationally in the next section.

Computational examinations

Protonation with \([\text{NET}_3\text{H}]\text{BARF}_{24}\) was first examined computationally with trimethylammonium as the model acid (Scheme 8). Two different sites, a metal ion and a pincer nitrogen atom, respectively, were considered for the first protonation step. A hydride product \([(\text{PNP})\text{W}(\text{H})\text{Cl}(\mu-N_2)\text{WCl}(\text{PNP})]\) \((12^+\) adopts an electronic singlet \((S = 0)\) ground state and was found to be the global protonation minimum at \(\Delta G_{298}^\circ = -4.7\) kcal mol\(^{-1}\) below 6 and \([\text{NMMe}_3\text{H}]^\cdot\). Hence, the model computation is in excellent agreement with the experimental equilibrium constant \(K_1\). The computed structure of \(12^+\) features a bridging hydride between the metal ion and a pincer phosphorous atom.

A similar structure was previously found experimentally by Schrock and co-workers for the protonation of a PCP molybdenum(vi) nitride by \([\text{NET}_3\text{H}]\text{BARF}_{24}\).\(^{27}\) All efforts to experimentally verify hydride intermediates like \(12^+\) were unfortunately unsuccessful. However, protonation to \(10^+\) is only slightly less exergonic \((\Delta G_{298}^\circ = -2.9\) kcal mol\(^{-1}\)). Importantly, this state is further stabilized upon use of \([\text{NET}_3\text{H}]\text{OTf}\) as the acid due to hydrogen bonding of the pincer amine moiety with the trianion anion by \((\Delta G_{298}^\circ = -2.1\) kcal mol\(^{-1}\)). In contrast, the hydride ligand is not involved in hydrogen bonding, rendering \(10^{\text{OTf}}\) \((\Delta G_{298}^\circ = -5.0\) kcal mol\(^{-1}\)) the global minimum of the first protonation in the presence of trianion. Overall, the metal and pincer protonation products \(12^+\) and \(10^+\) \((10^{\text{OTf}}\) in the presence of triflate) should be in rapid equilibrium under these conditions, which is slightly shifted towards pincer protonation by hydrogen bonding with the counteranion. Notably, hydrogen bonding with the conjugate base \(\text{NMMe}_3\) was not observed, presumably for steric reasons.

Starting from the amine/hydride equilibrium, the second protonation with \([\text{NMMe}_3\text{H}]^\cdot\) can ultimately lead to hydrogen evolution or \(N_2\) splitting, respectively. The formation of \(\text{H}_2\) and dicaticonic \(8^{2+}\), which represents Path A (Scheme 7), was computed to be exergonic by \(\Delta G_{298}^\circ = -12.8\) kcal mol\(^{-1}\) with respect to 6. The most reasonable pathway (Scheme 8, right branch) proceeds via hydride protonation of \(12^+\) leading to the dihydrogen intermediate \([(\text{PNP})\text{W}(\text{H})\text{Cl}(\mu-N_2)\text{WCl}(\text{PNP})]\) \((13^{2+}\)\), which is unstable and readily releases \(\text{H}_2\) without barriers. While the transition state that leads from \(12^+\) to \(13^{2+}\) could not be reliably located due to the flat potential energy profile of protonation, the free energy of \(13^{2+}\) \((\Delta G_{298}^\circ = +19.7\) kcal mol\(^{-1}\) with respect to \(12^+\)) was used as an estimate for the kinetic barrier of hydride protonolysis.\(^3\)\n
Notably, this value is in excellent agreement with the experimentally derived barrier for Path A \((k_2 = 0.018\text{ M}^{-1}\text{s}^{-1}; \Delta G_{298}^\circ = 19\text{ kcal mol}^{-1})\).

Alternatively, splitting of the dinitrogen bridge (Scheme 8, left branch) was computed to proceed via protonation of the second pincer nitrogen. In the absence of triflate, \([(\text{N}_2)\text{WCl}(\text{HPNP})_2]^{2+}\) \((11^{2+}\)\) was located at \(\Delta G_{298}^\circ = +5.0\) kcal mol\(^{-1}\) vs. \(6\) \((\text{G}_{298}^\circ = +9.7\text{ kcal mol}^{-1}\) vs. the global first protonation minimum \(12^+\)\) adopting an electronic quintet \((S = 2)\) ground state in accordance with the experimental findings for \(11^{\text{OTf}}\). From there, \(\text{N}_2\) cleavage into the nitrides \(9^+\) was computed to be strongly exergonic \((\Delta G_{298}^\circ = -49.7\text{ kcal mol}^{-1}\) with a kinetic barrier \((\Delta G_{298}^\circ = 21.7\text{ kcal mol}^{-1}\)) that is comparable to the experimentally derived barriers for \([(\text{N}_2)\text{MoCl}(\text{HPNP})_2]^{2+}\) \((\text{G}_{298}^\circ = 19.5\text{ kcal mol}^{-1}\) and \([(\text{N}_2)\text{ReCl}(\text{PNP})_2]^{2+}\) \((\text{G}_{298}^\circ = 19.8\text{ kcal mol}^{-1}\)\), respectively. For the tungsten system, this gives

![Scheme 8](image)

Scheme 8: Computed energy profile for protonation induced \(N_2\) splitting (left branch) and hydrogen evolution via Path A (right branch) via double protonation of the dinitrogen complex 6 at room temperature in the absence (solid line) and presence (dashed line) of triflate as the counteranion.

Chemical Science

This journal is © The Royal Society of Chemistry 2019
rise to an overall effective barrier for protonation induced N₂ splitting from the most stable monoprotonation intermediate, hydride 12^-, of \(\Delta G_{12}^{\text{ff}} = 31.4 \text{ kcal mol}^{-1} \). This value is considerably higher than the estimate for the hydrogen evolution pathway (\(\Delta G_{10}^{\text{ff}} = +11.5 \text{ kcal mol}^{-1} \)), which is in line with selective proton reduction with [NEt₃H][BARF₂₄] as the acid.

Importantly, the relative energetics of these two reaction channels are perturbed in the presence of triflate as the counteranion. As was found for the first pincer protonation (see above), triflate hydrogen bonding stabilizes the pincer diprotonation product 11OTf²⁻ by \(-8.8 \text{ kcal mol}^{-1} \). Consequently, the estimated effective barrier for hydrogen evolution (\(\Delta G_{12}^{\text{ff}} \)) is much higher in free energy than the barrier for N₂ splitting in the presence of triflate 10OTf⁻ is slightly raised. On the other hand, the N₂ splitting pathway (\(\Delta G_{12}^{\text{ff}} \)) is almost isoenergetic, in full agreement with the experimental findings. The triflate induced effect on selectivity is therefore attributed to Curtin–Hammett controlled reactivity wherein N–H hydrogen bonding to the counteranion modifies the energetics of the protonation pre-equilibria.

A similar picture evolves for the reaction with triflic acid (see the ESI, Scheme S1†). However, the potential energy of protonation is augmented by the higher driving force with the stronger acid (pKₐ (Et₃NH⁻) – pKₐ (HOTf) = 4.7). This affects the selectivity as the effective barrier for the N₂ splitting branch versus hydrogen evolution is close in energy. Furthermore, all rate determining states are below the starting point 6. In consequence, under these conditions (HOTf as the acid at r.t.), Curtin–Hammett conditions do not apply resulting in the experimentally observed low selectivity.

Reduction of the temperature to \(-80 ^\circ \text{C} \) further perturbs the relative energetics of the two reaction pathways with HOTf. The computed amine (\(\Delta G_{15}^{\text{ff}} (10^\text{OTf}) = 15.1 \text{ kcal mol}^{-1} \)) vs. hydride (\(\Delta G_{15}^{\text{ff}} (12^+) = -10.3 \text{ kcal mol}^{-1} \)) equilibrium is even more shifted towards the amine due to the lower entropic penalty for hydrogen bonding at low T. The negligible population of the hydride tautomer is in agreement with the exclusive experimental observation of 10OTf⁻ and 11OTf⁻ upon single and double protonation with HOTf at \(-80 ^\circ \text{C} \). From 11OTf²⁻, the dihydrogen complex 13⁻ (\(\Delta G_{15}^{\text{ff}} (13^-) \)) is much higher in free energy than the barrier for N₂ splitting (\(\Delta G_{15}^{\text{ff}} (19.9 \text{ kcal mol}^{-1}) \)), in line with selective N₂ splitting upon double protonation with HOTf at \(-80 ^\circ \text{C} \) and slow warming.

Concluding remarks

In summary, an anion effect on the selectivity of proton induced dinitrogen splitting (NR) vs. hydrogen evolution (HR) at the N₂ bridged ditungsten complex 6 was demonstrated and rationalized. Our spectroscopic, kinetic and computational studies suggest some guidelines to improve NR over HR yields:

(a) Nitrogen vs. metal protonation offers separate reaction channels with a proposed hydride isomer leading to hydrogen evolution analogous to the highly active Mo-oxo poly(pyridyl) HR catalysts. The tautomerisation equilibrium can be offset by hydrogen bonding with protic N-H hydrogen atoms favoring the use of an acid [BH⁺X⁻] where the anion X⁻ is prone to form H-bonds for high NR selectivity.

(b) Protonation under Curtin–Hammett control with weak acids can become irreversible with strong acids. Hence, the pKₐ of the acid can have a decisive kinetic effect on the selectivity.

(c) Lower temperatures favour hydrogen bonding interactions due to the reduced entropic penalty as a strategy for increased NR yields.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was funded by the European Research Council (ERC Grant Agreement 646747). The authors thank Dr C. Volkmann for X-ray diffraction analysis of compounds 5 and 6, Dr S. Dechert for recording Raman spectra of 6 and 7⁺ and Dr C. Stückl for EPR measurements of 7⁺ and 9⁺.

Notes and references

† An alternative pathway via reduction of 10⁺ with 6 is less likely based on the derived rate constant (k₁ = 0.12 \(\text{ M}^{-1} \text{ s}^{-1} \)), which is considerably smaller than k₃.

§ A transition state for the direct protonation of 12⁺ with HNMe⁺ at the hydride ligand was located at 25.4 kcal mol⁻¹ above 6 and two equivalents of [HNMe₂⁺]. However, this activation free energy is considerably higher than the experimentally determined value (\(\Delta G_{18}^{\text{ff}} = 19 \text{ kcal mol}^{-1} \)). It is not clear if this deviation can be attributed to the computational truncation of the acid or to a lower competing pathway. We therefore prefer to use the experimental value for the discussion of the selectivity. See also the ESI for further discussion.†

