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Accelerating materials research by integrating automation with artificial intelligence is increasingly
recognized as a grand scientific challenge to discover and develop materials for emerging and future
technologies. While the solid state materials science community has demonstrated a broad range of high
throughput methods and effectively leveraged computational techniques to accelerate individual
research tasks, revolutionary acceleration of materials discovery has yet to be fully realized. This
perspective review presents a framework and ontology to outline a materials experiment lifecycle and
visualize materials discovery workflows, providing a context for mapping the realized levels of
automation and the next generation of autonomous loops in terms of scientific and automation
complexity. Expanding autonomous loops to encompass larger portions of complex workflows will

require integration of a range of experimental techniques as well as automation of expert decisions,
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Introduction

Grand missions, such as combating climate change through
proliferation of renewable energy technologies, necessitate
technological advancements for which discovery of functional
materials is often a prerequisite."” Historically, transformative
materials discoveries have been the result of serendipity from
experimenting in a related area and/or decades of systematic
materials development." Early examples of automated synthesis
and screening techniques were implemented**" to accelerate
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signal the imminence of a revolution in materials discovery.

both processes,'* for example in the identification of a hyster-
esis-free shape memory alloy.”® Continued automation of
materials experiments is motivated by potential benefits
including lowering per-experiment costs and eliminating
human error, and to enable active learning-driven experiments
that identify and explore the most promising regions of mate-
rials parameter space.’™ In solid state materials science,
advancements in automation have largely been driven by the
combinatorial materials science community, where compre-
hensive exploration of a high dimensional materials parameter
space requires a substantial number of synthesis and screening
experiments. While these efforts have provided automation of
individual research tasks for a wide variety of materials and
functional properties, manual execution of several experiment
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steps, as well as manual design of experiments and data inter-
pretation, result in partially-automated workflows. The
emerging vision of autonomous materials discovery'>** requires
a higher level of automation. Establishment of an autonomous
workflow is referred to as “closing the loop” since complete
task-to-task integration is required to allow computer-
controlled iteration. Initial'**® and ongoing progress towards
realizing such closed-loop systems can be tracked by the level of
process automation and integration in a workflow.

Sanchez-Lengeling and Aspuru-Guzik' recently described
the advent of closed-loop experimentation as a paradigm shift
in materials and molecular discovery. The illustration of Fig. 1
provides the high level template of a closed-loop workflow, and
in the present work we critically review the progress towards
this vision in solid materials experiments. The integration of
sequential automated processes is challenging due to the need
for mutually compatible parameters and planning, with
requirements spanning from a commensurate sample format,
to a protocol for decision-making based on results from the
prior experiment, and to the identification of measurement
failure. To facilitate the analysis of where process integration
has been successfully implemented as well as the remaining
challenges, we present a framework and ontology for the auto-
mation of the materials experiment lifecycle.

The exploration of vast materials spaces (i.e. composition,
structure, processing, morphology) via combinatorial materials
science has yielded a wide variety of discoveries and advance-
ments in fundamental knowledge'*'*° and has additionally
produced experiment databases with unprecedented breadth of
materials and measured properties, as exemplified by the recent
publication of the High Throughput Experimental Materials
database (HTEM)* based on photovoltaics materials and the
Materials Experiments and Analysis Database (MEAD)** based
on solar fuels materials. These compilations of raw and
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analyzed*”® data from individual combinatorial materials
science laboratories complement the suite of computational
materials databases®®* as well as a rapidly growing number of
materials data repositories including the Citrination platform,*
the Materials Data Facility (MDF),* and text mining of the
literature.*® For the purposes of the present analysis of auto-
mating™'**” materials science workflows, these databases serve
as successful examples of experiment automation and as
resources that can be used to accelerate experiment planning,
for example by training machine learning models to identify
promising materials. In such planning, it is important to note
complementary search goals of optimizing a given material
property and establishing relationships that represent funda-
mental materials knowledge. Mapping composition-structure—
processing-function relationships®-° is a tenet of combinato-
rial materials research,*®?° which contrasts with direct imple-
mentation of active learning to optimize* one or a few
properties without requiring acquisition of data to elucidate the
underpinnings of the materials optimization. Indeed the
experiment workflow and its operation must be designed to
meet the specific research goals, although workflow automation
is important for accelerating many different modes of discovery.

We discuss the lifecycle of materials science experiments
and the three primary stages of workflow acceleration, (i) the
integration of new techniques into traditional research tasks to
accelerate process throughput, (ii) the integration of research
tasks into a cohesive workflow to mitigate bottlenecks, and (iii)
integration of tasks with automated analysis and decisions to
close experiment loops and enable autonomous iteration
thereof. We find that the solid state materials science commu-
nity has demonstrated tremendous progress in the first stage,
substantial progress in the second stage including high
throughput workflows, and seminal demonstrations in the
third stage with relatively simple workflows, making concurrent
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Fig.1 High level comparison of paradigms for materials/molecular sciences. Left: current paradigm exemplified with redox flow batteries. Right:
closed-loop discovery utilizing inverse design and a tightly integrated workflow to enable faster identification, scale-up and manufacturing.
Figure reproduced from Science, 361, 6400, 360-365 with permission from The American Association for the Advancement of Science.
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advancement of both the level of autonomy and extent of the
workflow a priority research direction.

The experimental materials science
research lifecycle

At a high level, the experiment lifecyclet for functional mate-
rials discovery consists of a set of core research tasks:
synthesis, processing, characterization and performance
evaluation. This set transcends the specific techniques used to
perform each task, and their generality is evident in their
consistent discussion 432 laboratory workflow
descriptions, and database designs for high throughput
materials science.>*'%*?>%27  Often unmentioned, though
virtually always performed, are the additional core research
tasks of planning, data management, data interpretation, and
quality control. Individual and sequences of experiments
require these tasks, with the extent and style varying with
research strategy. In a traditional materials experiment, the 4
experiment tasks are performed manually, as are the
complementary 4 tasks, for example planning via a stated
hypothesis and data management via lab notebooks. The
corresponding workflow can be represented as shown in
Fig. 2a and represents the foundation on which more
advanced and accelerated workflows are built. As noted above,
the first stage of workflow acceleration involves implementa-
tion of techniques we refer to as “accelerators” into one or
more of the workflow tasks. Classifying all possible accelera-
tors is more subjective than the above classification of work-
flow tasks, and for the present work we find the 6 accelerators
noted in Fig. 2b enable effective annotation of experimental
workflows from the literature. Some accelerator-task combi-
nations are readily achievable, for example parallelization of
processing by annealing multiple materials in a furnace. Other
combinations may not be meaningful, such as active learning
of data management. Of the many combinations that are both
meaningful and impactful, some have been effectively realized
while others are opportunities for further experiment accel-
eration, as summarized below for each accelerator.

in reviews,
6,33,34

Automation and parallelization

Automated execution of a serial experiment typically involves
incorporation of robotics into a traditional experiment. Par-
allelization typically involves development of custom instru-
mentation to perform many experiments simultaneously. Both
approaches are commonly used in combinatorial materials
science where accelerated synthesis techniques include co-
sputtering,® co-evaporation,*® ink-jet printing,*® combinatorial
ball-milling,** high-throughput hydrothermal synthesis,*>*
and bulk ceramic hot-pressing.** Similarly, the acceleration of
the characterization of materials properties and evaluation of
performance for a target functionality have been the focus of

+ There are different terms to describe the sequence and interplay of basic
research tasks such as materials pipeline, materials highway, or materials
platform.
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Fig. 2 (a) Overview of core research tasks with arrows indicating the
cyclic execution of a traditional materials science experimental
workflow. (b) Acceleration of each task in a workflow can be obtained
by incorporating acceleration technique(s), as represented by these 6
types of accelerators.

extensive methods development in the past two decades, with
notable demonstrations including electrochemical testing,**~*¢

X-ray diffraction,*”*° processing,***** optical spectroscopy,*>*
electric properties,®* shape memory,"»** and phase
dynamics.” These advancements in experiment automation

have undoubtedly led to discoveries that would not have been
made in the same time frame using traditional techniques.
Automation and parallelization-based removal of synthesis
and characterization bottlenecks introduces new challenges
for further acceleration of materials discovery, which are
generally being addressed with data and data science-related
accelerators.

Data repositories

As noted above, the emergence of experiment databases from
high throughput experimentation offer opportunities for data-
based accelerations. The established uses of data repositories
for accelerating research tasks include the data interpretation
for crystallography by matching X-ray diffraction patterns to
those from a database,” planning synthesis based on phase
diagrams,®® and planning catalyst performance evaluation
using computational databases of Pourbaix stability.>”*® Data-
driven discoveries are typically enabled by a data repository
produced via careful data management. While guidelines such
as FAIR™ exist, these general guidelines focus on data dissem-
ination and do not express the data management requirements
for establishing autonomous loops, which require fully auto-
mated data ingestion and seamless communication between
experimental tasks.

This journal is © The Royal Society of Chemistry 2019


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9sc03766g

Open Access Article. Published on 20 September 2019. Downloaded on 1/28/2026 2:03:54 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Minireview

Machine learning

Acceleration by Machine Learning (ML) models encompasses
a broad range of applications of computer science algorithms to
perform regression, classification or embedding tasks. The
recent literature abounds with discussions of the existing and
potential impact of ML in materials research. Given recent
reviews covering this topic,*” the present discussion focuses on its
role in experiment workflows. ML-based acceleration of research
tasks typically involves either research planning or data inter-
pretation through evaluation of ML models trained on prior data.
Representative examples include selection of composition spaces
for exploring metallic glasses based on ML predictions of glass
forming ability” and identification of ultraincompressible
materials.” ML methods have also been developed to accelerate
data interpretation in areas including phase mapping from XRD
patterns,*® microscopy data,* signal identification in spectros-
copy data,” annotation of microstructure images,” and visuali-
zation of complex compositions.**”* ML methods can also be
developed into active learning and reasoning techniques,
although due to their different roles with respect to experiments,
those techniques are discussed separately, as detailed below.

Active learning

Active learning involves the choice of the next experiment based
on an acquisition function that typically requires a prediction
for a figure of merit and the uncertainty thereof.”” ML models
are used for the prediction and uncertainty estimation, with
a distinguishing feature of active learning being the need to
update the model in real time during execution of the experi-
mental workflow. Active learning is a key component of closed-
loop workflows that can ultimately yield self-driving laborato-
ries.* Algorithms such as Phoenics® have been specifically
developed for chemistry experiments and integrated into
workflow management software such as ChemOS.* The carbon
nanotube (CNT) autonomous research system (ARES) project,*
which is discussed further below, is an example of a closed-loop
system of a workflow where tasks such as data interpretation are
readily automated. There have been additional implementa-
tions of active learning in materials science to accelerate indi-
vidual tasks, for example by acquiring only the necessary X-ray
diffraction patterns for phase diagram characterization.*®
Sophisticated examples of active learning in related fields
including functional genomics,*” separations optimization,**
and multi objective molecular optimization for small molecule
drug discovery.®® While many optimization-oriented searches
are amenable to acceleration via active learning, its utility for
materials discovery has yet to be sufficiently explored and
demonstrated, making the above examples a springboard for
assessing the ability of active learning to accelerate complex
experimental workflows and the generation of fundamental
understanding in materials science.

Automated reasoning

For complex measurement workflows where competing interpre-
tations of the data need to be considered or a model needs to be

This journal is © The Royal Society of Chemistry 2019
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reinterpreted given the most recent measurements, the data
interpretation, quality control, and planning tasks are not readily
automated with existing algorithms, motivating the development
of automated reasoning to accelerate these tasks with Al methods
that mimic and/or supersede human execution of these tasks (i.e.
“superhuman performance”®). Examples of automated incorpo-
ration of physics and chemistry-based models into such tasks
include tuning the morphology of a thin film based on a structure
zone diagram®" and fine-tuning the composition to obtain a desired
doping type in semiconducting metal oxides based on spinel
doping rules.” The opportunity for Al development in this area is
the topic of a recent perspective,” and among the promising
research directions is the establishment of generative models that
expand the purview of active learning to design materials based on
desired properties.” While inverse design has been successfully
demonstrated for discovery of functional materials,””* integration
into automated workflows remains a challenge for solid state
materials research. The corresponding high level challenge for
closed-loop experimentation of solid state materials is that the
scope of a given automated synthesis tool is often quite limited
compared to the scope of materials that may be predicted by an
active learning or inverse design algorithm. In organic synthesis,
for example, there has been more success in developing workflows
that encompass the entirety of the synthesis scope of interest,
enabling deeper integration of automated reasoning."”

Integration of tasks into a workflow

The most common type of accelerated discovery workflow
consists of an automation-accelerated synthesis and an
automation-accelerated characterization or performance evalua-
tion, followed by extensive manual analysis, interpretation, and
planning of both additional characterization experiments and
future iterations of the workflow. Most commonly the highly
automated instruments require manual interfacing (e.g. align-
ment, measurement parameter setup, supervision for quality
control), where an increased human involvement corresponds to
a lower degree of integration. To simplify the present discussion,
we consider two classes of task integration with the dis-
tinguishing feature being whether expert involvement is
required, which designates the integration as “expert mediated”
and indicates the integration is incomplete. This level of inte-
gration is prone to creating bottlenecks due to the scarcity of
experts. Technique integration by robotics is not distinguished
from integration by trained technicians in the present work
because the resulting impact on workflow throughput requires
more in-depth evaluation of the specific workflow.

To further illustrate how accelerated materials experiments
have been integrated, we inspect four reported projects and
construct the corresponding workflows in Fig. 3. Each workflow
exhibits unique aspects that collectively frame the state of the
art in accelerated materials discovery and illustrate the intri-
cacies of workflow acceleration. The scope of each workflow
schematic is the sequence of tasks described in the respective
publications, and the largest demonstrated equivalent of
traditional experimentation is provided for each workflow.

Chem. Sci,, 2019, 10, 9640-9649 | 9643
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The primary example of closed-loop discovery in solid state
materials science is the ARES project for carbon nanotube
synthesis. Nikolaev et al'* demonstrated optimization of
carbon nanotube growth with a workflow that mitigates expert-
mediated integration and features acceleration by automation
and active learning. Automated control of growth temperature,
pressure, and atmospheric conditions enables a unique growth
condition in each experiment, with a series of experiments
performed by spatially addressing an array of seeds on
a substrate. Processing and characterization are intertwined as
laser illumination provides both heating and excitation for
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Raman spectroscopy, producing spectrograms that are analyzed
to determine the nanotube growth rate.*** With this materials
characterization also providing the figure of merit, the workflow
contains no further performance evaluation. The automated
data management and interpretation enables closed-loop
operation for up to approximately 100 growth experiments
planned by active learning-based selection of growth condi-
tions. Expert intervention in this closed loop occurs occasion-
ally (estimated to be 1-3%) to assess the quality of the active
learning and adjust the objective as necessary. Upon exhaustion
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Fig. 3 Workflow diagrams of accelerated materials experimentation spanning a range of techniques, strategies and research goals. Based on (a)

Nikolaev et al.,** (b) Yan et al.,?° (c) Kusne et al.,°*® and (d) Li et al.,?° each wo

rkflow involves accelerated tasks with various levels of automation and

task-to-task integration. The productivity for a single pass through the workflow is noted, corresponding to the number of equivalent traditional

experiments for (a)-(c) and duration of traditional experiments for (d).

Feedback loops are each labelled with the approximate number of

iterations per workflow execution (bold), and in (a) and (c) the percentage of iterations involving expert mediation is also approximated (italics).
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of the array of CNT growth seeds, manual intervention is
required to change samples and restart the workflow.

The photoanode discovery pipeline in Fig. 2b represents the
tiered screening by Yan et al.*® that includes both theory and
experiment-based down-selection of candidate metal oxides.
With respect to the experiments, the computational screening is
an accelerant and represented as such in the planning task. The
Materials Project database® serves as the primary repository, with
additional calculations specific to photoanode screening, and
while these calculations are critical to the success of the work,
they are not fully integrated into the experimental workflow.
Synthesis, processing, characterization, and performance evalu-
ation are accelerated using automation, with tens to thousands of
materials being synthesized or measured automatically. While
this sequence of tasks is in principle amenable to more autono-
mous operation, setup and selection on meaningful experi-
mental conditions are chosen by an expert, resulting in expert
mediated linkages in the workflow. The heavy use of paralleli-
zation and automation is supported by automatic data manage-
ment and quality control, with data interpretation requiring
expert mediation. A key attribute of this workflow is the estab-
lishment of automated techniques for a large breadth of experi-
mental tasks, from synthesis to performance evaluation, that can
operate on libraries with up to ca. 2000 unique materials.” The
research strategy involves collection of combinatorial materials
datasets that facilitate data interpretation and scientific
discovery, as well as evaluation of every prediction from the
computational screening to assess its efficacy. These aspects of
the research limit the value of further task-to-task integration and
application of active learning, with the broader message being
that the impact of the closed-loop concept varies with research
strategy and goals.

The workflow of Fig. 3¢ describes a different implementation
of combinatorial materials science for studying functional
materials where synthesis, processing and performance evalu-
ation are accelerated by parallelization and automation with
expert-mediated integration similar to that of Fig. 3b. The
unique aspect of this work is the use of an active learning loop
in the middle of the workflow to accelerate the mapping of
phase boundaries in a composition library, demonstrating the
use of active learning in a sub-workflow to accelerate a bottle-
neck experiment (and save valuable beamline time). The
synchrotron X-ray diffraction (XRD) characterization described
by Kusne et al®® includes on-the-fly data interpretation and
automated selection of the next composition for XRD
measurements, with occasional expert supervision of the
clustering-based identification of pure-phase patterns.

The atomic-scale phase evolution workflow by Li et al.*®
illustrated in Fig. 3d uses a specialized nanometer sized reactor
to assess phase stability with ca. 1 hour of experiment time
yielding the same data as over 500 days of annealing in tradi-
tional bulk experiments. Using data repositories of phase
diagrams and stability ranges of multicomponent complex
metal alloys to plan synthesis, an array of 36 reactors is
deposited, for example with equiatomic mixtures of the Cantor
alloy Cr-Mn-Fe-Co-Ni.”® The loop in this workflow is based on
the step-wise annealing of the reactor array with subsequent

This journal is © The Royal Society of Chemistry 2019
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atom probe tomography (APT) characterization after each pro-
cessing step. Each APT characterization involves destruction of
one of the reactors, and the number of reactors is made to be
several times larger than the number of processing steps due to
routine failure of the APT measurement. The critical advance-
ment enabled by a small autonomous loop is the real-time
monitoring of APT data acquisition with well-integrated
quality control. Data interpretation is performed by compar-
ison to external data and visualization is done through
a machine learning model.**’® The richness of the APT data
coupled with significant annealing time reduction yields high
throughput knowledge generation even though the workflow
contains mostly expert-mediated integration of tasks. Increased
autonomy in the workflow would only be warranted after
substantial advances in automated data interpretation.

For each of these workflows, the nominal time to execute the
entire workflow is on the order of 1 day. The equivalent number
of passes through a traditional workflow, or the number of days
of traditional experimentation to produce the equivalent data,
provides the nominal acceleration factor of the workflow, which
is only equal to the acceleration factor of knowledge discovery if
the selection of experiments and quality of the resulting data is
equivalent to those of traditional experiments. Assessment of
such data value is beyond the scope of the present discussion
but remains a critical consideration for quantifying workflow
acceleration, particularly in settings where the research goals
involve understanding the underlying materials science as
opposed to performance optimization.
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Fig. 4 Visualization of the landscape of materials experiment work-
flow in terms of the scientific complexity of automated tasks and the
workflow automation complexity, which is based on the number,
variety, speed, and difficulty of experimental steps in the workflow. The
advancements in combinatorial materials science and high throughput
experimentation (CMS/HTE) have been largely along this latter (hori-
zontal) axis, and initial demonstrations of autonomous loops have
made progress on the former (vertical) axis with automation of more
intellectually challenging research tasks. The nominal location of the 4
workflows from Fig. 3 are noted by stars. While research will push the
frontier of automated experiments along both axes (arrows with
italics), the most complex scientific tasks will remain the responsibility
of human experts for the foreseeable future.
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Conclusions and outlook

The urgent need for better materials demands faster turn-
around cycles from basic research, such that better, more effi-
cient, more eco friendly, and more economically viable
materials can enter the market sooner than the traditionally
observed 40 years." Accelerated materials experiment workflows
have been demonstrated to increase throughput by up to a few
orders of magnitude compared to traditional methods.
Surveying the reported workflows reveals two primary areas for
workflow sophistication, the integration of sequential tasks
without requiring expert involvement and the expansion of
feedback loops to incorporate a larger fraction of the workflow
tasks. The ARES workflow achieves both of these goals with
a relatively small workflow compared to the functional mate-
rials discovery research where the variety of characterization
and performance evaluation experiments increases the number
of workflow tasks as well as the demands on data management,
data interpretation, and quality control.

To visualize progress to date and the expected advances from
ongoing research, Fig. 4 illustrates the continuum of materials
workflows in terms of the scientific complexity and workflow
automation complexity. To elucidate our intended meaning of
scientific complexity, representative tasks spanning minimal
complexity to very complex are listed. Arguably the most impor-
tant aspect of a successful science program is the ability to
identify interesting problems and ask the important questions
that guide research activities. These tasks are beyond the purview
of present autonomous research and will be for the foreseeable
future. Advances in natural language processing for materials
science may automate aspects of scientific communication, but
critical analysis of the literature and communication of the
insights provided by a given experiment will continue to rely on
human intellect for the foreseeable future.

Determining the most effective advancements in a materials
experiment workflow requires critical evaluation of bottlenecks
for progress against the research goals. Even when expert
mediation is required between tasks, workflow throughput is
often limited by the manual steps at the front and back ends of
automated experiments. These peripheral activities, which fall
under the intermediate “complicated” level of scientific
complexity in Fig. 4, can be difficult (or currently impossible) to
fully automate due to the routine use of expert knowledge, for
example in judgement of data quality based on extensive
previous experience with related data. Advances in artificial
intelligence (AI) for materials encompasses a wide variety of
strategies for addressing these challenges, which will be critical
for expanding the scope of autonomous loops. This approach to
pushing the frontier of materials workflows is illustrated by the
“Materials AI” arrow in Fig. 4 and will ideally accompany the
expansion of autonomous loops to include more complex and
a larger variety of experimental tasks. This complementary
approach to pushing the frontier of materials workflows is
illustrated by the “Build on HTE” arrow due to the demon-
strated successes in experiment automation from the high
throughput experimentation community. The ability to leverage
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this existing work makes autonomous workflows more readily
extendable into complex automation as compared to the
extremes of complex scientific reasoning.

An outstanding question with regard to the next generation
of experimental workflows is how to best combat human biases
that can severely limit innovation.”” Advanced autonomous
experimentation may remove biases within a given search space
through computationally designed experiments. However, the
scope of the search space is limited by both instrument capa-
bilities and active learning strategy, whose designs originate
with human identification of the materials space of interest. To
the extent that human biases disseminate from the “complex”
scientific tasks of Fig. 4, bias removal within an autonomous
workflow must be complemented by sociological solutions for
removing bias in decisions beyond the experiment workflow.

We are aware of several research groups that are building
autonomous experiments in the "next generation" regime of
Fig. 4, including emerging reports from perovskite synthesis’®
and molecular materials for of organic photovoltaics™ and
organic hole transport materials.** Continuation of these
concerted efforts to increase automation and develop tailored
AT algorithms will enable the materials science community to
realize a paradigm shift in scientific discovery where expert
scientists can dedicate a substantially larger fraction of their
time to performing the critical tasks of identifying important
problems and communicating critical insights.
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