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ride-derived alkylating reagents
for the 1,1-dihydrofluoroalkylation of thiols†

Paul J. Foth, Frances Gu, Trevor G. Bolduc, Sahil S. Kanani and Glenn M. Sammis *

Herein, we report a new method for the one-pot synthesis of 1,1-dihydrofluoroalkyl sulfides by bubbling

sulfuryl fluoride (SO2F2) through a solution of the corresponding alcohol and thiol. The reaction

proceeds through a new class of bis(1,1-dihydrofluoroalkyl) sulfate reagents, to afford the desired 1,1-

dihydrofluoroalkyl sulfides in 55–90% isolated yields. The bis(1,1-dihydrofluoroalkyl) sulfates are highly

chemoselective for thiol alkylation, and are unreactive with competing, unprotected nucleophiles,

including amines, alcohols, and carboxylic acids.
Sulfuryl uoride (SO2F2) has been utilized since the 1960s as an
industrial fumigant,1 but it has only recently attracted signi-
cant attention as a reagent for organic synthesis.1b,2 Studies have
demonstrated that oxygen nucleophiles, such as alcohols (1),3,4

phenol derivatives (2),1b,5 oximes (3),6 and carboxylic acids (4),7

react with sulfuryl uoride to form uorosulfate derivatives
(Scheme 1).2 The addition of a second equivalent of the oxygen
nucleophile is kinetically slow, which allows uorosulfate 5 to
undergo subsequent transformations.8 Fluorosulfates (5) have
been utilized as key reactants in a diverse range of reactions,
including metal-catalyzed cross couplings,5c,9 click reac-
tions,1b,5d deoxyuorinations,5b alkylations,3a,4 nitrile syntheses,6

and the formation of amide bonds.7a
es of sulfuryl fluoride-mediated
reactive intermediates (5) and

h Columbia, 2036 Main Mall, Vancouver,

: gsammis@chem.ubc.ca

SI) available: Experimental procedures,
, and MS data including 1H, 13C, and 19F
b
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All current synthetic methods rely on a very similar protocol
for the formation of the uorosulfate intermediate. Sulfuryl
uoride is bubbled through a solution of the requisite oxygen
nucleophile and a base, which is usually N,N-diisopropylethyl-
amine (DIPEA), triethylamine, or a carbonate salt.1b,2–7 Despite
the expansion of the use of sulfuryl uoride, the only reactive
intermediates that have been identied are uorosulfate
derivatives (5), and no other sulfuryl uoride-derived reactive
intermediates have been explored.10

We previously reported that bubbling sulfuryl uoride
through a solution of 2,2,2-triuoroethanol (1a) and an amine
base, such as DIPEA or triethylamine, afforded triuoroethyl
uorosulfate (5a, R00 ¼ CH2CF3) in >90% yield.3a,11 Following up
on the synthesis and reactivity of uorosulfate 5a in new
transformations, we serendipitously discovered that even
moderately more basic reagents,12 such as 1,8-diazabicyclo
[5.4.0]undec-7-ene (DBU) with a pKaH of 12,13 afforded bis(tri-
uoroethyl) sulfate (6a) as the major product, and only trace
amounts of uorosulfate 5a were detected by 19F NMR spec-
troscopy. Bis(triuoroethyl) sulfate (6a) is an intriguing species
as there are only two previous methods for its synthesis,14–16 and
there are no studies investigating its reactivity.17

We elected to study the reactivity of this new bis(tri-
uoroethyl) sulfate intermediate (6a) for the 1,1-dihydro-
uoroalkylation of thiols for two reasons: (1) the resulting
uoroalkyl suldes are important uorinated motifs in phar-
maceuticals and agrochemicals,18–20 and (2) the more common
sulfuryl uoride-derived reagent, triuoroethyl uorosulfate 5a,
is not an effective intermediate for thiol alkylation. Previous
studies by Shreeve and coworkers indicated that the reaction
between methane thiol (7), triethylamine, and 5a afforded the
corresponding uoroalkyl sulde (8) in only 31% yield and
a 2.2 : 1 preference for reactivity at carbon compared to sulfur
(Scheme 2A).14

To examine the viability of bis(triuoroethyl) sulfate (6a) as
a thiol alkylating reagent, we treated a solution of 6a and DBU
Chem. Sci., 2019, 10, 10331–10335 | 10331
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Scheme 2 Investigations into thiol alkylation using fluorosulfate (5a)
and bis(trifluoroethyl) sulfate (6a). The yields in (B) and (C) were
determined by 19F NMR spectroscopy using trifluorotoluene as an
internal standard.
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with benzyl mercaptan (9a), which led to a 99% 19F NMR yield of
1,1-dihydrouoroalkylated product 10a (Scheme 2B). The anal-
ogous reaction with a solution of DIPEA and uorosulfate 5a
with 9a afforded only 52% yield of 10a (Scheme 2C), which is
comparable to the result reported by Shreeve and coworkers.14

The addition of DBU and benzyl mercaptan to a solution of
DIPEA and 5a improved the yield; however, the reaction led to
an increase in the amount of free triuoroethanol in solution,
presumably resulting from nucleophilic attack at sulfur.21

This initial result is noteworthy as it represents the rst
example of the direct conversion of an unactivated 1,1-dihy-
drouoroalcohol to the corresponding uoroalkyl sulde in
a one-pot process. Thiol 1,1-dihydrouoroalkylation can be
achieved through nucleophilic displacement of activated tri-
uoroalkyl moieties,14,22 copper-catalyzed reactions with
Table 1 Optimization of the one-pot, 1,1-dihydrofluoroalkylation of
benzyl mercaptan (9a)a

Entry Solvent Temp (�C) 19F NMR yieldb (%)

1 DMF 25 71
2 DMF 40 86
3 DMF 60 85
4 THF 40 81
5 ACN 40 77
6 Hexane 40 75
7 Benzene 40 67
8 DCM 40 38

a All reactions were carried out following a one-pot procedure on
0.30 mmol scale of 9a and a 1 : 1 v/v triuoroethanol : solvent ratio.
b Yield aer 20 minutes, as determined by 19F NMR spectroscopy
using triuorotoluene as an internal standard.

10332 | Chem. Sci., 2019, 10, 10331–10335
triuoroalkyl iodide23 or triuorodiazoalkanes,24 or reductive
triuoroalkylthiolations.25 All previous work relies on activated
triuoroalkyl moieties. This is particularly problematic for
select activated triuoroethyl derivatives and longer chain 1,1-
dihydrouoroalkyl groups that are only available from the cor-
responding alcohols, and thus require additional synthetic
steps to activate.

With an established protocol for a one-pot, sequential reac-
tion, investigations next focused on a one-step process, where
the alkylation proceeds by bubbling sulfuryl uoride through
a solution of triuoroethanol (1a), benzyl mercaptan (9a), and
DBU. At room temperature, the reaction proceeded efficiently to
afford desired triuoroethylated product 10a in 71% yield
(Table 1, entry 1). The yield increased at 40 �C (entry 2), but
there was no further improvement when the reaction was run at
60 �C (entry 3). We next examined the reaction performance in
different solvents (entries 4–8).26 Overall, the reaction was
robust in a range of solvents, providing good yield in both polar
aprotic (entries 4 and 5) and nonpolar solvents (entries 6 and 7).
Scheme 3 Substrate scope for the 1,1-dihydrofluoroalkylation of
thiols. Reaction conditions: SO2F2 (2.9 equiv.) was bubbled through
a solution of 9 (1 equiv.), DBU (5.9 equiv.) in 1 : 1 TFE/DMF (v/v), at 40 �C
for 3 minutes, and then the reaction was stirred for an additional
17min. All reactions were run on 1mmol scale of thiol unless otherwise
indicated. Isolated yields for the one-pot reaction are reported, with
19F NMR yields (using trifluorotoluene as the internal standard)
provided in parentheses. aThe isolated yield has been corrected to
account for disulfide or solvent impurities. See the ESI† for details. bThe
reaction was conducted on 0.5 mmol scale. cThe product was not
isolated due to volatility. dThe reaction was stirred for 2 hours. ePen-
tafluoropropanol : DMF (1 : 2 v/v) was used to form the reagent, and
then the thiol was added to the reaction mixture. The reaction was
stirred for 30 minutes.

This journal is © The Royal Society of Chemistry 2019
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DCM was not as effective for this transformation, with product
10a observed in only 38% yield (entry 8).27

The one-pot reaction generally affords high yields of the
desired thioalkylated product regardless of the steric bulk or the
electronics of the thiol (Scheme 3). Benzyl mercaptan (9a) and
furfuryl mercaptan (9b) were both efficiently triuoroethylated
to form the corresponding suldes 10a and 10b in good yields.
1-Decanethiol (9c), 2-phenylethanethiol (9d), methyl thio-
lglycolate (9e), and 1,9-nonanedithiol (9f) were effective
substrates for this transformation, affording mono- and dia-
lkylated products 10c–10f in 58% to 73% isolated yields. The
reaction was insensitive to steric bulk alpha to the thiol, with
both cyclohexyl mercaptan (9g) and triphenylmethanethiol (9h)
alkylated in comparable yields (10g and 10h, respectively).
Electron rich and electron poor thiophenol derivatives were well
tolerated, regardless of the position of the substituents (10i-q).
Importantly, longer chain 1,1-dihydrouoroalcohols, such as
2,2,3,3,3-pentauoropropanol (1b), were viable starting mate-
rials; however extended reaction times were required. The iso-
lated yields of 11a and 11c were increased to 90% and 89%,
respectively, by conducting the reaction in a sequential one-pot
manner,28 where sulfuryl uoride was rst bubbled through
a solution of DBU and triuoroethanol followed by the addition
of the requisite thiol.

We next examined the functional group tolerance of this new
thiol 1,1-dihydrouoroalkylation (Scheme 4). In substrates in
which there is competition between alcohol and thiol alkyl-
ation, the reaction cleanly afforded good yields of the desired
thiol 1,1-dihydrouoroalkylation products (10r and 11r).
Carboxylic acids were also tolerated, with good isolated yields of
Scheme 4 Functional group tolerance of the 1,1-dihydro-
fluoroalkylation reaction. Reaction conditions: SO2F2 (2.9 equiv.) was
bubbled through a solution of 9 (1 equiv.), DBU (5.9 equiv.) in 1 : 1 TFE/
DMF (v/v), at 40 �C for 3 minutes, and then the reaction was stirred for
an additional 17 min. All reactions were run on a 1 mmol scale unless
otherwise indicated. Isolated yields for the one-pot reaction are re-
ported, with 19F NMR yields (using trifluorotoluene as the internal
standard) provided in parentheses. aThe one-pot reaction was stirred
for 2 hours. bThe sequential, one-pot reaction was stirred for 30
minutes after addition of thiol. cThe product was converted to an HCl
salt, and the reported yield has been corrected for solvent impurities.

This journal is © The Royal Society of Chemistry 2019
thiol alkylated product 10s using either the standard one-pot or
the sequential one-pot protocols. The reaction was selective for
the thiol over potential competing reactivity at the nitrogen
atom of aniline and pyridine derivatives (10t, 11t, and 10u). As
primary nitrogen derivatives were competent nucleophiles in
reactions with triuoroalkyl uorosulfate, we next examined the
reaction of L-cysteine ethyl ester. Under our sequential one-pot
conditions, reactivity was only observed at sulfur to give 10v
in 63% isolated yield.29

Finally, we investigated whether we could achieve selective
1,1-dihydrouoroalkylation using glutathione (9w). Glutathione
is a challenging substrate as it has two carboxylic acids, an
amine, and two amides that may interfere with the desired thiol
uoroalkylation. Gratifyingly, under our sequential, one-pot
reaction conditions, the thiol was selectively alkylated in 92%
19F NMR yield and 59% isolated yield. Under similar reaction
conditions, triuoroethyl triate only afforded moderate yields
of 10w.

Intrigued by the chemoselectivity of the bis(triuoroethyl)
sulfate reagent (6a), we next investigated its selectivity
compared to triuoroethyl uorosulfate (5a)30 in a competition
experiment between benzyl mercaptan (9a) and piperidine (12)31

(Scheme 5).32 Addition of 9a and 12 to a preformed solution of
triuoroethyl uorosulfate and DIPEA afforded only a slight
preference for thiol alkylation (Scheme 5A). Triuoroethanol
(1a) was liberated in the course of the reaction, which is likely
Scheme 5 Competition experiments with sulfur and nitrogen
nucleophiles.

Chem. Sci., 2019, 10, 10331–10335 | 10333
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the result of the addition of thiol to the sulfur center of the
uorosulfate reagent.33,34 Better selectivity for thiol versus amine
alkylation could be achieved by adding DBU with 9a and 12;35

however, there was also a concomitant increase in the amount
of 1a (Scheme 5B). Increasing the amount of uorosulfate
reagent 5a resulted in more amine alkylated product (13), but
did not lead to a signicantly better yield of 10a. In contrast,
formation of bis(triuoroethyl) sulfate (6a) followed by addition
of 9a and 12 led to 90% yield of thiol alkylated product 10a, and
only trace amounts of 13 and triuoroethanol (Scheme 5C).
Further increasing the equivalents of the alkylating reagent led
to near quantitative yield of 10a (>97%). Even when pyrrolidine
(14), a more nucleophilic amine,36 was used in a competition
experiment, triuoroethyl sulde 10a was obtained almost
exclusively (Scheme 5D).37

Overall, we have developed a new method for the 1,1-dihy-
drouoroalkylation of thiols using a previously unexplored,
sulfuryl uoride derived bis(triuoroethyl) sulfate reagent (6a).
This protocol enables the one-pot activation and thiolation of
1,1-dihydrouoroalcohols to afford industrially relevant moie-
ties in high yields, regardless of the sterics or electronics of the
starting thiol. In situ generated bis(triuoroethyl) sulfate (6a) is
highly selective for thiols, even in the presence of unprotected
alcohols, carboxylic acids, or amines, allowing for possible late-
stage functionalization. Compared to triuoro-ethyl uo-
rosulfate, the new bis(triuoroethyl) sulfate reagent displays
superior thiol alkylation chemoselectivity over both competing
amine alkylation and reactivity at the sulfate center. Efforts to
further explore this new class of bis(1,1-dihydrouoroalkyl)
reagents in the context of other reactions are currently
underway.
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