This article can be cited before page numbers have been issued, to do this please use: H. Nicholas, M. Vonci, C. A. P. Goodwin, S. W. Loo, S. Murphy, D. Cassim, R. E. P. Winpenny, E. J. L. McInnes, N. F. Chilton and D. P. Mills, *Chem. Sci.*, 2019, DOI: 10.1039/C9SC03431E.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Electronic Structures of Bent Lanthanide(III) Complexes with Two N-Donor Ligands

Hannah M. Nicholas, Michele Vonci, Conrad A. P. Goodwin, Song Wei Loo, Siobhan R. Murphy, Daniel Cassim, Richard E. P. Winpenny, Eric J. L. McInnes, Nicholas F. Chilton and David P. Mills

Low coordinate metal complexes can exhibit superlative physicochemical properties, but this chemistry is challenging for the lanthanides (Ln) due to their tendency to maximize electrostatic contacts in predominantly ionic bonding regimes. Although a handful of Ln\(^{3+}\) complexes with only two monodentate ligands have been isolated, examples in the most common +3 oxidation state have remained elusive due to the greater electrostatic forces of Ln\(^{3+}\) ions. Here, we report bent Ln\(^{3+}\) complexes with two bis(silyl)amide ligands; in the solid state the Yb\(^{3+}\) analogue exhibits a crystal field similar to its three coordinate precursor rather than that expected for an axial system. This unanticipated finding is in opposition to the predicted electronic structure for two-coordinate systems, indicating that geometries can be more important than the Ln ion identity for dictating the magnetic ground states of low coordinate complexes; this is crucial transferable information for the construction of systems with enhanced magnetic properties.

Introduction

The remarkable optical, magnetic and catalytic properties of the lanthanides (Ln) have provided numerous technological applications,\(^1\) and design criteria now exist to build complexes with precise geometrical features that maximize these attributes.\(^2-10\) Highly axial Ln\(^{3+}\) complexes have recently become desirable targets for the single-molecule magnet (SMM) community as such geometries can provide maximum anisotropy for several Ln\(^{3+}\) ions.\(^2-5,11-13\) Indeed, we have previously predicted that a hypothetical near-linear Dy\(^{3+}\) cation \([\text{Dy}[\text{N}(_{\text{SiMe}}^3\text{SiMe})_2]_2]^+\) could exhibit a record energy barrier to the reversal of magnetization, providing the inspiration for this work.\(^14\) Some of us\(^15-18\) and others\(^19-20\) have recently shown that isolated axial Ln\(^{3+}\) metalloocene cations \([\text{Ln}(_{\text{Cp}}^3\text{Cp})_2]^+\) (Cp\(^8\) = substituted cyclopentadienyl) can be prepared by halide abstraction from \([\text{Ln}(_{\text{Cp}}^3\text{Cp})(X)]\) precursors by using the silylum reagent \([\text{H}(_{\text{SiEt}}^3\text{SiEt})_2][\text{B}(_{\text{CF}}_3\text{F}_4)]\).\(^21\) The axial \([\text{Dy}(_{\text{Cp}}^3\text{Cp})_2]^+\) members of this family\(^15,19,20\) together with a linear Tb\(^{3+}\) metalloocene\(^22\) exhibit the current highest blocking temperatures for SMMs.

The isolation of low coordinate Ln complexes is often synthetically challenging, as the predominantly ionic bonding regimes in these systems favour high coordination numbers to maximize the number of electrostatic interactions between ligand donor atoms and relatively large Ln cations.\(^8\) Seminal work by Bradley in the early 1970s provided the trigonal pyramidal Ln complexes, \([\text{Ln}[\text{N}(_{\text{SiMe}}^3\text{Me})_2]_2]_2\), which exhibit additional Ln–C\(β\)–N\(β\) interactions that stabilize the coordinatively unsaturated Ln\(^{3+}\) centres.\(^23,24\) In the interim, numerous trigonal pyramidal and planar Ln\(^{3+}\) and Ln\(^{2+}\) complexes have been accessed by using a combination of sterically demanding ligands and strict anaerobic conditions.\(^25,26\) In contrast, there are only a handful of structurally characterised monomeric Ln\(^{2+}\) complexes with only two formally monodentate ligands; the majority contain intramolecular \(π\)-arene contacts,\(^27-31\) whilst bent \([\text{Ln}(_{\text{Cp}}^3\text{SiMe})_2]_2\) (Ln = Sm, Eu, Yb)\(^32-34\) and near-linear \([\text{Ln}(_{\text{SiPr}}_3)_2]_2\) \((1-\text{Ln}; \text{Ln} = \text{Sm}, \text{Eu}, \text{Tm}, \text{Yb})\)\(^34,35\) have additional electrostatic interactions between the ligand \(π\)-bonding frameworks and Ln\(^{3+}\) centres. Ln\(^{2+}\) complexes with only two monodentate ligands have remained elusive to date as more Lewis acidic Ln\(^{3+}\) centres favour higher coordination numbers.\(^1\)

In 2018, some of us showed that \(1-\text{Sm}\) can be easily oxidized by a variety of reagents to afford helerotic Sm\(^{3+}\) halide complexes \([\text{Sm}[\text{N}(_{\text{SiPr}}_3)_2](X)]\) \((X = \text{F, Cl, Br, I})\).\(^36\) Herein we report the synthesis of the bent Ln\(^{3+}\) complexes \([\text{Ln}(_{\text{N}(_{\text{SiPr}}_3)_2}]_2)[\text{B}(_{\text{CF}}_3\text{F}_4)]\) \((2-\text{Ln}; \text{Ln} = \text{Sm}, \text{Tm}, \text{Yb})\) by an analogous halide abstraction from \([\text{Ln}(_{\text{N}(_{\text{SiPr}}_3)_2}]_2)(X)\). \((3-\text{Ln}; X = \text{Cl, Ln} = \text{Sm}, \text{Tm}, \text{Yb})\) and \((4-\text{Yb}; X = \text{F, Ln} = \text{Yb})\) by using \([\text{H}(_{\text{SiEt}}^3\text{SiEt})_2][\text{B}(_{\text{CF}}_3\text{F}_4)]\); \(3-\text{Tm}\) and \(3-\text{Yb}\) are prepared by the oxidation of \([\text{Ln}(_{\text{N}(_{\text{SiPr}}_3)_2}]_2)\) \((1-\text{Ln}; \text{Ln} = \text{Sm}, \text{Tm}, \text{Yb})\) with \(\text{BuCl}\) and \([\text{Fe}(_{\text{Cp}}^3\text{Cp})]\) \([\text{PF}_6])\), respectively. We have probed the electronic structures of these exotic yet structurally simple complexes by magnetic and EPR methods, supported by \(^{37}\) initio calculations. This allows us to probe the effect of approximately linear, bent or planar geometries on the ligand field splitting. Simple electrostatic arguments\(^37\) based on aspherical electron density distributions in the Russell Saunders sub-levels\(^37\) predict that \(2-\text{Ln}\) and \(3-\text{Ln}\) should have opposite senses of magnetic anisotropy for a given \(4f\) configuration: we
find that this is not always the case, and in fact can vary markedly with the degree of bending of the N–Ln–N angle.

Results and discussion

Synthesis

Oxidation of the Ln3+ complexes 1-Ln with either BuCl (Ln = Sm, Tm) or [FeCp2][PF6] (Yb) in toluene gave the heteroleptic Ln3 complexes 3-Ln in good yields (58–72%) following recrystallization from hexane (Scheme 1); similar oxidative procedures on Ln2 bis(silyl)amide complexes have recently been applied by Anwander and co-workers.38 The Eu3+ analogue 3-Eu could not be accessed by analogous methods, with crystals of 1-Eu the only isolable product from numerous attempts to oxidize 1-Eu with BuCl, [FeCp2][PF6] and Ph3CCl. This can be attributed to the preference of Eu to exhibit the +2 oxidation state over all other Ln, as illustrated by standard reduction potentials, E0, Ln3+ → Ln2+: −0.35 V (Eu), −1.15 V (Yb), −1.55 V (Sm), −2.3 V (Tm).39 Halide abstraction of 3-Ln using [H(SiEt2)2][B(C6F5)4] in benzene (Sm, Tm) or toluene (Yb) yielded the bent Ln3 complexes, 2-Ln, in moderate yields (46–70%) after recrystallization from DCM layered with hexane (Scheme 1). The silylum reagent was selected for its solubility in non-coordinating solvents and for the provision of a large thermodynamic driving force for the reaction.40

NMR spectroscopy

The paramagnetic Ln3+ centres in 2-Ln and 3-Ln engender large pseudocontact shifts and significant signal broadening in NMR spectra;41,42 the spectra that exhibited signals are compiled in supplementary Figures S4–S13. 1H NMR spectra were recorded from +200 to −200 ppm and for 2-Sm complexes were observed at 0.43 ppm and −5.27 ppm, corresponding to the methyl and methine protons, respectively, of the bis(silyl)amide ligand. For both 2-Tm and 2-Yb only one broad peak was observed at 25.04 ppm and 11.02 ppm, respectively, which we tentatively assign to the methyl protons as these are more numerous than methine protons. No signals were observed for 2-Ln by 29Si(1H) and 13C(1H) NMR spectroscopy. Similarly, no signals were observed for the [B(C6F5)4]− anion in the 13C(1H) NMR spectra of 2-Ln; however for 2-Sm, 2-Tm and 2-Yb, the 19F(1H) NMR spectra displayed sharp peaks at −16.76, −12.35 and −14.67 ppm, respectively. The 19F(1H) NMR spectra of 2-Sm and 2-Yb each displayed three signals characteristic of the [B(C6F5)4]− anion (−133.17, −163.71 and −167.60 ppm for 2-Sm and −131.58, −162.00 and −165.15 ppm for 2-Yb), but only one signal was observed in the 19F(1H) NMR spectrum of 2-Tm (−128.51 ppm). No signals corresponding to 3-Ln could be seen in the 1H or 13C(1H) NMR spectra for all 3-Ln, with only diamagnetic impurities observed; no features were seen in the 19F NMR spectrum of 3-Yb. Given the paucity of information that could be extracted by NMR spectroscopy for 2-Ln and 3-Ln, we did not conduct variable temperature studies as these did not prove fruitful for 1-Ln previously;35 instead we have analysed metal-ligand interactions by computational methods (see below).

Single crystal XRD

The solid state structures of 2-Ln and 3-Ln were determined by single crystal X-ray diffraction. Complexes 2-Tm and 3-Tm are depicted in Figure 1 and selected metrical parameters are compiled in Table 1; see supplementary Figures S1–S3 and ref. 35 for the structures of other complexes. Complexes 2-Ln are...
structurally analogous, though 2-Sm and 2-Yb both adopt the P21/n space group and 2-Tm and 2-Yb crystallizes in P–1, and one molecule of DCM was present in the crystal lattice for both 2-Tm and 2-Yb, but is absent in crystals of 2-Sm. The \([\text{Ln(N(SiPr_3)_3)_3}]^+\) cations in 2-Ln exhibit bent geometries defined by the two Ln–N bonds, with N–Ln–N angles of 131.02(8)^\circ for 2-Sm, 125.49(9)^\circ for 2-Tm, and 127.7(2)^\circ for 2-Yb, which are in contrast to the near-linear geometries seen for 1-Ln (range 166.01(16)–175.5(2)^\circ).\(^{14,35}\) We attribute the bent geometries of 2-Ln to the Ln^3+ cations being more Lewis acidic than the Ln^2+ centres in 1-Ln,\(^{14,35}\) as this permits the more electron deficient Ln^{3+} centres to form additional stabilizing electrostatic contacts with methyl and methylene groups of the \([\text{Ni(SiPr_3)_3}]\) ligands. A permanent dipole is formed between the two formally anionic N centres and Ln^{3+} ion upon bending; such dipolar stabilization mechanisms have previously been used to explain the pyramidal geometries of some f-block tris-silylamides.\(^{43}\) Crystal packing forces and inter-ligand dispersion forces also likely make important contributions.\(^{44}\) This subtle interplay of forces is particularly apparent for 2-Yb (see below).

As with the 1-Ln series,\(^{14,35}\) the heavier Ln^{3+} centres in 2-Ln exhibit more bent N–Ln–N angles, which we again ascribe to the greater charge density of smaller Ln^{3+} cations driving stronger electrostatic interactions with ligand C–H bonds. The \([\text{Ni(SiPr_3)_3}]\) ligands in 2-Ln are staggered with respect to each other, with the mean Ln–N bond lengths decreasing with Ln^{3+} atomic radii: 2.243(4) Å (Sm), 2.156(3) Å (Tm) and 2.148(6) Å (Yb). It may appear counterintuitive that the Ln–N bonds in 2-Ln are shorter than those in 1-Ln (2.483(6) Å, Sm; 2.373(2) Å, Tm; and 2.384(3) Å, Yb)\(^{14,35}\) given the decreased N–Ln–N angles in 2-Ln compared with 1-Ln, but shorter Ln–N bonds for 2-Ln are expected from an increase in Ln oxidation state. Three Si–C bonds are oriented towards the Ln^{3+} centre in each \([\text{Ln(N(SiPr_3)_3)_3}]^+\) cation; these are assigned as Ln^3+-C(Si) agostic-type interactions by analogy with those discussed for three-coordinate silyl-substituted Ln complexes.\(^{45,48}\) These interactions lead to three relatively long β-Si–C bonds, three short Ln–Si distances, six Ln–C and six Ln–H electrostatic contacts with methyl/methylene groups (e.g. for 2-Tm: range Tm⋯C: 2.731(3)–3.051(3) Å; range Tm⋯H: 2.200–2.495 Å; range Tm⋯Si: 3.066(2)–3.178(2) Å; mean β-Si–C: 1.938(3) Å; range other Si–C: 1.889(3)–1.917(3) Å). The \([\text{B(C_6F_5)_4}]^+\) anions do not coordinate; the shortest Ln⋯F distance for 2-Yb is 4.627(4) Å, whereas for 2-Sm and 2-Tm the shortest Ln⋯F distances are longer than 7.957(2) Å and 7.715(2) Å, respectively. Using the IUPAC definition of coordination number as the number of metal-ligand o-bonds,\(^{36}\) the cations of 2-Ln can be considered to be formally two-coordinate as they each exhibit two Ln–N bonds; we probed the numerous additional Ln⋯C–Si\(^\beta\) electrostatic interactions further through calculations as these could affect the magnetic properties of the proposed \([\text{DYn(N(SiPr_3)_3)_3}]^+\) cation (see below).\(^{12,14}\)

The structure of 3-Sm has previously been reported,\(^{36}\) but will be discussed together with 3-Tm and 3-Yb as all three complexes are structurally similar. Complex 3-Yb crystallizes in P–1, whilst 3-Sm and 3-Tm are in the P2_1/c space group. Complexes 3-Ln all crystallize with distorted trigonal planar geometries, with the Ln^{3+} centres positioned out of the plane defined by the two nitrogen atoms and halide (distances of Ln from Ni(X) plane: 0.245(2) Å for 3-Sm, 0.3292(9) Å for 3-Tm and 0.312(2) Å for 3-Yb). As expected the Yb–F bond length of 3-Yb (1.983(2) Å) is shorter than the Ln–Cl bond lengths of 3-Sm (2.5813(7) Å) and 3-Tm (2.4832(5) Å) due to the smaller size of the fluoride anion; this also leads to differing N–Ln–N angles (3-Sm: 128.24(7)^\circ; 3-Tm: 129.39(5)^\circ; 3-Yb: 138.71(9)^\circ). The mean Sm–N bond length of 3-Sm (2.306(3) Å) is significantly longer than the mean Ln–N bond lengths of 3-Tm (2.229(3) Å) and 3-Yb (2.231(4) Å), which corresponds with earlier Ln^{3+} ions being larger.\(^{1}\) The Ln–N bond lengths in 3-Ln are longer than those in 2-Ln, as expected from increasing the formal coordination number from two to three. Finally, as with 2-Ln the coordination spheres of the Ln^{3+} centres of 3-Ln are completed by multiple electrostatic contacts with methine and methyl groups. These are also likely to arise from Ln⋯C–Si\(^\beta\) agostic-type interactions, though in 3-Ln there are fewer, and the Tm⋯C/H/Si distances are generally longer due to the presence of a halide (e.g. for 3-Tm: range three Tm⋯C: 2.874(2)–3.261(2) Å; range three Tm⋯H: 2.324–2.467 Å; range three Tm⋯Si: 3.195(2)–3.354(2) Å; mean three β-Si–C: 1.928(3) Å; range other Si–C: 1.899(2)–1.913(2) Å).

UV-Vis-NIR spectroscopy

Dilute solutions of 2-Sm, 2-Tm and 2-Yb in DCM are pale red, green and purple, respectively, and their electronic absorption spectra are dominated by strong ligand to metal charge transfer bands tailing into the UV region (Figure 2 and supplementary Figures S19–S21). Complex 2-Sm (4F) exhibits the most intense absorption in the visible region \(\lambda_{\text{max}} = 411\ nm\ (24,300\ cm^{-1}),\ e = 511\ M^{-1}\ cm^{-1}\), whilst 2-Tm and 2-Yb exhibit weaker visible absorptions \(\lambda_{\text{max}} = 373\ nm\ (26,800\ cm^{-1}),\ e = 275\ M^{-1}\ cm^{-1}\), \(\lambda_{\text{max}} = 425\ nm\ (23,500\ cm^{-1}),\ e = 309\ M^{-1}\ cm^{-1}\), \(\lambda_{\text{max}} = 563\ nm\ (17,800\ cm^{-1}),\ e = 249\ M^{-1}\ cm^{-1}\). Weak absorptions \(e < 100\ mol^{-1}\ dm^{3}\ cm^{-1}\) were seen for all 2-Ln in the near-IR region, corresponding to Laporte-forbidden f–f transitions: \(\lambda_{\text{max}} = 1,370\ nm\ (7,300\ cm^{-1}),\ e = 14\ M^{-1}\ cm^{-1}\) and 1,285 nm (7,782 cm\(^{-1}\), \(e = 13\ M^{-1}\ cm^{-1}\), which arise due to \(\text{H}_2\text{Si}_2 → 6f\) transitions; \(\lambda_{\text{max}} = 1,549\ nm\ (6,456\ cm^{-1}),\ e = 6\ M^{-1}\ cm^{-1}\) and \(\lambda_{\text{max}} = 1,383\ nm\ (7,230\ cm^{-1}),\ e = 15\ M^{-1}\ cm^{-1}\) which arise due to ligand field-split \(\text{H}_2\text{Si}_2 → \text{H}_4\) transitions; 2-Yb has a broad feature at \(\lambda_{\text{max}} = 1,015\ nm\ (9,552\ cm^{-1})\),
Magnetism and EPR spectroscopy

Linear and trigonal-planar environments should stabilize oblate- and prolate-spheroid electron density distributions, respectively, along the axis of quantization.\(^2\)\(^-\)\(^5\) This should then stabilize either the minimum or maximum \(|m_I|\) sublevels of the \(2\)\(^{23}\)\(^1\)\(\text{I}\) Russell Saunders ground term depending on the \(4\)\(^n\) configuration.\(^2\)\(^-\)\(^5\) The ions studied here are \(4\)\(^F\)\((\text{Sm}^{3+})\), \(4\)\(^F\)\(^2\)\((\text{Tm}^{3+})\) and \(4\)\(^F\)\(^3\)\((\text{Yb}^{3+})\) and in each case the electron density distribution in the maximum \(|m_I|\) states is prolate, hence an ideal linear geometry at Ln should give the maximum \(|m_I| = \pm 1/2\) (Kramers) or 0 (non-Kramers) ground sublevels, along with easy-plane magnetic anisotropy. Correspondingly, ideal trigonal-planar geometry at Ln should give the minimum \(|m_I| = J\) ground levels and easy-axis magnetic anisotropy. These states can be probed by magnetometry and EPR spectroscopy. Room temperature solution phase magnetic moments (where \(\chi\) is the molar magnetic susceptibility, \(T\) is the temperature) for \(2\)-Ln and \(3\)-Ln determined by the Evans method\(^8\) are in good agreement with those from solid-state SQUID magnetometry (Table 2 and supplementary Figures S24–S35). We present the magnetic data for \(2\)-Ln and \(3\)-Ln pairs for each Ln\(^{3+}\) ion in turn.

Complexes \(2\)-Yb and \(3\)-Yb have room temperature \(\chi_T\) values of 1.98 and 1.93 \(\text{cm}^3\) \(\text{mol}^{-1}\) \(\text{K}^{-1}\), respectively (supplementary Figures S29 and S35): these are lower than the free-ion \(4\)\(^F\)\(^3\)\((\text{Yb}^{3+})\) value due to substantial crystal field effects, as supported by CASSCF-SCF calculations which gives the total spread of the \(J = 7/2\) term approaching 2,000 \(\text{cm}^{-1}\) (supplementary Table S3). The

\[
\chi_T(\text{cm}^3\text{mol}^{-1}\text{K}) = 0.09^{a}\ 1.98\ 1.93\ 0.09^{a}\ 7.15\ 2.57\ 7.15\ 2.57
\]

\(^{a}\)Theoretical value for ground spin orbit multiplet in the absence of a ligand field.

\(2\)-Sm, \(3\)-Sm and \(3\)-Yb are pale yellow, green and red, respectively, and as with \(2\)-Ln their absorption spectra, are dominated by ligand to metal charge transfer bands tailing in from the UV region (Figure 3, supplementary Figures S22–S23 and ref.\(^{36}\)) \(2\)-Sm: \(\lambda_{\max} = 376\ \text{nm}\ (26,595\ \text{cm}^{-1})\), \(\epsilon = 713\ \text{M}^{-1}\ \text{cm}^{-1}\); \(3\)-Sm: \(\lambda_{\max} = 327\ \text{nm}\ (30,581\ \text{cm}^{-1})\), \(\epsilon = 378\ \text{M}^{-1}\ \text{cm}^{-1}\); \(3\)-Yb:

\(\lambda_{\max} = 418\ \text{nm}\ (23,923\ \text{cm}^{-1})\), \(\epsilon = 250\ \text{M}^{-1}\ \text{cm}^{-1}\); \(3\)-Sm exhibits three main peaks at \(\lambda = 7,246, 7,710\) and 8,439 \(\text{cm}^{-1}\) due to \(4\)\(^H_{5/2} \rightarrow 4\)\(^F\)\(^1\) transitions, however there appear to be numerous weaker transitions. Complex \(3\)-Tm shows two main absorptions at \(\lambda_{\max} = 1506\ \text{nm}\ (6,640\ \text{cm}^{-1})\), \(\epsilon = 47\ \text{M}^{-1}\ \text{cm}^{-1}\) and \(\lambda_{\max} = 777\ \text{nm}\ (12,870\ \text{cm}^{-1})\), \(\epsilon = 86\ \text{M}^{-1}\ \text{cm}^{-1}\), corresponding to \(4\)\(^H_{5/2} \rightarrow 4\)\(^H_{7/2}\) and \(4\)\(^H_{5/2} \rightarrow 4\)\(^F\)\(^2\) transitions, however again these are structured due to ligand field splitting. Complex \(3\)-Yb displays two absorptions at \(\lambda_{\max} = 973\ \text{nm}\ (10,277\ \text{cm}^{-1})\), \(\epsilon = 22\ \text{M}^{-1}\ \text{cm}^{-1}\) and \(\lambda_{\max} = 860\ \text{nm}\ (11,627\ \text{cm}^{-1})\), \(\epsilon = 17\ \text{M}^{-1}\ \text{cm}^{-1}\) corresponding to ligand field-split \(4\)\(^F\)\(^2\)\((\text{Yb}^{3+})\) transitions. The f-f transitions are at higher energy for \(3\)-Ln, presumably due to stronger ligand fields; this is most clear for the Yb pair, where for \(2\)-Yb the lowest energy transition is at 9,500 \(\text{cm}^{-1}\), whilst this is seen at 10,200 \(\text{cm}^{-1}\) for \(3\)-Yb.
Table 3. Comparison of EPR data and metrical parameters for isoelectronic 1-Tm, 2-Yb and 3-Yb.

<table>
<thead>
<tr>
<th>Complex</th>
<th>N–Ln–N</th>
<th>Calculated g-values</th>
<th>Measured g-values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>g1</td>
<td>g2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>g1</td>
<td>g2</td>
</tr>
<tr>
<td>1-Tm35</td>
<td>166.89(6)</td>
<td>5.49</td>
<td>3.60</td>
</tr>
<tr>
<td>2-Yb</td>
<td>127.7(2)</td>
<td>7.12</td>
<td>1.14</td>
</tr>
<tr>
<td>3-Yb</td>
<td>138.71(9)</td>
<td>7.90</td>
<td>0.10</td>
</tr>
</tbody>
</table>

The similar properties of 2-Yb and 3-Yb were confirmed by low-temperature EPR spectroscopy (Figure 4 and Table 3): solid 2-Yb has near-axial g-values of $g_1 = 6.80, g_2 = 1.46$ and $g_3 = 1.09$, whilst solid 3-Yb gives $g_1 = 7.11$ with $g_{2,3}$ not observed but < 1. Approximating $g_1 = g_{11}$ and $g_{2,3} = g_{11}$, this $g_{11} >> g_{11}$ pattern clearly demonstrates easy-axis magnetic anisotropy, consistent with a high $|m_1|$ ground state doublet (the pure $±7/2$ doublet would have $g_1, g_2 = 8.0, 0$). This is expected for trigonal planar 3-Yb, but not for 2-Yb which has only two N-donors that we would expect to stabilize the low $|m_1|$ doublet. Hence, for 2-Yb it appears that the N–Yb–N angle has sufficiently deviated from linearity such that the crystal field is still quantized along the axis normal to the YbN$_2$ plane despite the loss of the in-plane fluoride from 3-Yb. Clearly this result is very different from the easy-plane isoelectronic near-linear Tm$^{3+}$ compound 1-Tm (Figure 4a). To further probe this finding, we examined the EPR spectra of the Yb$^{3+}$ compounds in solution. EPR spectra of a frozen solution of 3-Yb is very similar to the solid state, with $g_1 = 7.51$ ($g_{2,3}$ not observed), however, a frozen solution of 2-Yb gives $g_1 = 4.38, g_2 = 3.99$ and $g_3 = 1.21$ (Figure 4), which unambiguously shows that there has been a switch to easy-plane anisotropy (now approximate $g_{11} = g_1$, and $g_{2,3} = g_{11}$) as the $g_{11} << g_{11}$ pattern indicates stabilization of a low $|m_1|$ doublet (the pure $±7/2$ doublet would have $g_1, g_2 = 1.14, 4.17$). Thus, the structure of 2-Yb must relax in solution such that the N–Yb–N angle opens up and there is a flip of the orientation of the axis of quantization from being normal to the YbN$_2$ plane to lying along the N···N direction. This is supported by CASSCF-SO results based on the crystal structures: these give ground Kramers doublet $g_1 = 7.12, g_2 = 1.14$ and $g_3 = 0.55$ for 2-Yb, and $g_1 = 7.90, g_2 = 0.10$ and $g_3 = 0.07$ for 3-Yb (Table 3), with g_1 (g_{11}, defining the axis of quantization) oriented normal to the YbN$_2$(F) plane.
(Figure 5). The ground doublet is 99% $|m_J| = 7/2$ in character for 3-Yb, and slightly more mixed at 85% $|m_J| = 7/2$ for 2-Yb due to the competing components of the crystal field (supplementary Table S3).

Complex 2-Tm has a χT value of 6.86 cm$^{-3}$ mol$^{-1}$ K at 300 K, in good agreement with the free-ion 4f13 3H$_4$ value. χT decreases rapidly with decreasing temperature due to depopulation effects within the multiplet, reaching ca. 0.8 cm$^{-3}$ K mol$^{-1}$ at 2 K (supplementary Figure S27). $M(H)$ curves measured at 2 and 4 K are superimposable and fail to saturate (supplementary Figure S26), suggesting a singlet non-magnetic ground state for this non-Kramers system. CASSCF-SO calculations, performed on the two crystallographically non-equivalent molecules in the unit cell of 2-Tm, confirm this, giving a singlet ground state which is separated from the first excited level by ca. 14.5 cm$^{-1}$ (average for two independent molecules, supplementary Table S3). Magnetic data for 3-Tm are markedly different: χT (6.31 cm$^{-3}$ mol$^{-1}$ K at 300 K) only decreases slowly on cooling, reaching 5.48 cm$^{-3}$ mol$^{-1}$ K at 2 K (supplementary Figure S33), and $M(H)$ at 2 and 4 K saturate at 3.3 μ_B above ca. 4 T (supplementary Figure S32), this is direct evidence of a pseudo-doublet magnetic ground state. Indeed, CASSCF-SO calculations give a ground state pseudo-doublet for 3-Tm with an intra-doublet gap of only 0.13 cm$^{-1}$. The pseudo-doublet wave functions are mixtures of $m_J = +6$ and -6, which resolve into a pure $m_J = +6$ and $m_J = -6$ pair (98% purity) in a small applied magnetic field (supplementary Table S5–S6). These results are supported by EPR spectroscopy of 2-Tm and 3-Tm in the solid state. We find that 2-Tm is EPR silent at 5 K (supplementary Figure S37), consistent with the magnetic data and as predicted by CASSCF-SO, whilst 3-Tm has a near-zero-field EPR transition at X-band (ca. 9.39 GHz; supplementary Figure S38) indicating a zero-field splitting between the pseudo-doublet states of ca. 0.3 cm$^{-1}$, in excellent agreement with magnetometry and CASSCF-SO.

For 2-Sm and 3-Sm the room temperature χT products are 0.23 and 0.24 cm$^{-3}$ mol$^{-1}$ K, respectively, higher than the free-ion value for the 4f13 4H$_{15/2}$ multiplet (supplementary Figures S25 and S31). This is indicative of low-lying, thermally accessible excited states as is commonly observed for Sm$^{3+}$ (the 4H$_{15/2}$ term lies at only ca. 1000 cm$^{-1}$). On cooling, χT steadily decreases to 0.05 and 0.02 cm$^{-3}$ mol$^{-1}$ K, respectively, at 2 K. For both 2-Sm and 3-Sm, the molar magnetization at low temperatures fails to saturate as a function of applied magnetic field (H), reaching ca. 0.08 and 0.16 μ_B, respectively, at 2 K and 7 T (supplementary Figures S24 and S30). In both cases, the traces for 2 and 4 K are distinct. These data are consistent with low magnetic moment Kramers doublet ground states. The 4H$_{15/2}$ ground term has a low Landé factor of $g_L = 2/7$, hence the effective g-factors for all the Kramers doublets are low. The extreme cases of pure $|m_J| = 1/2$ and 5/2 doublets would have $g_L = 0.29, 0.86$ and 1.43, respectively, and these would give rather similar and low magnetic moments for powders. Unfortunately, we were unable to obtain reliable EPR spectra for 2-Sm or 3-Sm. CASSCF-SO calculations give a reasonable agreement with the experimental $\chi(T)$ and $M(H)$ curves for both 2-Sm and 3-Sm (supplementary Figures S24–S25 and S31–S31) and indicate that the ground state g-tensor for 2-Sm is strongly rhombic, whereas in the case of 3-Sm the main magnetic axis is perpendicular to the N$_2$(Cl) plane with strongly easy-axis character.

Comparing 2-Yb with isoelectronic 1-Tm, the N–Ln–N angle in 1-Tm is much closer to linear at 166.89(6°) [cf. 127.7(2°) for 2-Yb] and it has easy-plane magnetic anisotropy as shown by EPR spectroscopy in both solid and frozen solution state with $g_1 = 5.6, g_2 = 3.0$ and $g_3 = 1.0$. CASSCF-SO calculations for the crystal structure of 1-Tm give $g_1 = 5.49, g_2 = 3.60$ and $g_3 = 1.15$, with g_2 oriented along the N–Tm–N direction, resulting from a 99% pure $|m_J| = 1/2$ ground doublet. In order to test the importance of the identity of the metal ion vs. the N–Ln–N angle, we performed further CASSCF-SO calculations on the structure of 1-Tm (N–Ln–N 166.89(6)°) where we substitute Yb$^{2+}$ in place of Tm$^{3+}$, and on the structure of 2-Yb (N–Yb–N 127.7(2)°) where we substitute Tm$^{3+}$ in place of Yb$^{2+}$ (note the change in ion charge to maintain an f13 configuration in both cases). We find the former to have an $|m_J| = 1/2$ ground doublet ($g_1 = 5.34, g_2 = 3.67, g_3 = 1.16$), and the latter to have an $|m_J| = 7/2$ ground doublet ($g_1 = 6.76, g_2 = 1.97, g_3 = 0.82$): thus, it is the structure that dictates these differing properties for f13 configurations and it is not due to the identity of the metal ion. Nocton and co-workers have recently made similar observations for isoelectronic f13 Tm$^{3+}$ and Yb$^{2+}$ 18-crown-6 complexes. Whilst such reasoning is logical, it is not a phenomenon that has been observed frequently with real-world chemical systems.

Ab initio calculations

To clarify the dependence of the magnetic anisotropy on the N–Ln–N angle in 2-Yb we have carried out a systematic ab initio investigation. CASSCF-SO calculations have been performed on model structures based on the experimental structure of 2-Yb in which the N–Ln–N angle has been varied between 180° and 110°. The calculated g-values of the ground Kramers doublet of Yb$^{2+}$ show a clear dependence of the type of magnetic anisotropy on the N–Ln–N angle, with the switching point located between 140° and 150° (Figure 6): easy-axis-like ($g_1 > g_2 > g_3$) in place of Tm$^{3+}$ in the N–Ln–N angle.
the molecular geometry of Sm complex where the ligands have been trimmed to {N(SiH

we have performed a CASSCF-SO calculation on a model

to 133° (supplementary Table S13). This indicates that the

Thus the preference for bent geometries in [Ln(N(SiPr3))2]3+
cations can be accredited to the formation of multiple

dominates the electronic structure for f

Finally, as this study was driven by our attempts to isolate a

Given that recently isolated linear Dy3+

Alternative pathways will not be considered,

Experimental

Materials and methods.

All manipulations were conducted under argon with the

strains. Dichloromethane (DCM) was dried over CaH2 and was

stored over 4 Å molecular sieves. All solvents were degassed

over K and CD2Cl2. To examine the impact

Conclusions

The preference for bent geometries in [Ln(N(SiPr3))2]3+
cations can be accredited to the formation of multiple

electrostatic contacts between the highly Lewis acidic Ln3+

We have conducted the same angular-dependent study of the electronic structure of 2-Tm as for 2-Yb. The N–Tm–N angle has been varied between 180° and 120° (supplementary Figure S36). Our results show that there is also a characteristic change in electronic structure for f

As a bent [Dy(N(SiPr3))2]3+ framework is of sufficient steric bulk, a linear geometry is not enforced as the coordination sphere is flexible enough to be rearranged to increase the strength of ligand-metal electrostatic and ligand-ligand London dipole interactions. Given that recently isolated linear Dy3+ and Tb3+ metalloocene systems have been proposed to exhibit significant s-d mixing,22 it can be inferred that combining electronic stabilization with similarly bulky but more rigid ligand frameworks may be a useful strategy in the future pursuit of linear two-coordinate Ln3+ complexes.

Figure S39 and Table S12), and thus bent two-coordinate Dy3+ complexes of the type presented here are still exciting synthetic targets.
freeze-pump-thaw cycles before use. 1-Ln,14,35 [H(SiEt$_2$)$_3$][B(C$_6$F$_5$)$_4$]$^{2+}$ and 3-Sm$^{3+}$ were prepared according to literature methods.

1H (400 MHz), 13C(1H) (100 MHz and 125 MHz), 13C(13F) (125 MHz), 11B(1H) (128 MHz) and 19F(1H) (376 MHz) NMR spectra were obtained on an Avance III 400 MHz or 500 MHz spectrometer at 298 K. These were referred to the solvent used, or to external TMS (1H, 13C), H$_2$BO$_3$:D$_2$O (18B) or C$_6$H$_5$F$_2$:CDCl$_3$ (19F). UV-Vis-NIR spectroscopy was performed on samples in Youngs tap-attached 10 mm path length quartz cuvettes on an Agilent Technologies Cary Series UV-Vis-NIR Spectrophotometer from 175-3300 nm. FTIR spectra were variously recorded as Nujol mulls in KBr discs on a Perkin Elmer Spectrum RX1 spectrometer or as microcrystalline powders using a Bruker Tensor 27 ATR-Fourier Transform infrared (ATR-FTIR) spectrometer. EPR spectroscopic measurements were performed at X-band using a Bruker super-high-Q X-band resonator attached to a Bruker EMX bridge, on solid state and frozen solution samples contained in flame-sealed quartz EPR tubes. Elemental analysis results for 2-Yb reproducibly gave low carbon values; this has consistently been seen for [N(SiPr$_3$)$_2$] complexes and we have previously attributed this observation to the formation of carbides from incomplete combustion.14,35,36,56 However, all other analytical data obtained are consistent with the bulk purity of 2-Ln and 3-Ln.

5[Mn(N(SiPr$_3$)$_2$)$_2$][B(C$_6$F$_5$)$_4$] (2-Sm): Benzenen (30 mL) was added to 3-Sm (0.843 g, 1 mmol) and [H(SiEt$_2$)$_3$][B(C$_6$F$_5$)$_4$] (0.911 g, 1 mmol) and the resultant orange reaction mixture was stirred overnight at room temperature. The solvent was removed in vacuo and the oily red solid was washed with hexane (3 x 20 mL) and dried in vacuo for 1 h. The resultant red solid was cooled to $78 ^\circ$C, dissolved in DCM (5 mL), layered with hexane (10 mL) and stored overnight at $–25 ^\circ$C to yield yellow-green crystals of 2-Tm (1.540 g, 46%). Anal. Calcd (%) for [Co$_6$H$_8$N$_3$Si$_3$BF$_{20}$]Tm: C, 46.06; H, 3.54; N, 0.27; Found: C, 46.01; H, 5.55; N, 1.70. γT product (Evans method, 298 K, [D$_2$]DCM): 6.44 cm$^{-1}$ mol$^{-1}$ K$^{-1}$. 1H NMR ([D$_2$]DCM, 400 MHz, 298 K): δ = 25.04 (br, $v_{1/2}$ ~ 800 Hz, CH(C$_6$F$_5$)). 13B(1H) NMR ([D$_2$]DCM, 128 MHz, 298 K): δ = –12.39 (s). 19F NMR ([D$_2$]DCM, 376 MHz, 298 K): δ = –128.51 (br, o-F, o-F). The paramagnetism of 2-Tm precluded assignment of its 13C(1H) and 29Si NMR spectra. IR (Nujol): 2359 (m), 2340 (m), 1643 (w), 1514 (m), 980 (m), 918 (w), 897 (w), 800 (w), 773 (w), 756 (w), 700 (w), 683 (w), 667 (w), 660 (w) cm$^{-1}$.

5[Yb(N(SiPr$_3$)$_2$)$_2$][B(C$_6$F$_5$)$_4$] (2-Yb): Toluene (15 mL) was added to a pre-cooled (–78 °C) mixture of 3-Yb (0.425 g, 0.5 mmol) and [H(SiEt$_2$)$_3$][B(C$_6$F$_5$)$_4$] (0.455 g, 0.5 mmol). The resultant dark purple reaction mixture was allowed to warm to room temperature slowly and stirred overnight. The solvent was removed in vacuo and the oily dark purple solid was washed with hexane (3 x 20 mL) and dried in vacuo for 1 h. The resultant dark purple solid was cooled to $–78 ^\circ$C, dissolved in DCM (1.5 mL), layered with hexane (10 mL) and stored at $–35 ^\circ$C overnight to yield dark purple crystals of 2-Yb (0.5272 g, 70%). Anal. Calcd (%) for [Co$_6$H$_8$N$_3$Si$_3$BF$_{20}$]Yb: C, 45.94; H, 5.44; N, 1.76; Found: C, 44.81; H, 5.18; N, 1.58. γT product (Evans method, 298 K, [D$_2$]DCM): 2.13 cm$^{-1}$ mol$^{-1}$ K$^{-1}$. 1H NMR ([D$_2$]DCM, 400 MHz, 298 K): δ = 11.02 (br, $v_{1/2}$ ~ 400 Hz, CH(C$_6$F$_5$)). 13B(1H) NMR ([D$_2$]DCM, 128 MHz, 298 K): δ = –14.67 (s). (1H, [D$_2$]DCM, 376 MHz, 298 K): δ = –131.58 (br, o-F), –162.05 (br, p-F). The paramagnetism of 2-Yb precluded assignment of its 13C(1H) and 29Si NMR spectra. IR (Nujol): 1267 (w), 1086 (m), 980 (m), 945 (w), 885 (w), 800 (w), 704 (m), 660 (m) cm$^{-1}$.

5[Tm(N(SiPr$_3$)$_2$)$_2$][Cl] (3-Tm): A solution of butylamine (0.82 mL, 7.5 mmol) in toluene (10 mL) was added dropwise to a pre-cooled (–78 °C) solution of 1-Tm (1.240 g, 1.5 mmol). The reaction mixture was allowed to warm slowly to room temperature and was stirred at room temperature for 30 mins, resulting in a colour change from dark brown to light brown. Volatiles were removed in vacuo and the product was extracted with hexane (10 mL), filtered, concentrated to 7 mL and stored at $–35 ^\circ$C overnight to yield pale green crystals of 3-Tm (0.930 g, 72%). Anal. Calcd (%) for [Co$_6$H$_8$N$_3$Si$_3$C$_{12}$]Tm: C, 50.17; H, 9.82; N, 3.25; Found: C, 50.39; H, 10.23; N, 4.11. γT product (Evans method, 298 K, [D$_2$]benzene): 6.31 cm$^{-3}$ mol$^{-1}$ K$^{-1}$. The paramagnetism of 3-Tm precluded assignment of its 13C(1H) and 29Si NMR spectra. IR (Nujol): 1260 (w), 1245 (w), 1077(w), 1061 (w), 1012 (m), 991 (w), 934 (s), 879 (m), 799 (w), 728 (m), 701 (s), 667 (m), 632 (m), 598 (m) cm$^{-1}$.

5[Yb(N(SiPr$_3$)$_2$)$_2$][F] (3-Yb): Toluene (20 mL) was added to a pre-cooled (–78 °C) mixture of 1-Yb (1.246 g, 1.5 mmol) and [Fe(Cp)$_2$][PF$_3$] (0.496 g, 1.5 mmol) with stirring, and a white vapour was observed. The orange reaction mixture was stirred overnight at room temperature. All volatiles were removed in vacuo and ferrocene was sublimed away from the crude product at 90 °C for 1.5 hours. The remaining crude orange powder (1.029 g) was extracted with hexane (10 mL), filtered, concentrated to 7 mL and stored at $–35 ^\circ$C overnight to yield orange-red crystals of 3-Yb (0.734 g, 58%). Anal. Calcd (%) for [Co$_6$H$_8$N$_3$Si$_3$F$_{20}$]O.8C$_{14}$H$_{45}$: C, 53.36; H, 10.45; N, 3.05; Found: C, 53.36; H, 10.45; N, 3.05.
Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank the UK Engineering and Physical Sciences Research Council (EPSRC) (EP/N007034/1 for M.V., EP/K039547/1 for a single crystal X-ray diffractometer, EP/P002560/1 for consumables, a DTG studentship for H.M.N. and a Doctoral Prize Fellowship for C.A.P.G.), and the University of Manchester for funding this work. We acknowledge the EPSRC UK National Electron Paramagnetic Resonance Service for access to the EPR facility and the SQUID magnetometer, and the University of Manchester for access to the Computational Shared Facility. We thank the peer reviewers for constructive comments. We also thank Mr Adam Brookfield and Dr Amga Baldansuren for assistance with EPR spectroscopy and Dr Fabrizio Ortu for assistance with single crystal XRD. Research data files supporting this publication are available from Mendeley Data at doi:10.17632/fh245wm5nj.1.

Notes and references

6 A. de Bettencourt-Dias (Ed.), Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials, John Wiley and Sons Ltd., London, 2014.

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 9
Halide abstraction chemistry is performed on a series of trigonal lanthanide(III) complexes to provide bent complexes that contain only two N-donor ligands.