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Saturated oxygen and nitrogen heterocycles via
oxidative coupling of alkyltrifluoroborates with
alkenols, alkenoic acids and protected
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Saturated heterocycles are important components of many bioactive compounds. The method disclosed

herein enables a general route to a range of 5-, 6- and 7-membered oxygen and nitrogen heterocycles

by coupling potassium alkyltrifluoroborates with heteroatom-tethered alkenes, predominantly styrenes,
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under copper-catalyzed conditions, in the presence of MnO,. The method was applied to the synthesis

of the core of the anti-depressant drug citalopram. The reaction scope and observed reactivity is

DOI: 10.1039/c9s5c02835h
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Introduction

The flexible, convergent synthesis of saturated oxygen and
nitrogen heterocycles can be accomplished by the addition of
a carbon radical to readily available alkenoic acids, alkenols and
alkenyl amines under oxidative conditions (Scheme 1a).""*

The carbon radical source is an important variable in these
alkene addition processes. Alkylhalides have been applied, in
particular when their metal-catalyzed reduction forms stabi-
lized or semi-stabilized carbon radicals, such as those conju-
gated with carbonyl groups' or that are perhalogenated.'
Halosulfonate salts that form radicals by oxidative desulfo-
nation have also been used.** Hypervalent iodine reagents that
decompose in the presence of metal catalysts to generate alkyl
radicals have been used in such alkene coupling reac-
tions.>**® Nitriles, whose alpha positions can be deproto-
nated and oxidized, have been applied as the stabilized alkyl
radical component.® Less stable alkyl radicals, generated by
decomposition of peroxides' and from aryldiazonium salts,
have also been used.® Benzyl and other simple alkyl radicals
are generally lacking in these radical addition/cyclization
methodologies.

We and others have been exploring the use of alkyltri-
fluoroborates as radical precursors in oxidative coupling reac-
tions.*” Oxidation of the alkyltrifluoroborates by metal catalysts
under either thermal or photochemical activation enables the
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consistent with a polar/radical mechanism involving intermolecular addition of the alkyl radical to the
alkene followed by [Cu(in)]-facilitated C-O (or C-N) bond forming reductive elimination.

generation of a range of alkyl radicals that can undergo direct
addition or metal-catalyzed coupling with appropriate coupling
partners including alkenes. Primary, secondary and benzylic
radicals are among the alkyl radicals formed under such
oxidative conditions from alkyltrifluoroborates.

a. Examples of addition of various radicals to al ycli: under conditions
radical sources = BrC(F,)Ar, )
v BrCF,CO,Et, BrCMe,CO,Et, (BuCO), ) pau
i +  (Me), (PhC(0)O), (Ph-), Ar-N,BF,, Y Re
XH’\/H;( CHgCN, CF,HSO,Na, PhI(OAG), (Me-)
Rl FyC——0 X=0,NR;Y=H,0
n=1,2 8 Y =0, Me R =Ar
Y R2 = Me, Ar, CF3,
CF,Ar, CF,CO,Et,
CH,CN, CMe,CO,Et
b. Oxi pling of - Itrifluoroborates with styrenes
'T\'\ Cu(OTH), (20 mol %) RL= ) w
1,10-phenanthroline (25 mol %) N
ChzHNBFK  + O\/\Ra i ( ) ]
R? MnO, (2.6 equiv.), DCE, 105 °C, 24 h RN
cbz
Evidence for a primarily radical pathway
Cu(OTf), (20 mol%) Ph - HOtBuU oh
Ph Ph 1,10-phenanthroline (25 mol%) PN OtBu
YEN CbzNHCH,CH,BF3K OO . O‘

MnOj, (2.6 equiv.), DCE, 105 °C, 24 h
NHCbz NHCbz
Ph_.

£BUO” F NHCbz

c. This work: Coupling of various alkyltrifl b with hi
Cu(OTf), (20 mol %)
Y 1,10-phenanthroline (25 mol %) )n
XHW +  RZBFK vd
Rt MnO, (2.6 equiv.), DCE, 105 °C or R' R?
PhCF3, 120 °C, 24 h X=0,NR;Y=H, O
R' = Ar, Me
R? = benzyl, 1° and 2° alkyl

n=1-3

Scheme 1 Radical additions to alkenes and oxidative cyclizations
thereof.
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We recently reported on the synthesis of 2-arylpyrrolidines
via copper-catalyzed oxidative coupling of styrenes with potas-
sium N-carbamolyl-B-aminoethyl trifluoroborates (Scheme
1b).” In these reactions, the [Cu] salt oxidizes the alkyltri-
fluoroborate to a primary carbon radical. Addition of the radical
to the styrene, followed by cyclization via addition of the
pendant carbamate under the oxidative conditions generates
the 2-arylpyrrolidine. A radical clock experiment supported
a mechanism involving primarily carbon radical intermediates
(as opposed to carbocation).”® Herein we present a new
approach to the synthesis of a broad range of saturated
heterocycles by addition of various potassium alkyltri-
fluoroborates to heteroatom-functionalized alkenes, primarily
styrenes.

Results and discussion

The oxidative coupling/cyclization of 2-(1-phenylvinyl)benzoic
acid 1a with potassium benzyltrifluoroborate (limiting reagent)
was investigated as illustrated in Table 1. Reaction variables
such as substrate and copper loading, solvent, temperature,
ligand and oxidant were explored. Coupling 1a (1 equiv.) with

Table 1 Reaction optimization®

Cu(OTf), (amount) ¢}
COH .
Ligand (amount)
@(H/Ph + P BFK ©;lio/\
MnO, (2.6 equiv) PH
1a 4 A mozl. sieves, 24 h 2a P
3a, R, R2 =
3b, R' = H, e j><r 48 R=H
3¢,R'=H,R%= OMe \2 4b, R = t-Bu
3d,R'=H,R2= _:
3e,R'=Me, R%= H
Mol%

Entry Cu(OTf), Ligand (mol%) Solvent Temp (°C) Yield (%)

1° 20 3a (25) DCE 105 78

2 20 3a (25) DCE 105 84

3 5 3a (6) DCE 105 71

4 10 3a (12) DCE 105 71

5 — — DCE 105 51

6 20 3a (25) PhCH; 120 48

7 20 3a (25) PhCF; 120 82

8 20 3a (25) Dioxane 120 71

9 20 3b (25) DCE 105 62

10 20 3c (25) DCE 105 84

11 20 3d (25) DCE 105 77

12 20 3e (25) DCE 105 66

13 20 4a (25) DCE 105 71

14 20 — DCE 105 54

15° 20 3a (25) DCE 105 67

167 20 3a (25) DCE 105 35

17° 20 3a (25) DCE 105 73

“ All reactions were run in a sealed tube under argon with 0.125 mmol
BnBFgK and 1.5 equiv. of acid 1a in DCE (0.125 mM) unless otherwise
noted. ? Reaction run with 1 equiv. Of acid 1a. ° Reaction run with
Ag,CO; (1.3 equiv.) instead of MnO,. ¢ Reaction run with K,S,05 (2.6
equiv.) instead of MnO,. ¢ Reaction run with 1 mmol BnBF;K.
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BnBF;K in the presence of 20 mol% Cu(OTf),, 25 mol% 1,10-
phenanthroline (3a) and MnO, (2.6 equiv.) in 1,2-dichloro-
ethane (DCE) at 105 °C gave 78% of lactone 2a (Table 1, entries
1). An increase of 1a loading to 1.5 equiv. resulted in a higher
isolated yield of 2a (84%, Table 1, entry 2). A decrease in
Cu(OTf), loading to 5 and 10 mol% both gave 71% isolated yield
of lactone 2a (Table 1, entries 3 and 4). In the absence of [Cu],
lactone 2a is still formed, albeit in diminished yield (51%, Table
1, entry 5 and see below Scheme 4 and associated discussion).
The reactions in toluene and dioxane were less productive while
the reaction in PhCF; gave a comparable yield to DCE (Table 1,
entries 6-8). The use of other ligands, 3b-e and 4a, or no ligand,
gave reactions with equivalent or lower yields (Table 1, entries
9-14). When Ag,CO; or K,S,05 were used instead of MnO,,
lower yields were obtained (Table 1, entries 15 and 16). The
reaction scale with respect to limiting BnBF;K could be run on
1 mmol scale (73% isolated 2a, Table 1, entry 17).

Using the optimal reaction conditions (Table 1, entry 2), the
alkyltrifluoroborate scope was next explored in the coupling/
cyclization reaction with alkenoic acids 1 (Table 2). Alkyltri-
fluoroborates such as benzylic, primary, methyl, ethyl, neo-
pentyl, allylic and secondary, and alkyls functionalized with
a nitrile, an acetal and a carbamate all underwent the coupling
reaction with varying levels of efficiency. A tert-butyl ester-
functionalized alkyltrifluoroborate was also a viable coupling
partner [see Table 4 (8g) and Table 5 (12j)]. Neither CF;BF;K nor
t-BuOCH,BF;K gave the desired coupling product with 1a.

Alkenoic acid substituent effects were further explored
(Tables 2 and 3). Diaryl alkenes, such as 1a, reacted most effi-
ciently to give phthalide 2a in 84% (Table 2). Replacing the
phenyl with methyl (Table 3, 2m, 64%) or H (Table 3, 2n, 39%)
gave lower phthalide yields. Substitution on the arene

Table 2 Trifluoroborate scope®

o Cu(OTf), (20 mol%) o
OH 1,10-phenanthroline (25 mol%)
+  R2-BFgK o
R Mn02 (2.6 equiv), DCE Rt R?
4 A mol. sieves,105 °C, 24 h 2
(1.5 equiv)
2a, X=H, 84% 2c, 66% 2d, 42% 2e, 60%
2b, X=F, 81%
o
P o]
Ph Ph = Ph Ph
Ph
o, O, H O,
2f, 75%P 29, 41% 2h, 26% 2i, 60%
o o] 0
% % ©/\‘<£A
Ph o o Ph NHCbz H CH
2j, 28% O 2k, 30% 21, 30%

“ Reactlon conditions from Table 1, entry 2 were used unless otherwise
noted. ? 10 mol% Cu(OTf), and 12 mol% 1,10-phenanthroline was used.

This journal is © The Royal Society of Chemistry 2019
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Table 4 Alkenol scope®

Cu(OTf), (20 mol%)
1,10-phenanthroline (25 mol%) 0

| i
RUOH

(1.5 equiv.) MnO, (2.6 equiv.), DCE o
+ Ph"BFK 4 A mol. sieves, 105 °C, 24 h
(o]
5a, R =H, 62%
HC o Ph Ph 5b, R = Me, 70%
5¢c,R= OMe 72%
2m, 64% 2n, X =H, 39% 5d, R = Cl, 74%
20, X = OMe, 36% 5e, R = Br, 70%
Os_o Ph Oy_0 CH3 i‘;‘\ﬂ
Ph
5f, 57% 5g, 12% 6a, 54%
[e]
o o o Ph
o Q pn O Ph
SN\MPh Ph O
Ph
6b, 54% 7a, 23% 7b, 54%

“ Reaction conditions from Table 1, entry 2 were used unless otherwise
noted.

conjugated to the alkene was tolerated, and lactones 5a-f were
formed in good yields. A 1,1-dialkyl substituted alkene did
undergo addition and cyclization but the desired product was
generated in much lower yield (5g, 12%). The remainder of the
mass in the lower yielding reactions included unreacted alke-
noic acid, (PhCH,), (benzyl radical dimerization)** and benzyl
alcohol. Both 6-membered (6a and 6b) and 7-membered ring
lactones (7a and 7b) could also be formed. The 2,2'-disubsti-
tuted biaryl-backboned alkenoic acid provided 7b more effi-
ciently than the largely aliphatic-backboned heptenoic acid gave
7a.

The scope was next expanded to alkenol coupling/cyclization
for the synthesis of saturated oxygen heterocycles (Table 4). The
synthesis of tetrahydrofurans (8a-j), phthalans (9a-c), isochro-
mans (10a, 10b), a pyran (10c), morpholines (10d, 10e) and
oxepanes (11a, 11b) is enabled by this oxidative coupling reac-
tion. Phthalan 9¢, product of coupling of potassium N-Cbz--
aminoethyltrifluoroborate with the respective 4-cyanophenyl-
functionalized alkenol, is a reasonable intermediate for the
synthesis of citalopram,®* a drug used for the treatment of
depression.

The reaction was expanded to protected alkenyl amine
coupling/cyclization for the synthesis of saturated nitrogen
heterocycles (Table 5). In this reaction higher alkenylamine
loading (3 equiv., 57% of 12¢) gave notably higher isolated yield
(32% of 12¢ was obtained when 2 equiv. of alkenyl amide was
used). Variously N-substituted alkenylamines produced pyrroli-
dines (12a-f, 12h-1), a cyclic urea (12g), an isoindoline (13),
a tetrahydroisoquinoline (14) and a tetrahydrobenzoazepine

(15).

This journal is © The Royal Society of Chemistry 2019

Cu(OTf), (20 mol%)

R‘bOH 1,10-phenanthroline (25 mol%) /o)
R1
H 2
1.5 equiv. MnO, (2.6 equiv.), DCE R
+ R2BFK 4 A mol. sieves., 105 °C, 24 h
R o o 0 o
Ph Ph Ph Ph
RmPh \XE)Q/\/Ph M MCN
8a, R =H, 65%

8d, 46% 8e, 46% 8f, 73%

8b, R = Me, 84%
8c, R =Bn, 42%

Bn
lo) O
orn 7§ m@ W B %<
Ot-Bu

89, 68%° 8h, 73% 8i, 42%°

NC R
R olh Ph
(o]
NHBoc
Ph
9a, R =H, 29% 10a, R =H, 74% 10c, 68%
9b,R = Ph 71%

10b, R = Me, 61%
RTOj/VPh
N

9c, 32%
O o Ph
Ph O

™S 10d, R=H, 61%
10e, R = Me, 44% 11a, 13% 11b, 54%

8j, 60%>d

Reactlon conditions from Table 1, entry 2 were used unless otherwise
noted. ? Reaction run in PhCF; at 120 °C. ¢ Reaction run with 10 mol%
Cu(OTf),, 12 mol% 1,10-phenanthroline. ¢ Reaction run for 48 h.

Table 5 Alkenyl amide scope®

| Cu(OTi), (20 mol%) o
‘bNHPG 1,10-phenanthroline (25 mol%) PG

(3 equiv.) MnO, (2.6 equiv.), DCE m2
+ REBRK 4 A mol. sieves, 105 °C, 24 h
ozs o fh

12a, R = OMe, 62%° 12d,R= H, 48%
12b, R=NO,, 24% 12e, R=NO,, 38%
12¢, R = Me, 57%,

61%P, 32%°

o 0 O, 4,0

12f, 49% 12g, 56%

13, 37% 14, 56% Ph Ph 15,31% 12h, 50%
& T o T Ts
Ph N _Ph N N
Ph otBu WCN MQ
12i, 48% 12j, 45% 12k, 43% 121, 84%P

% Reaction conditions from Table 1, entry 2 were used except 3 equiv. of
alkenylamide was used. ” Reaction run in PhCF; at 120 °C. © Reaction
run with 2 equiv. alkenylamide. PG = protecting group.
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Cu(OTf), (20 mol %)
0 on (5,9)-+Bu-Box 4b (25 mol %)  Og_0_Ph
HO + Ph"OBFRK Ph
16 MnO, (2.6 equiv), MOTBE, 4AMs 5, 42% yield
48 h, 45 °C 44% ee

Scheme 2 Ligand-induced enantioselectivity.

Enantioselective conditions

We explored the potential for a chiral ligand to control absolute
stereochemistry in our oxidative coupling. A brief substrate and
ligand screen revealed that 4-phenylpent-4-enoic acid (1b) can
undergo enantioselective coupling/cyclization under minimally
modified (lower temperature, -BuOMe as solvent) reaction
conditions using the (S,S)-t-Bu-Box 4b (Scheme 2, 42% yield,
44% ee).>* In the absence of [Cu], 15% of lactone 5a was formed
as a racemate, indicating some background reaction can occur.
In the absence of MnO,, using 50 mol% copper loading and
55 mol% of 4b, 5a was obtained in 22% yield and 44% ee,
indicating the potential MnO, promoted background reaction
is unlikely to be affecting the reaction's enantioselectivity.

Proposed mechanism

The proposed mechanism is illustrated in Scheme 3. Either
copper(u) or MnO,, or a mixture of both, oxidizes the alkyltri-
fluoroborate to the corresponding radical.** Addition of the
resulting alkyl radical to 1b provides a benzylic radical inter-
mediate. The enantioselective result in Scheme 2 supports the
involvement of a chiral ligand-bound copper complex in the
C-O bond formation. Thus, formation of an alkyl copper(u)
intermediate via addition of the alkyl radical to the [Cu(u)]
complex and subsequent C-O bond formation via reductive
elimination generates lactone 5a (Scheme 3).>** The [Cu(u)] is
regenerated by oxidation of [Cu(i)] to [Cu(u)] by MnO, to
continue the catalytic cycle (not shown). The background reac-
tion observed under MnO,-only conditions likely occurs via the
alternative benzylic carbocation intermediate, which would be
expected to give racemic 5a (Scheme 3).

MnO,-promoted reactions

The possibility of an oxidative coupling involving only MnO,
as oxidant was further investigated (Scheme 4). Manganese

HO,C
-,
©ABF3K MnO, or [Cu(Il)] ©/ 1b

Ph
[Cu(I] ° o\[Cu(lII)] Ox—0_ph
HOC Ph U/\Ph
Ph P

- H* h
5a
chiral bis(oxazoline) ligands could
facilitate enantioselectivity
MnO, Ph ’ - H¥
HO,C -
this route leads to

racemic product

-[Cu()]

@ Ph

Scheme 3 Proposed mechanism.
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Ph Ys
XH MnO, (2.6 equiv), DCE “—X__Ph
v, T ROBRK ]:)S

. b 4 A mol. sieves, 105°C, 24h % o R

o Ts
N Ph
pr/ N F Ph

2a,R=Bn, 51% 8b, 21% 121, 20%
2d, R = cyclopentyl, 38%

Scheme 4 MnO,-only oxidative cyclization.

salts have previously demonstrated the ability to oxidize
alkyltrifluoroborates and boronic acids to radicals, that then
undergo oxidative coupling with alkenoic acids'” or hetero-
arenes (Minisci reaction)."® Under reaction conditions analo-
gous to our alkyltrifluoroborate couplings, but in the absence
of any [Cu] salt, we found that alkenoic acids, alkenyl alcohols
and alkenyl amines do undergo the oxidative cyclizations,
albeit with generally lower efficiency. The secondary cyclo-
pentyl trifluoroborate reacted similarly with alkenoic acid 1a
in the presence of MnO,, both with and without [Cu] catalyst
(42% vs. 38% of 2d, compare Table 2 to Scheme 4), while
benzyltrifluoroborate gave notably higher yield with the cata-
Iytic [Cu] conditions (84% vs. 51% of 2a, compare Table 1,
entry 3 to Scheme 4). In the absence of [Cu] catalyst, alkenol
and alkenyl amide substrates gave considerably lower yields of
their corresponding heterocycles 8b (84% with [Cu] vs. 21%
without, Table 4 and Scheme 4) and 121 (84% with [Cu] vs. 20%
without, Table 5 and Scheme 4). In the MnO, promoted reac-
tions it is likely the C-O and C-N bond formations involve
addition of the heteroatom to a carbocationic intermediate
(Scheme 3)."”

Conclusions

The copper-catalyzed addition of alkyltrifluoroborates to
heteroatom-tethered vinyl arenes under oxidative conditions
has been demonstrated to be a general route to saturated
oxygen and nitrogen heterocycles. The possibility of asymmetric
catalysis has been demonstrated. The observed reactivity is
largely consistent with alkyl radical addition to the vinyl arene
and [Cu(m)]-facilitated C-O and C-N bond formation. A good
range of alkyltrifluoroborates serve as alkyl radical source; these
reagents are complementary to radical precursors that generally
involve generation of more stabilized radicals.
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