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gress in cation-uptake and
exchange chemistry of polyoxometalate-based
compounds

Sayaka Uchida

Cation-uptake and exchange has been an important topic in both basic and applied chemistry relevant to

life and materials science. For example, living cells contain appreciable amounts of Na+ and K+, and their

concentrations are regulated by the sodium–potassium pump. Solid-state cation-exchangers such as

clays and zeolites both natural and synthetic have been used widely in water softening and purification,

separation of metal ions and biomolecules, etc. Polyoxometalates (POMs) are robust, discrete, and

structurally well-defined metal-oxide cluster anions, and have stimulated research in broad fields of

sciences. In this perspective, cation-uptake and exchange in POM and POM-based compounds are

categorized and reviewed in three groups: (i) POMs as inorganic crown ethers and cryptands, (ii) POM-

based ionic solids as cation-exchangers, and (iii) reduction-induced cation-uptake in POM-based ionic

solids, which is based on a feature of POMs that they are redox-active and multi-electron transfer occurs

reversibly in multiple steps. This method can be utilized to synthesize mixed-valence metal clusters in

metal ion-exchanged POM-based ionic solids.
1. Introduction

Cation-uptake and exchange from aqueous solutions has been
an important topic in both basic and applied chemistry relevant
to life and materials science.1–3 For example, living cells contain
appreciable amounts of Na+ and K+, and their concentrations
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are regulated by the sodium–potassium pump, which
exchanges three Na+ with two K+.3 On the other hand, it is quite
difficult to achieve high selectivity towards K+ articially except
for 18-crown-6 ether,4 which is a cyclic oligomer of ethylene
oxide, and binds K+ by using all six oxygens as donor atoms. The
denticity of the polyether inuences the affinity toward various
ions: 15-crown-5 and 12-crown-4 show high selectivity toward
Na+ and Li+, respectively. Crown ethers have been widely used
for cation recognition and separation, and as phase transfer
catalysts.5

Solid-state cation-exchangers play an especially important
role in chemistry. A classic example is zeolites, which are
microporous crystalline aluminosilicates with anionic frame-
works due to the substitution of Si4+ by Al3+.6 Cations such as
Na+, K+, Ca2+, Mg2+, etc. loosely interact with the anionic
framework via Coulomb interaction, which can be exchanged by
treating the zeolite in an aqueous solution containing excess
amount of foreign cations. It is well known that the pore sizes
and adsorption properties of zeolites can be controlled by the
types of cations: the effective pore size of Linde Type A (LTA)
zeolite with K+ is 3 Å (Molecular Sieves 3A), and the pore size is
increased to 4 Å by the exchange of K+ with smaller Na+

(Molecular Sieves 4A).7 Zeolites can adsorb gas and vapor (CH4,
H2O, etc.) in the microporous structure, and the amounts of
adsorption in alkaline earth metal ion-exchanged and alkali
metal ion-exchanged faujasite (FAU) zeolites increase with the
increase in the ionic potentials z/r (z and r are the charge and
radius of the ion, respectively) of the counter cations.8,9
This journal is © The Royal Society of Chemistry 2019
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Recently, because of relatively facile reaction conditions,
cation-exchange has also been recognized as a strategy for post-
synthesis and discovery of new solid materials.2 Metal–organic
frameworks (MOFs), which can be recognized as “inorganic–
organic zeolites” have emerged decades ago, but cation-
exchange has been reported only recently. A landmark report
in this research area is the exchange of guest Mn2+ in as-
synthesized Mn3[(Mn4Cl3)(BTT)8(CH3OH)10]2 (BTT ¼ 1,3,5-
benzenetristetrazolate) with monovalent or divalent metal ions
in methanol solution, which resulted in the formation of iso-
structural frameworks with a large variation in H2 adsorption
enthalpy.10,11 Cation-exchange has been also employed with
nanocrystals and nanoparticles to ne-tune their structures and
functions systematically.12 For example, in vivo cation-exchange
Fig. 1 Cation-uptake and exchange in POM and POM-based compoun
POM-based ionic solids as cation-exchangers, and (iii) reduction-induce

This journal is © The Royal Society of Chemistry 2019
of Ag+ with Hg2+ and Zn2+ in selenide/sulde quantum dots
enhanced the specicity of tumor imaging.13

Polyoxometalates (POMs) are robust, discrete, and structur-
ally well-dened oxide cluster anions that are mainly composed
of high-valence transition metals (such as W6+, Mo6+, V5+) and
have stimulated research in broad elds of sciences.14–25 For
example, a-Keggin-type silicododecatungstate, which is one of
the most researched and popular POM, forms according to the
following equation:

SiO4
4� + 12WO4

2� + 24H+ / [a-SiW12O40]
4� + 12H2O. (1)

The oxides of high-valence transition metals dissolve at high
pH as an anion (e.g., WO4

2�), condensation proceeds via loss of
ds categorized in three groups: (i) POMs as inorganic crown ethers, (ii)
d cation-uptake in POM-based ionic solids.

Chem. Sci., 2019, 10, 7670–7679 | 7671
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Fig. 2 Preyssler–Pope–Jeannin-type POM [Xn+(H2O)
P5W30O110]

(15�n)� with flexible W5O5 cavity for cation encapsulation.33

Light green and purple polyhedra show the [WO6] and [PO4] units,
respectively.
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water and formation of M–O–M linkages with acidication, and
an anionic molecular framework of twelve octahedral tungsten
oxoanions surrounding a central silicate is formed. One of the
most noteworthy features of POMs are that they are redox-
active, and multi-electron transfer occurs reversibly in
multiple-steps:16

[a-SiWVI
12O40]

4� + e� ¼ [a-SiWVI
11W

VO40]
5�

(�0.22 V vs. SHE in 1 M HCl(aq.)), (2)

[a-SiWVI
11W

VO40]
5� + e� ¼ [a-SiWVI

10W
V
2O40]

6�

(�0.42 V vs. SHE in 1 M HCl(aq.)).(3)

In this perspective, cation-uptake and exchange in POM and
POM-based compounds are categorized and reviewed in three
groups: (i) POMs as inorganic crown ethers and cryptands, (ii)
POM-based ionic solids as cation-exchangers, and (iii)
reduction-induced cation-uptake in POM-based ionic solids
(Fig. 1). Unique functions related to these cation-exchanged
POM-based compounds are introduced, and future works
arising from these functions are also discussed. For past
developments on polyoxometalates as cation-exchangers, the
readers are directed to a legendary review article.26
Fig. 3 Coordination environments of protonated urea (left, black: C
and yellow: N/O) and Ce3+ (right, red) in the nanoporous POM
capsule.36,37 Blue and green polyhedra show the [MO6] and [SO4] units,
respectively.
2. Polyoxometalates as inorganic
crown ethers and cryptands

Crown ethers4,5 and cryptands,27,28 which are a family of
synthetic cyclic and polycyclic multidentate organic ligands,
have attracted great interest due to their structural topologies
and applications especially in selective cation-uptake. Crown
ethers can strongly bind alkali and alkali earth metal ions size-
selectively with the oxygen donors in gas, solution, or solid
phases. Cryptands can bind these cations using both nitrogen
and oxygen donors three-dimensionally, oen showing higher
selectivity and binding constants.

In contrast, POMs can serve as inorganic crown ethers and
cryptands:29 an early example is a cyclic POM [As4W40O140]

28�,
which binds alkali and alkaline earth metal ions selectively
within the central “cryptand site” (best t for K+ and Ba2+, which
are hard Lewis acids) while transition metals (so Lewis acids)
bind to the “external site” with a different type of coordina-
tion.30 A recent work by Kortz and co-workers on a wheel-shaped
K+-templated POM [K3{(b-AsIIIW8O30)(WO(H2O))}3]

14� exhibits
high selectivity to Rb+, because the size of the central cavity is
relatively large for K+.31 Preyssler–Pope–Jeannin-type POM with
a general formula of [Xn+(H2O)P5W30O110]

(15�n)� is the smallest
POM with an internal cavity allowing cation-exchange in
aqueous solutions.32,33 Preyssler–Pope–Jeannin-type POM
possesses a exible W5O5 cavity and can capture various cations
from Na+, Ca2+, La3+ to tetravalent actinides (e.g., Th4+) (Fig. 2),34

so that they have been considered as a potentially useful
material for separation of nuclear wastes. DFT calculations by
López, Poblet, and co-workers have revealed that encapsulation
of cations with larger charge is difficult (i.e., heating is needed)
because energy cost for the cation excapsulation from aqueous
solution is dependent on the dehydration enthalpy of the
7672 | Chem. Sci., 2019, 10, 7670–7679
cation.34 A more recent report by Li, Su, Wang and co-workers
shows that while Preyssler–Pope–Jeannin-type POMs with
phosphorous [P5W30O110]

15� exhibit high affinity to Na+, those
with sulfur [S5W30O110]

10� exhibit high affinity to K+ because of
the larger internal cavity.35

Müller and co-workers synthesized a series of nanoporous
POM capsules with a general formula of [{(MoVI)MoVI5O21(H2-
O)6}12{MoV2O4(ligand)}30], and these capsules allow systematic
studies of uptake/release of cations in aqueous solutions.36,37

The capsules possess large negative charges, and the affinity
and coordination environment for cations depend on the
functional groups inside the capsules. For example, various
cations can coordinate to SO4

2� ligands via exchange with NH4
+:

protonated urea molecules situate close to the pore openings
while Ce3+ situates deeply inside the capsule due to the small
ionic radius (Fig. 3).36,37 The protonated urea molecules can be
removed and the pores open by cation-exchange with Ca2+ in
water.38 This system can be recognized as an articial cell since
Ca2+ take an important role in life science.

Mizuno and co-workers synthesized a dimeric POM [Hn(g-
SiW10O32)2(m-O)4]

(8�n)� by dehydrative condensation of
This journal is © The Royal Society of Chemistry 2019
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Fig. 4 Microporous solid composed of {3-ZnMo12O40Zn2} units and
exchangeable counter cations.47
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silicodecatungstate [g-SiW10O34(H2O)2]
4�.39 The dimeric POM

has a rigid cavity between the two silicodecatungstate units,
where divalent Pb2+ and Sr2+ and monovalent Ag+, Na+, K+, and
Rb+ can be encapsulated, while larger Ba2+ and Cs+ are
completely excluded (Fig. 1). Interestingly, this POM, which can
be considered as an inorganic cryptand, can capture Sr2+ more
strongly than the organic counterpart. Baskar, Winpenny, and co-
workers have reported that a 3-Keggin-type POM constructed with
[SbO6] units can accommodate d5 and d10 ions such as Mn2+ and
Zn2+ at the center cage of the molecule in a tetrahedral fashion.40

Kortz and co-workers have reported that a polyoxopalladate
[MPdII12(AsPh)8O32]

n� can accommodate various lanthanide ions
(M ¼ Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+,
Yb3+, Lu3+) as well as 3d transition metal ions (M ¼ Sc3+, Mn2+,
Fe3+, Co2+, Cu2+, Zn2+) at the cuboidal center cage of the mole-
cule.41,42 The [Pd12O32] unit is exible and can adjust to the
coordination requirements of a large variety of metal ions
(Fig. 1).41,42 More recently, they have reported that alkaline earth
metal ions (Ca2+, Sr2+, Ba2+) with relatively large ionic radii as
templates affect the polyoxopalladate framework so that the
nanocube (8-coordination) transforms to a nanostar (10-
coordination).43

3. Polyoxometalate-based ionic
solids as cation-exchangers

Ammonium salt of a-Keggin-type phosphododecamolybdate
(NH4)3[a-PMo12O40] has been long investigated as a cation-
exchanger in aqueous solutions according to the following
equation,

(NH4)3[a-PMo12O40] + 3A+ % A3[a-PMo12O40] + 3NH4
+. (4)

The following affinity was derived Cs+¼ Tl+ > Rb+ > Ag+ > K+ >
H3O

+ > Na+ > Li+, which is in line with the trend in hydration
radius or dehydration enthalpy of the cations.26,44 This trend
means that it is more facile to remove the water of hydration
from Cs+ than Li+ because of the large ionic radius (i.e., low
ionic potential) of Cs+, so that Cs+ can more easily enter and
diffuse through the solid state structure. Besides, [a-
PMo12O40]

3� shows high affinity towards Tl+ or Ag+, and the
bonds between Tl+ or Ag+ and O2� of the POM are supposed to
have a covalent character.

The selectivity, kinetics, and capacity of cation-exchange in
POM-based ionic solids are determined both by the framework
geometry and the behavior of extra-framework cations. For
example, Nyman and co-workers reported that Keggin-type poly-
oxoniobates [XNb12O40]

n� (X ¼ Si, Ge, P) with [Ti2O2]
4+ or

[Nb2O2]
6+ bridges form one-dimensional chains, and these chains

have an overall negative charge of �10 or �12.45 Single crystal X-
ray diffraction, thermogravimetry, IR, and 1H-MASNMR
combined with computational studies could distinguish the
states of counter cations (Na+ and K+), and the mobile extra-
framework cations can be exchanged with radionuclides (Sr2+,
Np(NpO2

+), and Pu4+) (Fig. 1).46 Unlike with conventional POMs,
polyoxoniobates are stable under basic conditions, and therefore
should be less likely to decompose in the highly alkaline
This journal is © The Royal Society of Chemistry 2019
conditions of nuclear wastes. More recently, Ueda, Sadakane, and
co-workers synthesized microporous solids with 3-Keggin-type
POMs and Zn2+ or Mn2+ as linkers (Fig. 4).47 These solids
possess 3D-cages and channels with an aperture of ca. 8 Å con-
taining exchangeable cations (NH4

+ and Na+). These cations can
be exchanged with K+, Rb+, and Cs+ in aqueous solutions, while
exchange with H+ and Li+ is insufficient,47which is in line with the
hydration radius and dehydration enthalpy of the cations.44 More
recently, the same group has reported the synthesis and structure
of a polyoxomolybdotellurate with a one-dimensional molecular
structure.48 NH4

+ as counter cations surround the molecular wire,
and NH4

+ is selectively exchanged with Cs+ among alkali metal
ions in water, and large alkylammonium cations can also be
incorporated due to the exible solid-state structure.49

Acidic salts of a-Keggin-type POM (H3[a-PW12O40]$nH2O,
H4[a-SiW12O40]$nH2O) have been well known as excellent acid
catalysts, and partial substitution of protons with Cs+ in aqueous
solutions, stabilizes the solid-state structure and increases the
surface area.50–52 The cesium hydrogen salt of silicododecatung-
state CsxH4�x[a-SiW12O40] adopts a body-centered cubic cell in
analogy to the cesium salt of phosphododecatungstate Cs3[a-
PW12O40].53Wehave shown that the use of [a-SiW12O40]

4� instead
of [a-PW12O40]

3� leads to the formation of POM vacancies to
compensate the excess negative charge, which give rise to chan-
nels exhibiting cation-exchange of Cs+ with other alkali metal
ions in aqueous solutions (Fig. 5a and b).54 Amounts of cation-
exchange decreased in the order of Rb+ > K+ > Na+ > Li+, which
is in line with the hydration radius and dehydration enthalpy of
the alkali metal ions44 (Fig. 5c), and elemental mapping images
conrmed the uniform distribution of the exchanged cations
(Fig. 5d).54 Recently, Sun and co-workers showed that the cation-
exchange of Cs+ in the cesium hydrogen salt of silicododeca-
tungstate with Bi (BiO+ and BiOH2+) having stereoactive 6s2 lone
pair as a dopant, leads to near-infrared photoluminescence in the
important biological and telecommunication optical windows,
due to the asymmetric coordination geometry of the Bi species in
the microporous framework.55 This result offers a new strategy
for the preparation of POM-based luminescent systems via
cation-exchange.

We have reported a porous organic–inorganic ionic
crystal K2[Cr3O(OOCH)6(4-methylpyridine)3]2[a-SiW12O40]$nH2O
composed of [a-SiW12O40]

4� with a molecular cation
Chem. Sci., 2019, 10, 7670–7679 | 7673
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Fig. 5 (a) Crystal structure of CsxH4�x[a-SiW12O40]. Light green and
purple polyhedra show the [WO6] and [SiO4] units, respectively. Purple
spheres are exchangeable cations (Cs+). (b) Anion vacancies (in light
yellow) along the [100] and [111] directions. Red and purple spheres
show theO2� of POM andCs+, respectively. (c) Cation-exchange: time
courses of uptakes of alkali metal ions. (d) Elemental mapping
images.54

Fig. 6 (Left) Crystal structure of K2[Cr3O(OOCH)6(4-
methylpyridine)3]2[a-SiW12O40]$nH2O. Light green and orange poly-
hedra show the [WO6] and [CrO5N] units, respectively. Purple and blue
spheres show the alkali metal ions and oxygen atoms of the water of
crystallization, respectively. (Right) Arrhenius plots of the temperature
dependent proton conductivities at RH 95% (303–323 K). Proton
conductivities of the compound with Li+ and Cs+ as counter cations
were 1.9 � 10�3 and 1.2 � 10�7 S cm�1, respectively (323 K).58
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[Cr3O(OOCH)6(4-methylpyridine)3]
+, which possess robust one-

dimensional channels due to p–p stacking among the 4-methyl-
pyridine of the neighboring cations.56 Cr(III)-carboxylates with
a general formula of [Cr3O(OOCR)6(L)3]

+ have been widely
considered as building blocks of porous solids because of the
versatile selection of bridging (R) and terminal (L) ligands and
chemical inertness due to the large crystal eld stabilization
energy of Cr3+ with d3 conguration.57 The counter cation (K+) can
be fully-exchanged with other alkali metal cations in aqueous
solutions, and the states of water molecules in the channels can
be controlled by the type of alkali metal ions:58 alkali metal ions
with high ionic potentials (e.g., Li+) form dense and extensive
hydrogen-bonding network of water molecules with mobile
protons at the periphery, which leads to high proton conductivi-
ties of 10�3 S cm�1 without any acidic functional groups (Fig. 6).58
4. Reduction-induced cation-uptake
in polyoxometalate-based ionic solids

Redox property of solids is a key for selective cation-uptake and
exchange relevant to material science. For example, Yoshikawa,
Awaga, and co-workers have reported that a-Keggin-type phos-
phododecamolybdate [a-PMo12O40]

3� exhibits reversible 24-
electron redox during charging/discharging due to the twelve
molybdenum atoms (MoIV/VI) coupled with Li+ uptake/release,
as a component of molecular cluster battery.59 Therefore, it
can be suggested that one of the best way to engineer redox-
active porous solids would be to incorporate redox-active
components. A landmark example was reported by Cronin
and co-workers: a porous solid composed of silicodecatungstate
[g-SiW10O36]

8� and Mn3+ was synthesized, and the oxidation
7674 | Chem. Sci., 2019, 10, 7670–7679
states of MnII/III can be switched by the addition of reducing/
oxidizing reagents.60 They have later synthesized another
redox-active porous solid with cyclic POM [P8W48O148]

40� units
and MnII/III (Fig. 7), and the cation-exchange rate and capacity
can be controlled by the oxidation states of Mn.61

We have reported a redox-active porous ionic crystal A[Cr3-
O(OOCH)6(4-methylpyridine)3]2[a-PMo12O40]$nH2O (A ¼ alkali
metal ions) possessing one-dimensional channels, and the
treatment of the crystal with reducing (ascorbic acid) or
oxidizing (chlorine water) reagents results in one-electron redox
of the POM (MoV/VI) coupled with uptake/release of alkali metal
ions, and the reaction rate depended on the type of alkali metal
ions.62 The reaction rate increased in the order of K+ < Rb+ < Cs+,
which is in line with the order of hydration radius and dehy-
dration enthalpy of the cations (Fig. 1).44,62 This work was
extended by the utilization of [a-SiMo12O40]

4�, which resulted in
the formation of an ionic crystal with isolated pores instead of
continuous one-dimensional ones (Fig. 8).63 The compound
selectively adsorbed Cs+ among alkali and alkaline earth metal
ions via reduction of the POM in the compound with ascorbic
acid, showing potential applicability as an adsorbent for
radioactive Cs+ removal from environmental water. Despite the
high selectivity to Cs+, there were several tasks to solve:
requirement of heating (343 K) and slow adsorption kinetics
(12 h to reach equilibrium). In order to solve these tasks, large-
molecular size and easily reducible Wells–Dawson-type POMs
[a-P2M18O62]

6� (M ¼ Mo, W) were utilized to increase the pore
volume and to facilitate the reduction-induced Cs+ uptake.64 As
expected, Cs+-uptake capacity and rate increased largely (only
1 h to reach equilibrium at room temperature).

Metal clusters are a topic of great interest in materials
science and have found numerous applications especially in
catalysis and electro-optics.65 Microporous compounds offer
versatile scaffolds for the formation and stabilization of metal
clusters from metal ions. For example, small mixed-valence
silver clusters have been synthesized in zeolites by calcination
of Ag+-exchanged zeolites at high temperature: Ag4

2+ in MFI-
This journal is © The Royal Society of Chemistry 2019
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Fig. 7 (Upper) Molecular structure of [P8W48O184]
40� comprising

a nanometer-size cavity. (Lower) The molecular unit is linked by Mn2+

resulting in a 3D-POM framework.61

Fig. 8 (a) Crystal structure of (etpyH)2[Cr3O(OOCH)6(etpy)3]2[a-
SiMo12O40]$nH2O (etpy ¼ 4-ethylpyridine). Each void (in yellow-
brown) has a size of ca. 6.5 Å � 12.5 Å. (b) Amounts of cations incor-
porated by the reduction-induced method. Note that there is a color

+ 63
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zeolite66 is active for the selective reduction of NO by propane
with O2 and H2, and Ag4

2+ in LTA-zeolite67 shows on–off
switching of yellow-green photoluminescence (PL) by hydra-
tion–dehydration. A landmark report on formation of metal
clusters in redox-active MOFs has been carried out by reducing
Pd2+ via electron transfer from nitrilotrisbenzoate, which is
a redox-active organic linker of the porous framework.68

However, redox of MOFs is mostly limited to the utilization of
redox-active organic ligands because redox of the metal center
ion induces large change in the coordination geometry causing
to collapse the porous framework. Therefore, metal clusters in
MOFs have been synthesized by adding reducing reagents such
as H2, NaBH4, DMF, etc.69–71 to the MOF comprising metal ions,
and homogeneous formation and distribution of metal clusters
become a problem.

As explained above, POMs can store multiple electrons in the
molecular framework and have been utilized as constituents of
redox-active porous frameworks. Some compounds show
This journal is © The Royal Society of Chemistry 2019
cooperative migration of electrons with metal ions,61–64 so called
cation-coupled electron-transfer (CCET) in relation to proton-
coupled electron-transfer72 (PCET). Quite recently, we have
utilized redox-active porous ionic crystals Cs[Cr3O(OOCH)6(4-
methylpyridine)3]2[a-PMoVI12O40]$nH2O (Cs-ox) and Cs2[Cr3-
O(OOCH)6(4-methylpyridine)3]2[a-PMoVI11MoVO40]$nH2O (Cs2-
red) (the abbreviations Cs-ox and Cs2-red are based on the types
and numbers of counter cations and the oxidation state of
POM), to form and stabilize small mixed-valence luminescent
silver clusters in the one-dimensional channel (Fig. 9). Accord-
ing to elemental analysis of cesium and silver in the compounds
by atomic absorption spectrometry (AAS), we have found that
reduction-induced ion-exchange of Cs+ in Cs2-red with Ag+ from
AgNO3(aq.), and subsequent formation of a mixed-valence
luminescent silver cluster Ag4

2+ took <1 min (eqn (5)), while
the simple ion-exchange with Cs+ in Cs-ox with Ag+ from
AgNO3(aq.) took >24 h (eqn (6)):73

Cs2[Cr3O(OOCH)6(4-methylpyridine)3]2[a-PMoVI11MoVO40] +

2Ag+ /

AgIAg0[Cr3O(OOCH)6(4-methylpyridine)3]2[a-PMoVI12O40]

+ 2Cs+, (5)

Cs[Cr3O(OOCH)6(4-methylpyridine)3]2[a-PMoVI12O40] + Ag+ /

AgI[Cr3O(OOCH)6(4-methylpyridine)3]2[a-PMoVI12O40] + Cs+. (6)
change due to the reduction of POM upon Cs uptake.

Chem. Sci., 2019, 10, 7670–7679 | 7675
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Fig. 9 Schematic illustration of the reduction-induced ion-exchange
of Cs+ with Ag+ in the one-dimensional channel (in yellow-brown) to
form small mixed-valence luminescent silver clusters. PL spectrum
and time course of PL images of a single crystal of Cs2-red in
AgNO3(aq.) (excitation at 405 nm).73
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Note that the formation of Ag4
2+ in the redox-active porous

ionic crystals was assumed according to the report that Ag4
2+ in

LTA-zeolite emits yellow-green light giving a broad emission
band around 550 nm.67 According to the PL images in Fig. 9,
Ag4

2+ is formed within few seconds. A model tting of the time
course of PL intensity has shown that the reduction-induced
ion-exchange consists of two steps: electron transfer from the
reduced POM ([a-PMoVI11MoVO40]

4�) to Ag+ and subsequent
formation of a silver cluster Ag4

2+, and diffusion of the silver
cluster and exchange with Cs+. The compound containing the
silver cluster showed high affinity toward unsaturated hydro-
carbon guests (acetylene and ethylene). Ag/Al2O3 has been
commercialized as a catalyst for the epoxidation of ethylene and
propylene, and small mixed-valence silver clusters have been
suggested as the activation site of this reaction.74 Our next aim
is to form and stabilize these clusters in redox-active ionic
crystals with mesopores, and to apply them as solid catalysts. In
addition, synthesis of metal clusters with different elements,
sizes, and charges by controlling the pore size and degree of
reduction of the POM-based redox-active scaffold is currently
under investigation.
5. Summary and outlook

In this perspective, cation-uptake and exchange in POMs and
POM-based compounds were categorized and reviewed in three
groups. (i) POMs as inorganic crown ethers and cryptands:
POMs can offer versatile platforms for cation coordination,
which are different from those of the organic counterparts, and
one of the next targets would be to substitute oxygen (O2�) of
7676 | Chem. Sci., 2019, 10, 7670–7679
POMs with sulfur (S2�), selenium (Se2�), etc.75 to tune the
coordination environment. (ii) POM-based ionic solids as
cation-exchangers: the next target would be to explore cooper-
ative effects of the selectively adsorbed cations and POMs,55

especially as optical materials, magnetic materials, solid cata-
lysts, etc. (iii) Reduction-induced cation-uptake in POM-based
ionic solids: while it is difficult for conventional porous
compounds such as zeolites and MOFs to support the geometry
change in the framework that oen accompany the redox
processes, POM-based solids show great potential for the
multiple and reversible uptake/release of cations with elec-
trons.60–64,73 Such CCET reactions in solids can be applied not
only to selective cation-uptake and sensing but also to the next-
generation rechargeable batteries,76 solid catalysts for water
splitting, chemical xation of CO2, ammonia synthesis, etc.

Another challenge is anion-exchange in POM-based
compounds. This notion includes substitution of O2� in
POMs with S2�, Se2�, N3� or halide ions as well as incorporation
of multiple types of anions in the ionic solid. A recent review on
metal oxyuorides and oxynitrides show that incorporation of
multiple anions in metal oxide-based compounds can nely
modulate physicochemical properties such as catalysis, optics,
conduction, magnetism, etc.77 Some MOFs with cationic
frameworks show anion-exchange properties,78 according to the
Hofmeister series79 (citrate (trivalent) > sulfate (divalent) >
acetate (monovalent) > HCO3

� > Cl� > Br� > I� > NO3
�, which is

in line with the degree of hydration) or non-Hofmeister selec-
tivity due to the utilization of Lewis acid and/or multidentate
donors.80 We have recently reported the synthesis of cesium
salts of a-Keggin-type [a-BW12O40]

5� (BW) and [a-SiW12O40]
4�

(SiW) blends, and the porosity is nely controlled by the BW/
SiW ratio.81 The next aim would be to synthesize these mixed-
POM compounds post-synthetically or by anion-exchange.
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10 M. Dincă and J. R. Long, High-enthalpy hydrogen adsorption
in cation-exchanged variants of the microporous metal–
organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2, J. Am.
Chem. Soc., 2007, 129, 11172–11176.
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