Showcasing a Perspective from Dr. Sayaka Uchida, School of Arts and Sciences, The University of Tokyo, Japan

Frontiers and progress in cation-uptake and exchange chemistry of polyoxometalate-based compounds

Cation-uptake and exchange in polyoxometalates (POMs) and POM-based compounds are categorized and reviewed in three groups: POMs as inorganic crown ethers and cryptands, POM-based ionic solids as cation-exchangers, and reduction-induced cation-uptake in POM-based ionic solids, which is based on a feature of POMs that they are redox-active and multi-electron transfer occurs reversibly in multiple-steps. This method can be utilized to synthesize mixed-valence metal clusters in metal ion-exchanged POM-based ionic solids.
Frontiers and progress in cation-uptake and exchange chemistry of polyoxometalate-based compounds

Sayaka Uchida

Cation-uptake and exchange has been an important topic in both basic and applied chemistry relevant to life and materials science. For example, living cells contain appreciable amounts of Na\(^+\) and K\(^+\), and their concentrations are regulated by the sodium–potassium pump. Solid-state cation-exchangers such as clays and zeolites both natural and synthetic have been used widely in water softening and purification, separation of metal ions and biomolecules, etc. Polyoxometalates (POMs) are robust, discrete, and structurally well-defined metal-oxide cluster anions, and have stimulated research in broad fields of sciences. In this perspective, cation-uptake and exchange in POM and POM-based compounds are categorized and reviewed in three groups: (i) POMs as inorganic crown ethers and cryptands, (ii) POM-based solid ionics as cation-exchangers, and (iii) reduction-induced cation-uptake in POM-based ionics, which is based on a feature of POMs that they are redox-active and multi-electron transfer occurs reversibly in multiple steps. This method can be utilized to synthesize mixed-valence metal clusters in metal ion-exchanged POM-based ionic solids.

1. Introduction

Cation-uptake and exchange from aqueous solutions has been an important topic in both basic and applied chemistry relevant to life and materials science.\(^1\)\(^-\)\(^3\) For example, living cells contain appreciable amounts of Na\(^+\) and K\(^+\), and their concentrations are regulated by the sodium–potassium pump, which exchanges three Na\(^+\) with two K\(^+\).\(^2\) On the other hand, it is quite difficult to achieve high selectivity towards K\(^+\) artificially except for 18-crown-6 ether,\(^4\) which is a cyclic oligomer of ethylene oxide, and binds K\(^+\) by using all six oxygens as donor atoms. The denticity of the polyether influences the affinity toward various ions: 15-crown-5 and 12-crown-4 show high selectivity toward Na\(^+\) and Li\(^+\), respectively. Crown ethers have been widely used for cation recognition and separation, and as phase transfer catalysts.\(^5\)

Solid-state cation-exchangers play an especially important role in chemistry. A classic example is zeolites, which are microporous crystalline aluminosilicates with anionic frameworks due to the substitution of Si\(^4+\) by Al\(^3+\).\(^6\) Cations such as Na\(^+\), K\(^+\), Ca\(^2+\), Mg\(^2+\), etc. loosely interact with the anionic framework via Coulomb interaction, which can be exchanged by treating the zeolite in an aqueous solution containing excess amount of foreign cations. It is well known that the pore sizes and adsorption properties of zeolites can be controlled by the types of cations: the effective pore size of Linde Type A (LTA) zeolite with K\(^+\) is 3 Å (Molecular Sieves 3A), and the pore size is increased to 4 Å by the exchange of K\(^+\) with smaller Na\(^+\) (Molecular Sieves 4A).\(^7\) Zeolites can adsorb gas and vapor (CH\(_4\), H\(_2\)O, etc.) in the microporous structure, and the amounts of adsorption in alkaline earth metal ion-exchanged and alkalimetal ion-exchanged faujasite (FAU) zeolites increase with the increase in the ionic potentials z/r (z and r are the charge and radius of the ion, respectively) of the counter cations.\(^8\)
Recently, because of relatively facile reaction conditions, cation-exchange has also been recognized as a strategy for post-synthesis and discovery of new solid materials. Metal-organic frameworks (MOFs), which can be recognized as “inorganic–organic zeolites” have emerged decades ago, but cation-exchange has been reported only recently. A landmark report in this research area is the exchange of guest Mn$^{2+}$ in as-synthesized Mn$_4$[Mn$_3$Cl$_3$]BTT$_8$(CH$_3$OH)$_{10}$ (BTT = 1,3,5-benzenetristetrazolate) with monovalent or divalent metal ions in methanol solution, which resulted in the formation of isostructural frameworks with a large variation in H$_2$ adsorption enthalpy. Cation-exchange has been also employed with nanocrystals and nanoparticles to fine-tune their structures and functions systematically.

Polyoxometalates (POMs) are robust, discrete, and structurally well-defined oxide cluster anions that are mainly composed of high-valence transition metals (such as W$^{6+}$, Mo$^{6+}$, V$^{5+}$) and have stimulated research in broad fields of sciences. For example, a-Keeggin-type silicododecatungstate, which is one of the most researched and popular POM, forms according to the following equation:

$$\text{SiO}_4^{4-} + 12\text{WO}_4^{2-} + 24\text{H}^+ \rightarrow [\alpha-\text{SiW}_{12}\text{O}_{40}]^{4-} + 12\text{H}_2\text{O}. \quad (1)$$

The oxides of high-valence transition metals dissolve at high pH as an anion (e.g., WO$_4^{2-}$), condensation proceeds via loss of Ag$^+$ with Hg$^{2+}$ and Zn$^{2+}$ in selenide/sulfide quantum dots enhanced the specificity of tumor imaging.
water and formation of M–O–M linkages with acidification, and
and an anionic molecular framework of twelve octahedral tungsten
oxoanions surrounding a central silicate is formed. One of the
most noteworthy features of POMs are that they are redox-active,
and multi-electron transfer occurs reversibly in
multiple-steps:16

$$[\text{z-SiW}_{12}O_{40}]^{4-} + e^- = [\text{z-SiW}_{11}V^V\text{W}^{V\text{O}}_{40}]^{5-} \quad (-0.22 \text{ V vs. SHE in 1 M HCl(aq.).}) \quad (2)$$

$$[\text{z-SiW}_{11}V^{V\text{W}}_{10}\text{O}_{40}]^{5-} + e^- = [\text{z-SiW}_{10}V^{V\text{W}}_{9}\text{O}_{40}]^{6-} \quad (-0.42 \text{ V vs. SHE in 1 M HCl(aq.).}) \quad (3)$$

In this perspective, cation-uptake and exchange in POM and
POM-based compounds are categorized and reviewed in three
groups: (i) POMs as inorganic crown ethers and cryptands, (ii)
POM-based ionic solids as cation-exchangers, and (iii)
reduction-induced cation-uptake in POM-based ionic solids
(Fig. 1). Unique functions related to these cation-exchanged
POM-based compounds are introduced, and future works
arising from these functions are also discussed. For past
developments on polyoxometales as cation-exchangers, the
readers are directed to a legendary review article.26

2. Polyoxometalates as inorganic
crown ethers and cryptands

Crown ethers4,5 and cryptands27,28 which are a family of
synthetic cyclic and polycyclic multidentate organic ligands,
have attracted great interest due to their structural topologies
and applications especially in selective cation-uptake. Cation	hers can strongly bind alkali and alkaline earth metal ions size-
selectively with the oxygen donors in gas, solution, or solid
phases. Cryptands can bind these cations using both nitrogen
and oxygen donors three-dimensionally, often showing higher
selectivity and binding constants.

In contrast, POMs can serve as inorganic crown ethers and
cryptands:29 an early example is a cyclic POM [As₄W₄0₆O₄10]²⁻,26,28
which binds alkali and alkaline earth metal ions size-
selectively with the oxygen donors in gas, solution, or solid
phases. Cryptands can bind these cations using both nitrogen
and oxygen donors three-dimensionally, often showing higher
selectivity and binding constants.

A recent work by Kortz and co-workers on a wheel-shaped
K⁺-templated POM [K⁺{[(P₂As³⁻,W₈O₃₈)(WO₄H₂O)](H₂O)}₃]¹⁴⁻ exhibits high selectivity to Rb⁺, because the size of the central cavity is
relatively large for K⁺.31 Preyssler–Pope–Jeannin-type POM with
a general formula of [X⁺{(H₂O)Preyssler}P₃W₃O₁₁₀]¹⁴⁻ is the smallest
POM with an internal cavity allowing cation-exchange in
aqueous solution.34,35 Preyssler–Pope–Jeannin-type POM
possesses a flexible W₁₂O₄₀ cavity and can capture various cations from Na⁺, Ca²⁺, La³⁺ to tetravalent actinides (e.g., Th⁴⁺) (Fig. 2),34
so that they have been considered as a potentially useful material for separation of nuclear wastes. DFT calculations by
López, Poblet, and co-workers have revealed that encapsulation
of cations with larger charge is difficult (i.e., heating is needed)
because energy cost for the cation encapsulation from aqueous
solution is dependent on the dehydration enthalpy of the
cation.34 A more recent report by Li, Su, Wang and co-workers
shows that while Preyssler–Pope–Jeannin-type POMs with
phosphorus [P₃W₃O₁₁₀]¹⁵⁻ exhibit high affinity to Na⁺, those
with sulfur [S₉W₃O₁₁₀]¹⁰⁻ exhibit high affinity to K⁺ because of
the larger internal cavity.35

Müller and co-workers synthesized a series of nanoporous
POM capsules with a general formula of [{[M(As)⁵⁻,MoV¹⁺,O₄₁₁(H₂O)](As–Jeannin-type POMs with
flexible W₁₂O₄₀ cavity for cation encapsulation.32
Light green and purple polyhedra show the [WO₆] and [PO₄] units,
respectively.

Fig. 2 Preyssler–Pope–Jeannin-type POM [X⁺{(H₂O)Preyssler}P₃W₃O₁₁₀]¹⁴⁻ with flexible W₁₂O₄₀ cavity for cation encapsulation.32

Fig. 3 Coordination environments of protonated urea (left, black: C
and yellow: N/O) and Ce ³⁺ (right, red) in the nanoporous POM
capsule.36,37 Blue and green polyhedra show the [MO₆] and [SO₄] units,
respectively.

Mizuno and co-workers synthesized a dimeric POM [H₄(γ-
SiW₁₀O₃₉)₂(μ-O)₄]³⁻ by dehydrative condensation of

Chemical Science Perspective
silicododecatungstate $[\gamma$-$\text{SiW}_{12}\text{O}_{40}(\text{H}_2\text{O})_4]^{3-}$.

The dimeric POM has a rigid cavity between the two silicododecatungstate units, where divalent Pb$^{2+}$ and Sr$^{2+}$ and monovalent Ag$^+$, Na$^+$, K$^+$, and Rb$^+$ can be encapsulated, while larger Ba$^{2+}$ and Cs$^+$ are completely excluded (Fig. 1). Interestingly, this POM, which can be considered as an inorganic cryptand, can capture Sr$^{2+}$ more strongly than the organic counterpart. Baskar, Winpenny, and co-workers have reported that a ε-Keggin-type POM constructed with [SbO$_4$] units can accommodate d0 and d10 ions such as Mn$^{2+}$ and Zn$^{2+}$ at the center cage of the molecule in a tetrahedral fashion.

Kortz and co-workers have reported that a polyoxopalladinate $[\text{MPd}_{12}([\text{AsPh}_3]_{12})]$ can accommodate various lanthanide ions ($M = \text{Pr}^{3+}, \text{Nd}^{3+}, \text{Sm}^{3+}, \text{Eu}^{3+}, \text{Gd}^{3+}, \text{Tb}^{3+}, \text{Dy}^{3+}, \text{Ho}^{3+}, \text{Er}^{3+}, \text{Tm}^{3+}, \text{Yb}^{3+}, \text{Lu}^{3+}$) as well as 3d transition metal ions ($M = \text{Sc}^{3+}, \text{Mn}^{2+}, \text{Fe}^{2+}, \text{Co}^{2+}, \text{Cu}^{2+}, \text{Zn}^{2+}$) at the cuboidal center cage of the molecule. The $[\text{Pd}_{12}\text{O}_{36}]^{3-}$ unit can flexibly be adapted to coordinate requirements of a large variety of metal ions (Fig. 1). More recently, they have reported that alkaline earth metal metal ions ($\text{Ca}^{2+}, \text{Sr}^{2+}, \text{Ba}^{2+}$) with relatively large ionic radii as templates affect the polyoxopalladinate framework so that the nanocube (8-coordination) transforms to a nanostar (10-coordination).

3. Polyoxometalate-based ionic solids as cation-exchangers

Ammonium salt of ε-Keggin-type phosphododecamolybdate (NH_4)$_3[\text{x-PMo}_{12}\text{O}_{40}]$ has been long investigated as a cation-exchanger in aqueous solutions according to the following equation,

$$\text{(NH}_4)\text{3}[\text{z-PMo}_{12}\text{O}_{40}] + 3\text{A}^+ \rightleftharpoons \text{A}_3[\text{z-PMo}_{12}\text{O}_{40}] + 3\text{NH}_4^+.$$

The following affinity was derived $\text{Cs}^+ = \text{Tl}^+ > \text{Rb}^+ > \text{Ag}^+ > \text{K}^+ > \text{H}_2\text{O}^+ > \text{Na}^+ > \text{Li}^+$, which is in line with the trend in hydration radius or dehydration enthalpy of the cations. This trend means that it is more facile to remove the water of hydration from Cs$^+$ than Li$^+$ because of the large ionic radius (i.e., low ionic potential) of Cs$^+$, so that Cs$^+$ can more easily enter and diffuse through the solid state structure. Besides, $[\text{z-PMo}_{12}\text{O}_{40}]^{3-}$ shows high affinity towards Tl^+ or Ag^+, and the bonds between Tl^+ or Ag^+ and O^{2-} of the POM are supposed to have a covalent character.

The selectivity, kinetics, and capacity of cation-exchange in POM-based ionic solids are determined both by the framework geometry and the behavior of extra-framework cations. For example, Nyman and co-workers reported that Keggin-type polyoxoniobates $[\text{XN}_2\text{O}_{10}]^{3-}$ ($\text{X} = \text{Si}, \text{Ge}, \text{P}$ with $[\text{Ti}_2\text{O}_3]^{12-}$ or $[\text{Nb}_2\text{O}_7]^{7-}$) bridges form one-dimensional chains, and these chains have an overall negative charge of -10 or -12. Single crystal X-ray diffraction, thermogravimetry, IR, and 1H MASNR combined with computational studies could distinguish the states of counter cations (Na^+ and K^+), and the mobile extraframework cations can be exchanged with radionuclides (Sr^{2+}, $\text{Np(NO}_3)_3^-$, and Pu^{4+}) (Fig. 1).

Unlike with conventional POMs, polyoxoniobates are stable under basic conditions, and therefore should be less likely to decompose in the highly alkaline conditions of nuclear wastes. More recently, Ueda, Sadakane, and co-workers synthesized microporous solids with ε-Keggin-type POMs and Zn$^{2+}$ or Mn$^{2+}$ as linkers (Fig. 4). These solids possess 3D cages and channels with an aperture of ca. 8 Å containing exchangeable cations (NH_4^+ and Na^+). These cations can be exchanged with K^+, Rb^+, and Cs^+ in aqueous solutions, while exchange with H^+ and Li^+ is insufficient, which is in line with the hydration radius and dehydration enthalpy of the cations. More recently, the same group has reported the synthesis and structure of a polyoxomolybdate with a one-dimensional molecular structure. NH_4^+ as counter cations surround the molecular wire, and NH_4^+ is selectively exchanged with Cs$^+$ among alkali metal ions in water, and large alkylammonium cations can also be incorporated due to the flexible solid-state structure.

Acidic salts of ε-Keggin-type POM $[\text{H}_3[\text{x-PW}_{12}\text{O}_{40}]]^{-}$ and $\text{H}_4[\text{z-SiW}_{12}\text{O}_{40}]^{-}$ have been well known as excellent acid catalysts, and partial substitution of protons with Cs$^+$ in aqueous solutions, stabilizes the solid-state structure and increases the surface area. The cesium hydrogen salt of silicododecatungstate $\text{Cs}_3\text{H}_4[\text{x-SiW}_{12}\text{O}_{40}]$ adopts a body-centered cubic cell in analogy to the cesium salt of phosphododecamolybdate $\text{Cs}_3[\text{z-PW}_{12}\text{O}_{40}]$. We have shown that the use of $[\text{x-SiW}_{12}\text{O}_{40}]^{-}$ instead of $[\text{z-PW}_{12}\text{O}_{40}]^{-}$ leads to the formation of POM vacancies to compensate the excess negative charge, which give rise to channels exhibiting cation-exchange of Cs$^+$ with other alkali metal ions in aqueous solutions (Fig. 5a and b). Amounts of cation-exchange decreased in the order of $\text{Rb}^+ > \text{K}^+ > \text{Na}^+ > \text{Li}^+$, which is in line with the hydration radius and dehydration enthalpy of the alkali metal ions (Fig. 5c), and elemental mapping images confirmed the uniform distribution of the exchanged cations (Fig. 5d). Recently, Sun and co-workers showed that the cation-exchange of Cs$^+$ in the cesium hydrogen salt of silicododecatungstate with Bi (BiO$^+$ and BiOH$^+$) having stereoevactive 6s^2 lone pair as a dopant, leads to near-infrared photoluminescence in the important biological and telecommunication optical windows, due to the asymmetric coordination geometry of the Bi species in the microporous framework. This result offers a new strategy for the preparation of POM-based luminescent systems via cation-exchange.

We have reported a porous organic–inorganic ionogel $\text{K}_2[\text{Cr}_3\text{O}((\text{OCH})_6(\text{4-methylpyridine})_3)[\text{x-SiW}_{12}\text{O}_{40}]^{-}\text{nH}_2\text{O}$ composed of $[\text{x-SiW}_{12}\text{O}_{40}]^{-}$ with a molecular cation.
4. Reduction-induced cation-uptake in polyoxometalate-based ionic solids

Redox property of solids is a key for selective cation-uptake and exchange relevant to material science. For example, Yoshikawa, Awaga, and co-workers have reported that z-Keggin-type phosphododecamolybdate \[\text{[x-PMo}_{12}\text{O}_{40}]^{3-}\] exhibits reversible 24-electron redox during charging/discharging due to the twelve molybdenum atoms (MoV/VI) coupled with Li+ uptake/release, as a component of molecular cluster battery.\(^{29}\) Therefore, it can be suggested that one of the best way to engineer redox-active porous solids would be to incorporate redox-active components. A landmark example was reported by Cronin and co-workers: a porous solid composed of silicododecamolybdate \[\text{[\gamma-SiW}_{10}\text{O}_{38}]^{3-}\] and Mn3+ was synthesized, and the oxidation states of MnII/III can be switched by the addition of reducing/oxydizing reagents.\(^{30}\) They have later synthesized another redox-active porous solid with cyclic POM \[\text{[P}_{8}\text{W}_{48}\text{O}_{148}]^{30-}\] units and MnII/III (Fig. 7), and the cation-exchange rate and capacity can be controlled by the oxidation states of Mn.\(^{31}\)

We have reported a redox-active porous ionic crystal A[Cr\textsubscript{3}O(OOCH)\textsubscript{6}(4-methylpyridine)]\textsubscript{4}, which possess robust one-dimensional channels due to \(\pi-\pi\) stacking among the 4-methylpyridine of the neighboring cations.\(^{32}\) Cr\textsubscript{m}/carboxylates with a general formula of \[\text{[Cr}_{2\text{m}}\text{OOOCR}\textsubscript{2}(\text{L})\textsubscript{2}]\] have been widely considered as building blocks of porous solids because of the versatile selection of bridging (R) and terminal (L) ligands and chemical inertness due to the large crystal field stabilization energy of Cr3+ with d3 configuration.\(^{33}\) The counter cation (K+) can be fully-exchanged with other alkali metal cations in aqueous solutions, and the states of water molecules in the channels can be controlled by the type of alkali metal ions:\(^{34}\) alkali metal ions with high ionic potentials (e.g., Li+) form dense and extensive hydrogen-bonding network of water molecules with mobile protons at the periphery, which leads to high proton conductivities of 10-3 S cm-1 without any acidic functional groups (Fig. 6).\(^{35}\)

states of MnII/III can be switched by the addition of reducing/oxydizing reagents.\(^{30}\) They have later synthesized another redox-active porous solid with cyclic POM \[\text{[P}_{8}\text{W}_{48}\text{O}_{148}]^{30-}\] units and MnII/III (Fig. 7), and the cation-exchange rate and capacity can be controlled by the oxidation states of Mn.\(^{31}\)

We have reported a redox-active porous ionic crystal A[Cr\textsubscript{3}O(OOCH)\textsubscript{6}(4-methylpyridine)]\textsubscript{4}[z-PMo\textsubscript{12}\text{O}_{40}]\textsubscript{3-}nH\textsubscript{2}O (A = alkali metal ions) possessing one-dimensional channels, and the treatment of the crystal with reducing (ascorbic acid) or oxidizing (chlorine water) reagents results in one-electron redox of the POM (MoV/VI) coupled with uptake/release of alkali metal ions, and the reaction rate depended on the type of alkali metal ions.\(^{32}\) The reaction rate increased in the order of K+ < Rb+ < Cs+, which is in line with the order of hydration radius and dehydration enthalpy of the cations (Fig. 1).\(^{34,62}\) This work was extended by the utilization of \[\text{[z-SiMo}_{12}\text{O}_{36}]^{3-}\], which resulted in the formation of an ionic crystal with isolated pores instead of continuous one-dimensional ones (Fig. 8).\(^{63}\) The compound selectively adsorbed Cs+ among alkali and alkaline earth metal ions via reduction of the POM in the compound with ascorbic acid, showing potential applicability as an adsorbent for radioactive Cs+ removal from environmental water. Despite the high selectivity to Cs+, there were several tasks to solve: requirement of heating (343 K) and slow adsorption kinetics (12 h to reach equilibrium). In order to solve these tasks, large-molecular size and easily reducible Wells-Dawson-type POMs \[\text{[x-P}_{2}\text{M}_{18}\text{O}_{62}]^{6-}\] (M = Mo, W) were utilized to increase the pore volume and to facilitate the reduction-induced Cs+ uptake.\(^{64}\) As expected, Cs+-uptake capacity and rate increased largely (only 1 h to reach equilibrium at room temperature).

Metal clusters are a topic of great interest in materials science and have found numerous applications especially in catalysis and electro-optics.\(^{65}\) Microporous compounds offer versatile scaffolds for the formation and stabilization of metal clusters from metal ions. For example, small mixed-valence silver clusters have been synthesized in zeolites by calcination of Ag+-exchanged zeolites at high temperature: Ag+ in MFI-
zeolite\(^{66}\) is active for the selective reduction of NO by propane with O\(_2\) and H\(_2\), and Ag\(^{2+}\) in LTA-zeolite\(^{67}\) shows on-off switching of yellow-green photoluminescence (PL) by hydration–dehydration. A landmark report on formation of metal clusters in redox-active MOFs has been carried out by reducing Pd\(^{2+}\) via electron transfer from nitrilotrisbenzoate, which is a redox-active organic linker of the porous framework.\(^{68}\) However, redox of MOFs is mostly limited to the utilization of redox-active organic ligands because redox of the metal center ion induces large change in the coordination geometry causing to collapse the porous framework.\(^{68}\) Therefore, metal clusters in MOFs have been synthesized by adding reducing reagents such as H\(_2\), NaBH\(_4\), DMF, etc.\(^{69-71}\) to the MOF comprising metal ions, and homogeneous formation and distribution of metal clusters become a problem.

As explained above, POMs can store multiple electrons in the molecular framework and have been utilized as constituents of redox-active porous frameworks. Some compounds show cooperative migration of electrons with metal ions,\(^{61-64}\) so called cation-coupled electron-transfer (CCET) in relation to proton-coupled electron-transfer\(^{72}\) (PCET). Quite recently, we have utilized redox-active porous ionic crystals Cs\([\text{Cr}_3\text{O}(\text{OOCH})_6(4\text{-methylpyridine})_3]_2[\text{a-PMo}_{12}\text{O}_{40}]^n\text{H}_2\text{O}\) (Cs-ox) and Cs\(_2\)[Cr\(_3\)O(4-methylpyridine)]\(_3\)[z-PMo\(_{12}\)Mo\(_{40}\)]\(_n\)H\(_2\)O (Cs\(_2\)-red) (the abbreviations Cs-ox and Cs\(_2\)-red are based on the types and numbers of counter cations and the oxidation state of POM), to form and stabilize small mixed-valence luminescent silver clusters in the one-dimensional channel (Fig. 9). According to elemental analysis of cesium and silver in the compounds by atomic absorption spectrometry (AAS), we have found that reduction-induced ion-exchange of Cs\(^+\) in Cs\(_2\)-red with Ag\(^+\) from AgNO\(_3\)(aq.), and subsequent formation of a mixed-valence luminescent silver cluster Ag\(^{4+}\) took <1 min (eqn (5)), while the simple ion-exchange with Cs\(^+\) in Cs-ox with Ag\(^+\) from AgNO\(_3\)(aq.) took >24 h (eqn (6)):\(^73\)

\[
\begin{align*}
\text{Cs}_2[\text{Cr}_3\text{O}(\text{OOCH})_6(4\text{-methylpyridine})_3]_2[\text{a-PMo}_{12}\text{Mo}_{40}]^n + 2\text{Ag}^+ &\rightarrow \\
\text{Ag}^4\text{Ag}^0[\text{Cr}_3\text{O}(\text{OOCH})_6(4\text{-methylpyridine})_3]_2[\text{a-PMo}_{12}\text{Mo}_{40}]^n + 2\text{Cs}^+. \quad (5)
\end{align*}
\]

\[
\begin{align*}
\text{Cs}[\text{Cr}_3\text{O}(\text{OOCH})_6(4\text{-methylpyridine})_3]_2[\text{a-PMo}_{12}\text{Mo}_{40}]^n + \text{Ag}^+ &\rightarrow \\
\text{Ag}^4[\text{Cr}_3\text{O}(\text{OOCH})_6(4\text{-methylpyridine})_3]_2[\text{a-PMo}_{12}\text{Mo}_{40}]^n + \text{Cs}^+. \quad (6)
\end{align*}
\]

Fig. 7 (Upper) Molecular structure of \([\text{P}_8\text{W}_{48}\text{O}_{184}]^{40-}\) comprising a nanometer-size cavity. (Lower) The molecular unit is linked by Mn\(^{2+}\) resulting in a 3D-POM framework.\(^68\)

Fig. 8 (a) Crystal structure of \((\text{etpyH})_2[\text{Cr}_3\text{O}(\text{OOCH})_6(\text{etpy})_3]_2[\text{z-PMo}_{12}\text{SiMo}_{40}\text{O}_{40}]^n\text{H}_2\text{O} \) (etpy = 4-ethylpyridine). Each void (in yellow-brown) has a size of ca. 6.5 Å × 12.5 Å. (b) Amounts of cations incorporated by the reduction-induced method. Note that there is a color change due to the reduction of POM upon Cs\(^+\) uptake.\(^65\)
Note that the formation of Ag₄²⁺ in the redox-active porous ionic crystals was assumed according to the report that Ag₄²⁺ in LTA-zeolite emits yellow-green light giving a broad emission band around 550 nm.⁶⁷ According to the PL images in Fig. 9, Ag₄²⁺ is formed within few seconds. A model fitting of the time course of PL intensity has shown that the reduction-induced ion-exchange consists of two steps: electron transfer from the reduced POM ([x-PMo₁₃O₄₅]⁵⁻) to Ag⁺ and subsequent formation of a silver cluster Ag₄²⁺, and diffusion of the silver cluster and exchange with Cs⁺. The compound containing the silver cluster showed high affinity toward unsaturated hydrocarbon guests (acytelylene and ethylene). Ag/Al₂O₃ has been commercialized as a catalyst for the epoxidation of ethylene and propylene, and small mixed-valence silver clusters have been suggested as the activation site of this reaction.⁷⁴ Our next aim is to form and stabilize these clusters in redox-active ionic crystals with mesopores, and to apply them as solid catalysts. In addition, synthesis of metal clusters with different elements, sizes, and charges by controlling the pore size and degree of reduction of the POM-based redox-active scaffold is currently under investigation.

5. Summary and outlook
In this perspective, cation-uptake and exchange in POMs and POM-based compounds were categorized and reviewed in three groups. (i) POMs as inorganic crown ethers and cryptands: POMs can offer versatile platforms for cation coordination, which are different from those of the organic counterparts, and one of the next targets would be to substitute oxygen (O²⁻) of POMs with sulfur (S²⁻), selenium (Se²⁻), etc.⁷⁵ to tune the coordination environment. (ii) POM-based ionic solids as cation-exchangers: the next target would be to explore cooperative effects of the selectively adsorbed cations and POMs, especially as optical materials, magnetic materials, solid catalysts, etc. (iii) Reduction-induced cation-uptake in POM-based ionic solids: while it is difficult for conventional porous compounds such as zeolites and MOFs to support the geometry change in the framework that often accompany the redox processes, POM-based solids show great potential for the multiple and reversible uptake/release of cations with electrons.⁶⁶-⁶³ Such CCET reactions in solids can be applied not only to selective cation-uptake and sensing but also to the next-generation rechargeable batteries,⁶² solid catalysts for water splitting, chemical fixation of CO₂, ammonia synthesis, etc.

Another challenge is anion-exchange in POM-based compounds. This notion includes substitution of O²⁻ in POMs with S²⁻, Se²⁻, N³⁻ or halide ions as well as incorporation of multiple types of anions in the ionic solid. A recent review on metal oxofluorides and oxynitrides show that incorporation of multiple anions in metal oxide-based compounds can finely modulate physicochemical properties such as catalysis, optics, conduction, magnetism, etc.⁷⁷ Some MOFs with cationic frameworks show anion-exchange properties,⁷⁸ according to the Hofmeister series (citrate (trivalent) > sulfate (divalent) > acetate (monovalent) > HCO₃⁻ > Cl⁻ > Br⁻ > I⁻ > NO₃⁻, which is in line with the degree of hydration) or non-Hofmeister selectivity due to the utilization of Lewis acid and/or multidentate donors.⁸⁰ We have recently reported the synthesis of cesium salts of α-Keggin-type [α-BW₁₂O₄₀]⁵⁻ (BW) and [α-SiW₁₂O₄₀]⁴⁻ (SIW) blends, and the porosity is finely controlled by the BW/SIW ratio.⁸¹ The next aim would be to synthesize these mixed-POM compounds post-synthetically or by anion-exchange.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
This work was supported by JST-PRESTO (JPMJPR1312) and grant-in-aids for scientific research JP16K05742, JP19H04564 (Coordination Asymmetry), and JP19H04686 (Mixed Anion) from MEXT of Japan. Prof. N. Mizuno (Univ. of Tokyo) is acknowledged for his continuous encouragement and support on this research. Collaborators, and former and current students of Uchida group are acknowledged for their contribution on this research.

Notes and references
19 A. Proust, R. Thouvenot and P. Gouzerh, Functionalization

17 L. Cronin and A. Müller, From serendipity to design of

12 C. L. Hill, Thematic issue on polyoxometalates, Springer-Verlag, New York, 1983.

20 D. Li, P. Yin and T. Liu, Supramolecular architectures assembled from amphiphilic hybrid polyoxometalates, Dalton Trans., 2012, 41, 2853–2861.

26 V. Pekárek and V. Veselý, Synthetic inorganic ion exchangers-II: Salts of heteropolyacids, insoluble ferrocyanides, synthetic aluminosilicates and miscellaneous exchangers, Talanta, 1972, 19, 1245–1283.

52. Y. Iwase, S. Sano, L. Mahardiani, R. Abe and Y. Kamiya, Binary cesium hydrogen salts of 12-tungstosilicic acid, Cs$_2$H$_{10}$SiW$_{12}$O$_{40}$, as highly active solid acid catalysts for transesterification of glycerol tributyrate with methanol, *J. Catal.*, 2014, 318, 34–42.

75 E. Cadot, B. Salagnic, T. Loiseau, A. Dolbecq and F. Sécheresse, Syntheses and \(^{31}\text{P}\) NMR studies of cyclic oxothiomolybdate(v) molecular rings: Exchange properties and crystal structures of the monophosphate decamer \(\left[\text{H}_2\text{PO}_4\right]\text{Mo}_{10}\text{S}_{10}\text{O}_{10}\text{OH}_{11}\text{H}_2\text{O}\right]^\text{2-}\) and the diphosphate dodecamer \(\left[\text{HPO}_4\right]\text{Mo}_{12}\text{S}_{12}\text{O}_{15}\text{OH}_{12}\text{H}_2\text{O}\right]^\text{4-}\), Chem.–Eur. J., 1999, 5, 3390–3398.

78 B. F. Hoskins and R. Robson, Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked metal rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks \(\left[N\left(\text{CH}_3\right)\right]\left[\text{Cu}^\text{II}\text{Zn}^\text{II}\left(\text{CN}\right)^\text{4}\right]\) and \(\text{Cu}^\text{II}\text{[4,4',4"-tetracyanotetraphenylmethane]}\) \(\text{BF}_4\), \(\text{xH}_2\text{NO}_3\), J. Am. Chem. Soc., 1990, 112, 1546–1554.

