B(C₆F₅)₃-catalyzed dehydrogenative cyclization of N-tosylhydrazones and anilines via a Lewis adduct: a combined experimental and computational investigation†

Murali Mohan Guru, †‡ Sriman De, †‡ Sayan Dutta, † Debasis Koley †,* and Biplab Maji †,*

Tris(pentafluorophenyl)borane-catalyzed dehydrogenative-cyclization of N-tosylhydrazones with aromatic amines has been disclosed. This metal-free catalytic protocol is compatible with a range of functional groups to provide both symmetrical and unsymmetrical 3,4,5-triaryl-1,2,4-triazoles. Mechanistic experiments and density functional theory (DFT) studies suggest an initial Lewis adduct formation of N-tosylhydrazone with B(C₆F₅)₃ followed by sequential intermolecular amination of the borane adduct with aniline, intramolecular cyclization and frustrated Lewis pair (FLP)-catalyzed dehydrogenation for the generation of substituted 1,2,4-triazoles.

Introduction

Tris[pentafluorophenyl]borane has recently emerged as a powerful Lewis acid catalyst. The strong Lewis acidity at the boron center allows us to establish a wide range of organic transformations via C-B, C-C, C-N, C-O and C-Si bond formations. Pioneered by Stephan and Erker, B(C₆F₅)₃ has gained popularity in frustrated Lewis pair (FLP) chemistry which encompasses widespread applications in organic reactions. Indeed, numerous efforts have been devoted to the activation of alkenes and alkynes by FLPs for the formation of cyclic scaffolds. However, in many cases, the highly desirable catalytic reaction is obstructed by the initially formed stable borate adduct. Consequently, B(C₆F₅)₃-catalyzed cyclization leading to important heterocyclic scaffolds is rare.

In this context, 1,2,4-triazoles are omnipresent heterocyclic motifs in numerous biologically active compounds and they also have widespread applications in organic light emitting diodes, organic photovoltaic cells, electroluminescent devices, bi-stable resistive memory devices, pesticides, and medicines. Given their applications, a number of strategies have been implemented for the synthesis of 1,2,4-triazoles. However, most of these methods are limited due to the use of a super-stoichiometric amount of reagents or oxidants, low chemo-selectivity, narrow functional group tolerance, multiple reaction steps, and the production of copious waste. And catalytic metal- and oxidant-free, step-economical processes for an efficient synthesis of substituted 1,2,4-triazoles are in demand.

Lewis acid-base adducts are potential intermediates in a multitude of transformations. Recently, Stephan and coworkers have reported that diphenyliazomethane, obtained from the corresponding N-tosylhydrazone in the presence of a base, readily forms adducts with B(C₆F₅)₃ (Scheme 1a). This has shifted the gear for metal-free N₂ activation closer to reality. Conversely, the direct interaction of N-tosylhydrazones with B(C₆F₅)₃ and their application in catalytic transformations have not been reported yet.

On the other hand, environmentally benign acceptorless catalytic dehydrogenation which is highly challenging even for transition-metal complexes is rare under metal-free conditions. Very recently, we have presented a manganese-
catalyzed acceptorless-dehydrogenative olefination of heteroarenes with primary alcohols. Herein, we report B(C₆F₅)₃ catalyzed acceptorless-dehydrogenative-cyclization of N-tosyl-hydrazones 1 and anilines 2 to triaryl-1,2,4-triazoles 3 via a borane adduct 4 followed by sequential C–N/N–N bond formation (Scheme 1b). Furthermore, extensive DFT calculations are performed not only to understand the mechanistic features of borane catalyzed triazole formation but also to assist future development of similar classes of reactions.

Results and discussion

Initially, to check the reactivity of hydrazone 1a with B(C₆F₅)₃, a stoichiometric reaction in benzene at room temperature was carried out. It leads to the formation of a Lewis adduct 4a (δ²¹B = −2.5 ppm) after 1 h in 82% yield (Scheme 2). When 4a was reacted with an aromatic amine 2a at 80 °C in benzene, 3,4,5-triaryl-1,2,4-triazole 3aaa was formed in 85% NMR yield along with an equimolar amount of TsNH₂ and B(C₆F₅)₃. As B(C₆F₅)₃ was finally released from the adduct 4a after its reaction with the amine 2a, it was posited that catalytic turnover should be possible under thermal conditions. Interestingly, when the reaction was implemented with 5 mol% B(C₆F₅)₃ at 80 °C 1,2,4-triazole 3aaa was obtained in 82% isolated yield along with 68% of TsNH₂ as a byproduct (Table 1, entry 1). While the increased catalyst loading did not significantly improve the yield (entry 2), a slight decrease in the product yield was observed with 3 mol% B(C₆F₅)₃ (entry 3). The use of less Lewis acidic boranes such as BPh₃ was unproductive (entry 4). In addition, less hindered boranes like BF₃·OEt₂ resulted in no detectable product formation (entry 5). Other Lewis acid catalysts like Sc(OTf)₃, FeCl₃, and ZnCl₂ were also not effective for this reaction (entry 6, Schemes S9 and S10 in the ESI†).

Next, the scope of this metal-free protocol was explored. A series of hydrazones 1 could be employed with various anilines 2 to afford symmetrical 3,4,5-triaryl-1,2,4-triazoles 3 in good to excellent yields (Table 2). The reaction of 1a and 1b with anilines 2a, 2c, 2e, 2f, 2g, 2h, and 2i bearing OMe-, Me-, H-, Cl-, and Br-substituents at the para- or meta-position of the aryl ring afforded the triazoles 3aab–3bbf in 66–87% yields. Similarly, the hydrazones 1c–g having substituents with different steric and electronic properties at the ortho-, meta-, and para-position on the aromatic rings could readily be cyclized with 2a to produce 3cca–3gga in 71–86% yields. Electronically biased aryl rings could be installed smoothly to obtain 3cbb, 3hhb, and 3iic in 56–78% yields. Likewise, thiophene- and fluorine-containing 1,2,4-triazoles 3c, 3d, 3ee, and 3jj could be synthesized in 79% and 84% yields,

Table 1 Optimization of B(C₆F₅)₃ catalyzed cyclization of the hydrazone 1a with anilines 2a–2g

<table>
<thead>
<tr>
<th>Entry</th>
<th>Deviation from above</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>10 mol% B(C₆F₅)₃</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>3 mol% B(C₆F₅)₃</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>5 mol% B(C₆F₅)₃</td>
<td>n.r.</td>
</tr>
<tr>
<td>5</td>
<td>5 mol% BF₃·OEt₂</td>
<td>n.r.</td>
</tr>
<tr>
<td>6</td>
<td>5 mol% Sc(OTf)₃, FeCl₃, or ZnCl₂</td>
<td>n.r.</td>
</tr>
</tbody>
</table>

* Reaction conditions: 1a (0.5 mmol), 2a (0.25 mmol), and B(C₆F₅)₃ (5 mol%) in 2.0 mL benzene; isolated yield. NMR yield using 1,3,5-trimethoxybenzene as the internal standard. n.r. = no reaction.

Table 2 B(C₆F₅)₃ catalyzed synthesis of symmetrical 1,2,4-triazoles

<table>
<thead>
<tr>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2a</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2b</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2c</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2d</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2e</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2f</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2g</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2h</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2i</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2j</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2k</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2l</td>
<td>83</td>
</tr>
</tbody>
</table>

* Reaction conditions: Table 1, entry 1. Yields of the analytically pure product.
respectively. Notably, an ester-group could also be tolerated under the reaction conditions to furnish 3aki in 80% yield. On the other hand, substrates containing amides, nitro groups, olefins, primary alcohols, primary amino groups, N-tosylhydrazone of aliphatic aldehydes, and N-methanesulfonyl hydrazone were found to be unsuitable as either the starting materials remained intact or a complex mixture of products was formed (Schemes S1–S5 in the ESI†).

To further demonstrate the applicability of our protocol, we examined the possibility of obtaining unsymmetrical 1,2,4-triazoles by employing two different hydrazones (Table 3). In fact, the synthesis of unsymmetrically substituted 1,2,4-triazoles is considered to be highly challenging and to the best of our knowledge, their single step synthesis from readily accessible starting materials is less explored.44–45 Gratifyingly, when 2a was reacted with an equimolar mixture of 1a and 1c the unsymmetrical 1,2,4-triazole 3aca was obtained as a major product in 77% yield and symmetrical triazoles were only obtained in minor amounts. The products could be purified via column chromatography on silica-gel using an ethyl acetate/hexane mixture as the eluent. Similar reactivity and selectivity were also observed for the synthesis of 3ada and 3aea. Likewise, biphenyl-, haloaromatic- and heteroaromatic-rings could be installed without any difficulty to give the triazoles 3aic, 3aja, 3akc, 3bcb and 3bdb in 61–80% yields. Colorless crystals of 3akc, grown from a saturated benzene solution stored at room temperature, were suitable for single-crystal X-ray analysis and clearly confirmed the structure of the product (Fig. S3 in the ESI†).46 It is noteworthy that the reaction is highly chemoselective as the reactive carbomethoxy- and cyano-groups remain unaffected under the present reaction conditions to provide 3aki and 3alb in 74% and 58% yields, respectively. The steric hindrance was found to exert a negligible influence on the reaction to give the desired product 3bga and 3alm in good yields.

In order to obtain insight into the reaction mechanism, several equilibrium studies were performed initially with N-tosylhydrazones and anilines in the presence of Lewis acids (Scheme 3). At the onset, the relative Lewis basicity of aniline and N-tosylhydrazone towards B(C6F5)3 was analyzed (Scheme 3a). Thus, in a stoichiometric reaction of 2a and B(C6F5)3 at room temperature in C6D6, the ratio of 2a and 5a (B(C6F5)3 adduct of 2a) was found to be 1 : 4 (2a : 5a = 1 : 4). Similarly, the stoichiometric mixture of 1a and B(C6F5)3 in C6D6 at room temperature afforded quantitative formation of 4a (B(C6F5)3 adduct 1a) where the ratio was 1a : 4a = 0 : 100. This confirms the tendency of N-tosylhydrazone 1 to form a stronger Lewis acid–base adduct with B(C6F5)3 in comparison to aniline 2.

Table 3 B(C6F5)3 catalyzed synthesis of unsymmetrical 1,2,4-triazoles*

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reaction Conditions</th>
<th>Yield (%)</th>
<th>Selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5 mmol scale</td>
<td>77</td>
<td>3aca</td>
</tr>
<tr>
<td>2</td>
<td>0.5 mmol scale</td>
<td>61</td>
<td>3ada</td>
</tr>
<tr>
<td>3</td>
<td>0.5 mmol scale</td>
<td>71</td>
<td>3aea</td>
</tr>
<tr>
<td>4</td>
<td>0.5 mmol scale</td>
<td>70</td>
<td>3bga</td>
</tr>
<tr>
<td>5</td>
<td>0.5 mmol scale</td>
<td>78</td>
<td>3alm</td>
</tr>
</tbody>
</table>

* Reaction conditions: Table 1, entry 1 in the 0.5 mmol scale. Yields of the analytically pure product. Selectivities are given within parenthesis.

Scheme 3 Equilibrium and selectivity studies for 1,2,4-triazole formation.
Moreover, a competitive equilibrium study was performed with two electronically biased N-tosylhydrazones (1a vs. 1c) with B(C6F5)3 (Scheme 3b). Accordingly, a stoichiometric (1 : 1) mixture of 1a and 1c was treated with 1 equivalent of B(C6F5)3 in C6D6 at room temperature. This selectively afforded the Lewis acid–base adduct 4a whereas 1c remained unreacted (4a : 1c = 1 : 1). Thus, N-tosylhydrazones having electron rich arenes will form strong Lewis acid–base adducts than hydrazones having electron deficient arenes. This is possibly a crucial factor for the selectivity observed during the synthesis of unsymmetrical 1,2,4-triazoles as shown in Table 3. Along this direction, in fact, the reaction of aniline 2a with a mixture of 1a and 1c having electronically similar substituents (Cl and Br) on arenes in the presence of the B(C6F5)3 catalyst provided a mixture of two symmetrical and unsymmetrical 1,2,4-triazoles (Scheme 3c) as both the hydrazones have similar probabilities for the formation of Lewis acid–base adducts with B(C6F5)3. Thus, electronically biased hydrazones are good candidates for better selectivity of unsymmetrical triazoles.

In the case of competitive equilibrium studies of two different anilines with B(C6F5)3, a stoichiometric (1 : 1 : 1) mixture of 2a, 2c, and B(C6F5)3 in C6D6 at room temperature gave their corresponding Lewis acid–base adduct 5a and 5c, respectively in an 8 : 1 ratio (Scheme S8 in the ESI†). This indicates that highly basic anilines will form stronger adducts with B(C6F5)3. It is also noteworthy that other Lewis acids like Sc(OTf)3 and BPh3 did not form any Lewis acid–base adducts with B(C6F5)3. Thus, electronical hydrazones are good candidates for better selectivity of unsymmetrical triazoles.

A 2 : 1 : 1 mixture of 1a, 2a and styrene in the presence of the B(C6F5)3 catalyst afforded 82% of 3aa along with 68% of ethylbenzene (Scheme 4c). Moreover, we performed a number of control experiments using amidines, azines, and imines as possible reaction intermediates albeit none of them proceeded to give 1,2,4-triazoles (Schemes S14–S16 in the ESI†).

A plausible mechanism is proposed on the basis of the above experimental observations and previous literature reports (Scheme 5). To the best of our knowledge DFT calculations of N–N cyclization leading to 1,2,4 triazole fragments are obscure. Based on the proposed mechanism of the B(C6F5)3-catalyzed acceptorless-dehydrogenative-cyclization of N-tosylhydrazones with anilines (Scheme 5), we have performed DFT calculations to investigate the detailed reaction mechanism and to gain insight into the driving force for the formation of the 1,2,4-triazole moiety 3aab. Additionally, the calculations seek to address some pertinent questions regarding the studied system: (a) the specific role of B(C6F5)3 in the reaction, (b) the rate-limiting-step in the reaction, and (c) product distribution for unsymmetrical coupling.

The reaction is initiated with the coordination of B(C6F5)3 to the sp2 nitrogen (N1) in N-tosylhydrazone (1a) which results in
the formation of an isenergetic encounter complex \(4_{b}^p \) (Scheme 6). The approach of the nucleophilic \(N^1 \) center in \(1_b \) towards the electron-deficient \(B \) center in \(B[C_6F_5]_2 \) furnishes the slightly more stable Lewis adduct \(4_b \) via a transition state \([4p-4]_{b}^{\ddagger} \) with an activation barrier of 10.9 kcal mol\(^{-1}\). Despite the fact that the \(N^2 \) center in \(1_b \) is significantly electron-rich (\(-0.646\) e) compared to the \(N^1 \) center (\(-0.242\) e), as obtained by the natural population analysis (NPA), \(B[C_6F_5]_2 \) gets coordinated to the \(N^1 \) center. This is attributed to the fact that the lone pair orbital located on the \(N^1 \) atom (HOMO-4) is significantly destabilized compared to the one on the \(N^2 \) atom (HOMO-5) by 0.4 eV (Fig. S100 in the ESI†). Furthermore, coordination at the \(N^2 \) center resulted in adduct \(4b' \), which is less stable than \(4_b^p \) by 2.4 kcal mol\(^{-1}\) (Scheme S17 in the ESI†).

To cast light on the origin of the activation barrier and the bonding scenario in \([4p-4]_{b}^{\ddagger} \), EDA-NOCV (energy decomposition analysis-natural orbital for chemical valence) analysis was performed, considering \(1_b \) and \(B[C_6F_5]_2 \) as interacting fragments (Table S4 in the ESI†). Examination of the individual energy terms of the EDA reveals that the B–N\(^1\) bond has a higher electrostatic character (\(\Delta E_{\text{elstat}} \) : 39.8%) than the covalent character (\(\Delta E_{\text{orb}} \) : 33.5%). Importantly, the major contribution to the total covalent interaction (\(\Delta E_{\text{orb}} \)) originates from the donation of the lone pair on the \(N^1 \) center in \(1_b \) to the vacant \(2p_b \) orbital of boron in the \(B[C_6F_5]_2 \) fragment (Fig. S101 in the ESI†). We have calculated the associated eigenvalue of 0.49 e quantifying the amount of charge flow from donor \(\rightarrow \) acceptor fragments. Additionally, the \(B[C_6F_5]_2 \) fragment has the predominant contribution to the destabilizing distortion energy (\(\Delta E_{\text{dis}} \)). The calculated electron density \(\rho(r) \) of 0.112 at the \((3, -1)\) bond critical point (BCP) of the B–N\(^1\) bond in \(4_b \) along with the respective Laplacian of \(\nabla^2 \rho(r) \) suggests a donor–acceptor type interaction.\(^{61,62}\) Thereafter, the coordination of the substituted aniline \(2_b \) to \(4_b \) affords the intermediate \(6_b^2 \) which finally leads to a slightly more stable Zwitterionic complex \(7_b \) accompanied by a moderately low energy barrier of 8.8 kcal mol\(^{-1}\). The imaginary mode in \([6-7]_{ba}^{\ddagger}\) portrays the formation of the C–N\(^3\) bond (1.849 Å) along with concomitant elongation of the C–N\(^1\) bond (1.383 Å). It is worthwhile to mention that the HOMO in \(7_b \) represents the lone pair orbital located on the N\(^1\) atom (Fig. S100 in the ESI†). The subsequent proton transfer from N\(^3\) to the N\(^1\) center in \(7_b \) furnishes the significantly less stable intermediate \(8_b \) via a four-membered transition state \([7-8]_{ba}^{\ddagger}\) (Scheme 6, Fig. 1a). The step \(7_b \rightarrow 8_b \) involving proton migration requires an activation barrier of 32.0 kcal mol\(^{-1}\) and thus becomes the rate-limiting step for the overall transformation.\(^{63}\) Indeed, this is supported by the experimental rate curve with a slower rate at the beginning of the reaction (vide supra, Fig. S1 in the ESI†). The single imaginary mode in \([7-8]_{ba}^{\ddagger}\) depicts the synchronous breakage of N\(^3\)–H (1.296 Å) and formation of N\(^3\)–H (1.353 Å) bonds. In \([7-8]_{ba}^{\ddagger}\), the B–N\(^1\) bond gets significantly elongated (1.602/1.676 Å in \(7_b \)[7-8]_{ba}^{\ddagger} and this weakening of the donor–acceptor bond is reflected in the reduced NPA charge on the B center (+0.467/ +0.488 e in \(7_b \)[7-8]_{ba}^{\ddagger}). It should be noted that both aniline and TsNH\(_2\) assisted alternative intermolecular proton transfer between the two nitrogen centers (N\(^3\) → N\(^1\)) are less favorable than the intramolecular path reported in Scheme 6 (Scheme S18a and b in the ESI†).

From here on, the coupling of a second N-tosylhydrazone unit is required for the progress of the reaction. This is accomplished through an initial proton transfer from the C center in \(8_b \) to N\(^1\) in \(1_b \). Such a proton abstraction from the tertiary C atom is manifested with N\(^3\)–N\(^2\) bond elongation. This intermolecular proton transfer is clearly favorable (\(-17.5\) kcal mol\(^{-1}\)), creating charged species \(1_b^+ \) and \(9_b \) respectively (Scheme 7), whereas the coordination of \(1_b \) instead of proton transfer is highly unfavorable (refer Scheme S18c in the ESI†). In accordance with the experimental findings, KIE measurements suggest the non-involvement of imine C–H bond cleavage in the rate-determining step (Scheme 4a). Though obvious, it is important to note that hydrogen abstraction from electronegative N centers in \(8_b \) is undoubt-edly difficult, leading to highly unstable intermediates (Scheme S18d in the ESI†). Close inspection of the structural parameters in \(9_b \) indicates considerable elongation, rather than

![Scheme 6](https://example.com/scheme6.png)

Scheme 6 Part I: the reaction pathway for the formation of the intermediate \(8_b \). The energy values above the arrows denote the Gibbs free energy changes (\(\Delta G^\ddagger \)) of the individual steps. The values within parentheses are the relative \(\Delta G^\ddagger \) energies w.r.t the starting structures. All energy terms are in kcal mol\(^{-1}\).
dissociation of the N–N bond (1.450 Å/2.987 Å = 8ba/9ba) and generation of a partial double bond character in the C–N bond (1.568 Å/1.323 Å = 8ba/9ba). The N3 center of the -NHTS unit in 9ba shows significant hydrogen bonding interactions with the H2 atom connected to the N3 center, as evidenced by the N3–H2 (1.088 Å) and N2–H2 (1.622 Å) bond lengths. The dissociation of the TsNH2 fragment is quite evident from 10ba with a shorter N2–H2 distance (1.057 Å) and further elongated N1–N2 distance (3.634 Å). Complete removal of TsNH2 will generate a highly nucleophilic N3 center in 11ba which will immediately coordinate with the preformed cationic intermediate 1b+ to generate substantially stable 12baa (Scheme 7). The coupling of two oppositely charged species is further facilitated by the exothermicity of C–N bond formation.

From 12baa the cyclization step is necessary to generate the triazole product 3baa (Scheme 5). Under these circumstances, it might be conceivable that the liberation of a second TsNH2 unit will facilitate N1–N4 bond formation. Thus, protonation at the N3 center is necessary, similar to the preceding step 8ba → 1b+ + 9ba in Part II (Scheme 7). Unlike in 8ba, the possibility...
of C–H abstraction in 12_bba either as a proton or hydride transfer is unfeasible (refer Scheme S18c in the ESI†). However, the formation of cationic species 13_bba after protonation along with anionic 9_bba generation is possible, but it is less exothermic than the previous transfer (8_bba → 1_b+ + 9_bba; Schemes 7 and 8). Unfortunately, the addition of protons to any other electronegative center resulted in either high energy intermediates or reaction dead ends (refer Scheme S18f in the ESI†). In order to enhance the nucleophilicity at the N1 center, B(C6F5)3 was uncoordinated in the presence of an aryl amine (2a) to generate notably unstable 14_bba (Scheme 8). Subsequent rearrangement to isomeric 15_bba provides adequate structural disposition for facile cyclization to proceed. We have explored numerous possibilities for N1–N4 bond formation. However, none of them gave promising alternatives; instead the activation barriers are too high or transition states could not be optimized after numerous attempts (Scheme S18g in the ESI†). The cyclization step involving the transition state [15-16]_bba‡ requires an activation barrier of 15.8 kcal mol⁻¹ and it witnesses a progressive removal of the TsNH₂ unit.

As expected, the transition vector in [15-16]_bba‡ depicts the breaking of the N4–N5 bond (1.794 Å) with the concomitant formation of the N1–N4 bond (2.192 Å). Complete removal of TsNH₂ affords the saturated triazole intermediate 17_bba, which is 35.6 kcal mol⁻¹ more stable than 15_bba. Subsequent deprotonation at the N1 center by 1_b will generate the significantly less stable intermediate 18_bba. This step is facile with an activation barrier of only 1.6 kcal mol⁻¹ (Scheme S19 in the ESI†). The protonated form 1_b+ generated can have two fates: it may either participate in the preceding steps reported in Part II (Scheme 7) or can undergo an endergonic exchange of protons to a free amine (2a + 1_b+ → 2_a+ + 1_b; 4.8 kcal mol⁻¹). Generally, the intermediates formed after coupling of the second N-tosylhydrazone moiety are highly stable compared to the starting structures and the driving force for the subsequent reactions is the increasing exergonicity towards product formation (refer Fig. 1b). This statement is supported by high-resolution-mass-spectrometry studies which clearly detect a similar skeleton to

Scheme 7 Part II: the reaction pathway for the formation of the intermediate 12_bba. For other information refer the caption of Scheme 6.

Scheme 8 Part III: the reaction pathway for the formation of the intermediate 18_bba. For other information refer the caption of Scheme 6.
In order to address the positional effect of B(C₆F₅)₃ in the cyclization step, we calculated two isomers in which it coordinates to other N centers (N' and N'') in 12_ohba. The resulting intermediates 35_ohba and 36_ohba are unstable and did not provide a low energy route to the cyclization step (Scheme S18h in the ESI†). Furthermore, in the absence of B(C₆F₅)₃, the cyclization step leading to 18_ohba encounters a high transition barrier (38.2 kcal mol⁻¹; Scheme S18i in the ESI†) and thus underscores the significance of B(C₆F₅)₃ in this current transformation.

In the next step, 18_ohba undergoes dehydrogenative aromatization to furnish triazole 3_ohba and an ion pair 22_oha through B(C₆F₅)₃ mediated hydride abstraction (19_ohba → 20_ohba) followed by proton abstraction involving substituted anilines (21_ohba → 3_ohba + 22_oha; Scheme 9). We have calculated intrinsic activation barriers of 13.1 and 21.7 kcal mol⁻¹ for the hydride and proton abstraction steps, respectively. Thereafter, two hydrogen atoms in the ion pair 22_oha produce a H₂ molecule via the four-membered transition state (22-5_ohs) (Scheme 9, Fig. 1b). Liberation of H₂ along with the formation of the frustrated Lewis acid-base pair (FLP) adduct 5_oha is facile with a barrier of only 11.3 kcal mol⁻¹ (Scheme 9). The evolution of H₂ was also confirmed by the transfer hydrogenation of styrene (vide supra, Scheme 4c). Finally, maintaining an endoergic equilibrium, the FLP adduct regenerates B(C₆F₅)₃ and substrate 2_oha. In sum, the computational results do have concurrence with the experimental findings, particularly in understanding the dual role of B(C₆F₅)₃ in activating the N-tosylhydrazone towards nucleophilic attack and acceptor-less liberation of H₂ with the formation of a FLP (Scheme 9). Additionally, the rate determining step involving intramolecular proton transfer (7_oha → 8_ohba; Δ‡G_s = 32.0 kcal mol⁻¹) can be surmounted at a reaction temperature of 80 °C. Optimized geometries of the transition states with selected geometrical parameters along with the energy profiles are shown in Fig. 1.

For unsymmetrical systems

An equimolar mixture of 1a and 1c in the presence of 2_a afforded the unsymmetrical triazole 3_aca as the major product (77%) compared to the symmetrical counterpart (vide supra; Table 3). To provide reasonable justification for this observation we decided to compare the relative propensity of Lewis acid-base adduct formation of N-tosylhydrazones 1a and 1c with B(C₆F₅)₃ (B(C₆F₅)₃ → 4_acp → 4_ace). As expected, the formation of 4_ace is more facile than 4_a by ca. 3.0 kcal mol⁻¹ (Fig. S102 in the ESI†). This is in accordance with the experimentally observed equilibrium ratio in Scheme 3b. Eventually the activation barrier for B(C₆F₅)₃ coordination is favorable for the –OMe substituent by 3.6 kcal mol⁻¹ (∆Δ‡G_p; Fig. S102 in the ESI†). What is more interesting is that the overall energy span for Part I is substantially higher for the –Cl substituent than –OMe (42.5 kcal mol⁻¹ vs. 33.3 kcal mol⁻¹), clearly indicating the preference for 1_a to undergo B(C₆F₅)₃ assisted intramolecular proton transfer in a facile manner. Therefore, when 8_aca couples with another hydrazone unit, the preferred choice will be the chloro-substituted analogue 1_c as most of the 1_c will be available in the adduct form 4_ace. The combination of 8_aca with 1_c will lead directly to 12_aca in a favorable fashion with an exothermicity of ca. 50.6 kcal mol⁻¹ (Fig. S103 in the ESI†). From 12_aca, the generation of 16_aca requires a barrier of 20.4 kcal mol⁻¹ which is almost similar to the value obtained in the previous case (20.0 kcal mol⁻¹: 12_ohba → 16_ohba; Fig. 1b). This barrier is 1.1 kcal mol⁻¹ lower than the symmetrical case (Fig. S103 in the ESI†) further supporting the preference for unsymmetrical triazole (3_aca) formation (Fig. S103 in the ESI†).

This journal is © The Royal Society of Chemistry 2019

Chem. Sci., 2019, 10, 7964–7974 | 7971

Scheme 9 Part IV: the reaction pathway for the formation of the desired product 1,2,4-triazole complex (3_ohba) and the hydrogen evolution step. For other information refer the caption of Scheme 6.
After the formation of the triazole ring in 16_{mac}, which is 71.5 kcal mol$^{-1}$ more stable than the starting materials, the subsequent $\text{B(C}_6\text{F}_5)_3$ assisted dehydrogenation follows an analogous mechanism as outlined before (Scheme 9; Fig. 1b).37

Conclusions

In summary, we have demonstrated $\text{B(C}_6\text{F}_5)_3$ catalyzed metal-free, one-pot, dehydrogenative-cyclization of hydrazones with anilines to furnish both symmetrical and unsymmetrical 3,4,5-triaryliminothiadiazole and 3,4,5-triaryl-1,2,4-triazoles. The isolation of the N-tosylhydrazine-borane adduct is also reported for the first time. Mechanistic experiments and DFT calculations suggest that the $\text{B(C}_6\text{F}_5)_3$ catalyst serves a dual role: the activation of the hydrazone for the nucleophilic attack and the formation of an FLP for dehydrogenation. Calculations also reveal that the rate-determining step involves intra-molecular hydrogen transfer between the N-centers after aniline gets bonded to the N-Tosylhydrazine unit.

The chemo-selective, step-economical, oxidant-free and mild reaction protocol could give a potential platform for the increasing focus on main-group catalysis.

Computational methods

All computations are performed using Gaussian 09 44 and ADF 2018.103 48 quantum codes. Geometry optimizations of the saddle points without any symmetry constraints are carried out using the B3LYP hybrid functional70 in conjunction with the SVP basis set71 in the Gaussian 09 program package. Harmonic force constants are computed at the optimized geometries to characterize the nature of the stationary points as minima ($N_{\text{img}} = 0$) or transition states ($N_{\text{img}} = 1$). Transition states are located by using the linear synchronous transit (LST)72 scan method in which the reaction coordinate was kept fixed at different distances while all other degrees of freedom are relaxed. After the linear transit search, the transition states are optimized by using the default Berny algorithm implemented in the Gaussian 09 code. All transition states are validated by intrinsic reaction coordinate (IRC) calculations. In addition, single point calculations were performed on the B3LYP/SVP optimized structures using the dispersion corrected hybrid functional B3LYP-D3 73 in conjunction with a large basis set (triplet-ζ quality split valence plus polarization, TZVP).74 The effect of solvation (benzene, dielectric constant $\varepsilon = 2.27$) was assessed by a self-consistent reaction field (SCRF) approach, using the conductor-like polarizable continuum model (CPCM).75

Tight wave function convergence criteria and an “ultrafine” (99 950) grid were used for the single point calculations. Natural bond orbital (NBO)76 analysis was performed at the B3LYP-D3/TZVP/B3LYP/SVP level using the NBO Version 3.1 program. QTAIM (quantum theory of atoms in molecules) calculations are also performed to characterize the electron distribution around some selected bonds in the chemical species applying Bader’s AIM (atoms-in-molecule) theory.77 Furthermore, to gain insight into the bonding scenario in the transition state $[3p^2-4d^2]_b^T$ EDA (energy decomposition analysis) calculations in conjunction with the NOCV (natural orbital for chemical valence)78 method are undertaken using the ADF 2018.103 package. Implementation and application of the EDA method, which was originally developed by Morokuma79 and later modified by Ziegler and Rauk,80 can be found elsewhere.81-85 The figures provided in the manuscript are generated using ChemDraw Ultra 12.0 and CYLview86 visualization software.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank the IISER Kolkata (Start-up grant) for financial support. M. M. G. thanks the SERB (PDF/2017/000028) for the NPDF fellowship. S. De and S. Dutta thank the UGC and CSIR, respectively for senior research fellowships. D. K. acknowledges the funding from the bilateral DST-DFG (INT/FRG/DFG/P-05/2017) scheme and the IISER Kolkata for computational facility. The authors thank Dr. S. Lakhdar (CNRS-ENSI Caen), and Prof. Dr. H. Mayr (LMU Munich) for helpful discussions. Dedicated to Professor Dr. Vinod K. Singh on the occasion of his 60th birthday.

Notes and references

64 Deprotonation from the N4 center will afford highly unstable intermediates ($\Delta G_{\text{f}}^\circ \text{N}4 = 37.6$ kcal mol-1) compared to 17bb.a.

67 The energy span in Part IV (18_{\text{aca}} \rightarrow 20_{\text{aca}}) is reduced by ca. 4.0 kcal mol-1 when intermediates for the step 17_{\text{aca}} \rightarrow 18_{\text{aca}} were optimized in benzene continuum (B3LYP/SVP(CPCM) level).

86 C. Y. Legault, CYLview, 1.0b, Université de Sherbrooke, 2009, see http://www.cylview.org.