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networks: prediction of frontier
orbital energies of tungsten–benzylidyne
photoredox complexes†

Alexander M. Chang, Jessica G. Freeze and Victor S. Batista*

The successful application of Hammett parameters as input features for regressive machine learning

models is demonstrated and applied to predict energies of frontier orbitals of highly reducing tungsten–

benzylidyne complexes of the form W(^CArR)L4X. Using a reference molecular framework and the

meta- and para-substituent Hammett parameters of the ligands, the models predict energies of frontier

orbitals that correlate with redox potentials. The regressive models capture the multivariate character of

electron-donating trends as influenced by multiple substituents even for non-aryl ligands, harnessing the

breadth of Hammett parameters in a generalized model. We find a tungsten catalyst with

tetramethylethylenediamine (tmeda) equatorial ligands and axial methoxyl substituents that should

attract significant experimental interest since it is predicted to be highly reducing when photoactivated

with visible light. The utilization of Hammett parameters in this study presents a generalizable and

compact representation for exploring the effects of ligand substitutions.
Introduction

The relationship between molecular structure and chemical
reactivity is central for the design of catalytic systems. One of
the most extensively investigated topics in structure–reactivity
relationships has been the effect of substituents on the prop-
erties of aromatic compounds, as described by the Hammett
equation:1–3

sr ¼ log

�
K

K0

�
¼ �rDrKa (1)

Eqn (1) provides a linear free energy relationship between
the equilibrium or rate constants K0 and K, for chemical reac-
tions of unsubstituted (K0) and substituted (K) benzoic acid
derivatives, and the meta- and para-substituents.1–3 A demon-
stration of this relationship to DG can be seen in the ESI.†1 The
substituent constant s depends only on the nature and position
of the substituent, determining the net electron-withdrawing or
electron-donating character of that group, while r is the reaction
constant that depends on the particular reaction of interest, type
of molecule, and reaction conditions. Eqn (1) was initially tested
by Hammett on 52 reactions,1–3 and since then many other
reactions have been successfully investigated with parameters s
and r tabulated for hundreds of different meta- and para-
nstitute, Yale University, New Haven, CT

tion (ESI) available. See DOI:

4

substituents.2 However, ortho-substituents or poly-substituted
compounds oen deviate from the linear relationship due to
the non-additive character of the contributions when steric or
solvent effects are important. Here, we introduce a neural
network and various linear models that are capable of predict-
ing frontier orbital energies, based on the s Hammett param-
eters from literature.1,2 The models bypass the usual limitations
of the Hammett equation, including both aryl and non-aryl
substitutions, allowing for the prediction of frontier orbital
energies of tungsten–benzylidyne complexes (Fig. 1).
Fig. 1 Tungsten–benzylidyne molecular framework and possible
substituent ligand options at each site. All R groups are in the para
position of the benzene ring.

This journal is © The Royal Society of Chemistry 2019

http://crossmark.crossref.org/dialog/?doi=10.1039/c9sc02339a&domain=pdf&date_stamp=2019-07-13
http://orcid.org/0000-0003-1347-7169
http://orcid.org/0000-0002-7944-1305
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9sc02339a
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC010028


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
Ju

ne
 2

01
9.

 D
ow

nl
oa

de
d 

on
 1

0/
19

/2
02

4 
1:

45
:5

3 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Tungsten–alkylidyne complexes represent a d2 family of the
photoredox chromophores of the form W(^CR0)L4X (R0 ¼ aryl
group with organic substituent, L ¼ neutral ligand, X ¼ anionic
ligand, where the W–X bond is trans to the alkylidyne ligand),
with redox potentials that can be tuned over a broad range by
ligand design.4–6 In fact, Hopkins and co-workers have shown
that W(^CR0)L4X complexes can have highly variable ligands
allowing for tunable redox potentials and photophysical prop-
erties.4,5,7 For example, 32 different W(^CR0)L4X compounds
were synthesized and examined through variation of the R0, L,
and X substituents.4 The redox active orbital of the synthesized
W(^CR0)L4X complexes is the metal-centered dxy state (typically
the HOMO), with an energy level that is strongly correlated to
the redox potential of the complex (Fig. 2).4 Therefore, the
ligands can be tuned to achieve highest reduction potential
using the dxy orbital energy as a molecular descriptor. As
applications to solar photoreduction also require the energy gap
dxy–p* (usually the HOMO–LUMO gap) to be in the visible
range, this energy gap can be used as a molecular descriptor as
well. For the purposes of this study, we focused on tungsten–
benzylidyne complexes of the form W(^CArR)L4X (Fig. 1),
a subset of the tungsten–alkylidyne complex chemical space
suggested by Hopkins and co-workers. Due to the large number
of possible ligands,8,9 high-throughput screening could be
a time-consuming and computationally expensive approach.
Consequently, implementing systematic methods based on
inverse design may prove a more cost-effective endeavor.
Inverse design, as a general concept, involves searching over
a descriptor space to nd a desired descriptor value and then
Fig. 2 Experimental potentials of 32 W(^CR0)L4X complexes plotted
against their corresponding DFT (B3LYP) dxy energies, with basis set
LANL2DZ used for W, Cl, Br, and I atoms, and basis set 6-311G* used
for all other atoms. A structural benchmarking study by Rudshteyn
et al. showed that this chosen level of theory was in agreement with
experiment.6 Data was taken from ref. 6 including only reversible (black
circles) and quasi-reversible (blue squares) experimental potentials.

This journal is © The Royal Society of Chemistry 2019
determining the structure that matches that descriptor.
Because descriptor space contains the parameter or a related
parameter that one is trying to optimize, inverse design is able
to perform a directed search over possible structures in contrast
to the oen-random ligand combinations seen in methods like
high-throughput screening.

Methods based on machine learning have received prom-
inent attention in the chemistry community, and have been
used to learn patterns of a training data set and accurately
predict labels such as frontier orbital energies for novel mole-
cules,10–16 bypassing the cost of exhaustive screening. However,
incorporation of the Hammett substituent constants into these
deep learning methods has not been explored. Here, we show
that Hammett parameters can be used for training regressive
machine learning models, varying the ligands of a given
complex to render accurate quantitative descriptions. In order
to determine the presence of non-linearity in the relationship
between frontier orbital energies and Hammett parameter
descriptors, we compare results between neural network and
linear, ridge, LASSO, and stepwise regression methods, similar
to the works of Sigman and co-workers.17 The reported ndings
thus contribute to the emerging eld of machine learning in
chemistry already explored in a wide range of important direc-
tions, including force eld development,18,19 electronic struc-
ture calculations,20,21 drug discovery,22 new materials
development,23,24 toxicity probing,25 prediction of chemical
reactions26 and reaction yields,21 to mention a few.

The R, L, and X ligands are described according to their
corresponding meta- and para-s Hammett parameters, which
are provided as input data for the regressive methods. The
resulting models thus simultaneously account for the effects of
multiple substituents, exploiting the capabilities of Hammett
parameters as descriptors of electron-withdrawing/donating
effects that correlate with redox potentials as well as HOMO/
LUMO energies.27–34 In fact, due to their ability to capture
electron-donating trends, the substituent constants should
modulate the frontier orbital energies in the d2 W(^CArR)L4X
complexes, regardless of whether the corresponding ligands are
aryl or not. However, the underlying correlation established by
multiple Hammett constants and the frontier orbital energies
has yet to be established.

In this paper, we explore the energy of the frontier orbital
with predominant symmetry, dxy, and the dxy–p* energy gap for
a series of 150 tungsten–benzylidyne complexes. All 150 ener-
gies were calculated aer geometry optimization at density
functional theory (DFT) level, as implemented in Gaussian 09,35

using the B3LYP functional36 and the Def2SVP basis set.37,38 The
DFT energies, along with the Hammett parameters of the
various substituent ligands, were then used to train and test
linear and non-linear regressive models. The models were
parameterized to predict the energies of the frontier orbitals
from just the Hammett substituent constants of poly-
substituted compounds, so that top reducing candidates can
be determined and further evaluated at the DFT level while
minimizing computational expense. Data set tests showed only
training with 30 molecules, out of a total of 150 compounds in
the set produced highly accurate frontier orbital energies,
Chem. Sci., 2019, 10, 6844–6854 | 6845
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demonstrating the ability to produce accurate predictions from
a modest number of calculations.
Table 1 Molecules are named using numbers corresponding to the
ligands at the R, L, and X sites, as shown below. For example, molecule
224 has Me in the R position, dmpe modeled as PEt2 in the L position,
and SMe in the X position

R L1 L2 L3 X

1 H NEt2 NEt2 NEt2 F
2 Me PEt2 PEt2 PEt2 Cl
3 OMe AsEt2 AsEt2 AsEt2 OMe
4 SMe SEt SEt SEt SMe
5 NMe2 NEt2 PEt2 PEt2 NMe2
6 NEt2 PEt2 NEt2
Methods
Computational modeling

The series of compounds W(^CArR)L4X includes 5 substituent
options for the R position, 6 for L and 5 for X (Fig. 1). Note that
in this study R denotes the ligand on the aryl group as shown in
Fig. 1 and is not R0 which includes the aryl group and the
organic substituent, as in the previous paper.6 The ligands are
commercially available or easily accessible, and are also
synthetically viable options for the tungsten catalyst of interest.
For the purpose of redox potential calculations, solvation
energies were calculated using single point calculations under
the SMD dielectric continuum model39 for the solvent THF (3 ¼
7.43),35 the most popular solvent used in studies of these
tungsten–benzylidene complexes.4 The orbitals with symmetry
dxy (typically the HOMO) and p* (typically the LUMO) were
identied by visual inspection of DFT-optimized molecules,
using Avogadro 1.2.0.32,40 Visual examples of these orbitals are
displayed in the ESI.† The dxy energies and dxy–p* energy gaps
were tabulated and analyzed as shown in Fig. 5.

Redox potentials (E1/2) were computed using the Born–Haber
cycle at the DFT level of theory (B3LYP36/Def2SVP37,38), relative to
the computed potential for the complex W(CPh)(dmpe)2Cl. The
Def2SVP basis set is worse than the basis set used for this
catalyst in the previous paper,6 but is cheaper for calculations
and is shown to perform comparably to experimental values,
like its predecessor, through the scaling procedure detailed
below. The expression for E1/2 is given, as follows:

E1=2 ¼ DGox;solv

nF
¼ DGsolvðIIIÞ � DGsolvðIIÞ

nF
(2)

where n is the number of moles of electrons in the redox reac-
tion (n ¼ 1 in this study) per mole of oxidized complex, F is
Faraday's constant, and DGsolv(II) and DGsolv(III) are the free
energies of solvation (with thermal corrections) of the d2 tung-
sten complexes and oxidized d1 complexes, respectively. The
redox potential of complex W(CPh)(dmpe)2Cl was experimen-
tally determined and chosen as an internal reference.6 The
calculated redox potential for that complex was scaled to its
experimental value (�0.82 V vs. FeCp2

0/+). The redox potential of
another complex, W(CH)(dmpe)2Cl, was also calculated (�0.80
V) and compared to its corresponding experimental value
(�0.84 V) to gauge and verify upon the effectiveness of the
reference.

The previous study on this tungsten catalyst determined that
dispersion corrections were only necessary for one of their
potential catalysts.6 To show that these corrections are not
necessary for our molecules, a selected ten of our 150 molecules
were re-optimized using dispersion-corrected DFT (uB97XD41/
Def2SVP), with their resulting energies shown in the ESI.† It was
found that the absolute energies of the dxy orbital and the dxy–
p* gap are systematically altered, making their relative energies
approximately the same as their non-dispersion-corrected
energies. Therefore, we conclude that our machine learning
6846 | Chem. Sci., 2019, 10, 6844–6854
models would capture the same trends regardless of the use of
dispersion-corrected functionals, thereby rendering dispersion
calculations of all of our candidates superuous.
Data sets

For most of the data sets used, each compound was dened by
11 parameters, consisting of an output label corresponding to
the energy of the frontier orbital with dxy symmetry or energy
gap dxy–p* and 10 input Hammett parameters associated with
the substituent groups, including R, X, and 3 L ligands
described by sm and sp. The fourth ligand L was determined by
the other three choices of L since we imposed a symmetry
constraint that should facilitate synthesis and assembly (Fig. 1).
Note, ethyl groups were used in place of the alkyl chains of
equatorial bidentate ligands, as shown in Table 1 (e.g., tmeda
becomes two NEt2) since ethyl groups mimic the alkyl chains of
the original ligands and the Hammett parameters of the
bidentate ligands are not available. For the purposes of
comparison, one data set used atomic coordinates instead of
Hammett parameters as its input. In atomic coordinate input,
the corresponding period and valence electron number of each
connecting atom of a substituted ligand acted as input
parameters. For example, substituting a methyl would give
input parameters of 2 and 4 for that ligand. This led to a total of
10 input parameters for the 5 substitution positions. Regardless
of parameterization, all molecules are labeled using the code
RLX where R, L, and X are the corresponding codes for the
ligands, as shown in Table 1 and Fig. 1. For example, complex
352 corresponds to OMe in the R position, cis-dmnpe for the L
ligands, and Cl at the X site.

From these two parameterizations, ten data sets of 150
molecules each were formed and are shown in Fig. 3. Data sets
1A and 1B use a random 120 : 30 train : test split, are described
by the atomic coordinate input parameters, and use dxy energy
(1A) or dxy–p* energy gap (1B) as the output parameters. Data
sets 2A and 2B use a random 120 : 30 train : test split, are
described by the ten Hammett parameters input, and use dxy
energy (2A) or dxy–p* energy gap (2B) as the output parameters.
Data sets 3A and 3B use a xed 30 : 120 train : test split, are
described by the ten Hammett parameters input, and use dxy
energy (3A) or dxy–p* energy gap (3B) as the output parameters.
The 30 molecules used for training in the 3A/3B data sets were
hand-chosen to cover the feature space as much as possible with
This journal is © The Royal Society of Chemistry 2019
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Fig. 3 (a–e) The ten main data sets used in our neural network and their training/testing splits are shown. “A” and “B” refer to data sets with the
label dxy energy and dxy–p* energy gap, respectively. Data sets 1A/1B, 2A/2B, 3A/3B each have ten input Hammett parameters, while sets 4A/4B
and 5A/5B have less than ten input Hammett parameters due to the use of feature selection methods to create them.
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equal representation amongst the various ligand options at each
site. Sets 4A/4B and 5A/5B were formed via multivariate linear
regression models performed on sets 3A/3B and will be further
discussed in a later section. All data sets are provided in the ESI.†
Principal component analysis (PCA)

PCA was performed with RStudio 1.1.442,42 using the ‘fac-
toextra’ library,43 for data sets 2A/2B to determine what corre-
lations existed between the Hammett parameters and the
labels used in the regressive methods. The resulting rotation
matrix was used to determine which parameters covered the
most variance in the output data, providing an effective way of
predicting whether the regressive methods could derive
a correlation pattern. The amount of correlation between input
and labels provided insights into how much data was needed
for each degree of freedom, leading to the construction of data
sets 3A/3B.
This journal is © The Royal Society of Chemistry 2019
Neural network

A neural network was coded in python using the Sequential
model in the Keras library,44 with a Tensorow backend. The
network, shown in Fig. 4, included two hidden layers with 12
and 8 neurons along with the input and output layers of size 10
and 1, respectively. For compilation of the model, the mean-
squared error (MSE) was used as the loss function while the
‘Adam’ algorithm45 with default parameters was used as the
optimizer. A loss or cost function is a function used to tell how
far the predicted results are from the actual results. This cost is
then used with the Adam algorithm, which is a gradient based
algorithm capable of dealing with noisy data, to determine how
the weights are updated aer every round of training. The
hyperparameters, number of layers, nodes per layer, and acti-
vation functions employed were chosen because they produced
optimal results. A trial and error procedure where hyper-
parameters, activation functions, and layer construction were
Chem. Sci., 2019, 10, 6844–6854 | 6847
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Fig. 4 Diagram of the implemented artificial neural network. The first
hidden layer employs a tanh activation function, the second layer
a rectified linear unit (ReLU) activation function, and the output a linear
activation function.
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adjusted one at a time until no improvement was observed was
used to determine this optimality. A plausible explanation for
why the hyperbolic tangent function works as a good rst acti-
vation function could be because the domain of the Hammett
substituent constants is centered around 0 and is mostly
between �1 and 1.2 In addition, the PCA results below show
both uncoupled and coupled ligand interactions contributing
to the output parameters. With such complex interactions, the
inclusions of a nonlinear function like hyperbolic tangent,
a linear function, and ReLU, which is partially linear, offer the
ability to describe these relationships. The optimization of
network parameters during training of each data set required
220 epochs to reach convergence, with a batch size of 2.
Convergence was dened as the number of epochs at which
a minimum MSE occurred without overtting. K-fold cross-
validation was performed with a 90% training, 10% validation
breakdown.

The MSE of predicted energies relative to the DFT values was
recorded for each round of 220 epochs for both training and
testing data. The testing MSE values were averaged over 90
rounds for data sets 2A/2B and 30 for 1A/1B and 3A/3B. A
standard deviation was calculated for each average MSE. The
molecules chosen for the 120 : 30 training : testing split for 1A/
1B and 2A/2B are random for each round. For the data sets 3A/
3B, the network evaluated the MSE based on the 120 unused
molecules in the test set, which were the same for all rounds
because the training set was pre-selected. The networks
parametrized with 3A/3B were then used to predict the labels of
all 150 molecules (including the 30 complexes used for
training), which were then compared to their corresponding
6848 | Chem. Sci., 2019, 10, 6844–6854
DFT values. Performing this test demonstrated the capabilities
and limitations of the resulting networks as applied to pre-
dicting the full energy spectrum of frontier orbitals. Welch two
sample t-tests were performed to see whether the models
generalized well, comparing the average MSE of the predicted
energies between the 30 molecules in 3A/3B and the remaining
120 not included in those sets. A signicance level p ¼ 0.05 was
used to determine whether the means of the MSE of the two
subsets deviated signicantly from one another. If the average
MSE of the 30 training molecules is statistically less signicant
than that of the other 120, then the model did not generalize
well to the test candidates and may have been overtted to the
training data.
Alternative regressive models

Multivariate Linear, LASSO, Ridge, and Gaussian Process
regressions were all implemented using the Scikit Learn
package.46 The cost functions for each of the linear regressions
can be seen below where xij are inputs, yi are the expected value,
and wj are the weights. The Gaussian process regression used
Algorithm 2.1 from Rasmussen andWilliams with a radial basis
function kernel (covariance).47

Linear regression cost ¼
XN
i¼1

 
yi �

XM
j¼0

wjxij

!2

(3)

Ridge regression cost ¼
XN
i¼1

 
yi �

XM
j¼0

wjxij

!2

þ a
XM
j¼0

wj
2 (4)

LASSO regression cost ¼
XN
i¼1

 
yi �

XM
j¼0

wjxij

!2

þ a
XM
j¼0

��wj

�� (5)

The parameter a in Ridge and LASSO was tested with the
values 0, 0.001, 0.005, and 0.01. LASSO and Ridge methods were
tested with and without cross validation. Cross-validation is
a method used to prevent overtting and improve a model's
generalization by allocating a subset of data as validation data
during each round of training that will be used as a test set to
generate the cost. This cost is used to update the weights of the
regressive method. Without cross-validation, this cost is deter-
mined by the training data. However, using the same training
data every round may cause overtting because the weights are
being tuned precisely to the same data. Instead, if cross-
validation is performed, the weights will be less biased
towards the training data and will give a better estimate of the
accuracy of the model on unseen data. Each method was tested
using data sets 3A/3B as these data sets offered the most
promise for utility and accuracy. The LASSOmethod has a built-
in feature selection that was used on set 3A using a ¼ 0.01 to
select parameters for new data sets 4A/4B, which use dxy energy
(4A) or dxy–p* energy gap (4B) as the output parameters. Similar
to what was done with sets 3A/3B, these new data sets were
trained on the neural network and tested on the energies of the
120 unused molecules. All of the previously mentioned
This journal is © The Royal Society of Chemistry 2019
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regressive methods, including the neural network, were also
tested with data sets 4A/4B in order to determine the effects of
the LASSO feature selection.

Using stepwise regression, we found another set of alterna-
tive models that predicted the dxy energy and dxy–p* energy gap
well. Forward selection, backward elimination, and bidirec-
tional elimination stepwise regression were used with selection
criterion of either Akaike information criterion (AIC)48 or
Bayesian information criterion (BIC),49 giving a total of six
regressions for each label. Formulas for AIC and BIC are dis-
played in eqn (6) and (7),

AIC ¼ �2 log L + 2p (6)

BIC ¼ �2 log L + log(n)p (7)

where L is the likelihood function of a given model, p is the
number of parameters, and n is the number of observations.
The two selection criteria are both estimators of relative quali-
ties of statistical models, and are used to maximize the good-
ness of t of the model while keeping the model simple by
penalizing for the number of parameters p, thereby discour-
aging overtting. These regressions were performed using the
‘step’ function in RStudio 1.1.442 (ref. 42) on training sets 3A/3B
for a total of 12 different regressions. The suggested Hammett
parameters from these regression models were then used to
convert 3A/3B to data sets 5A/5B, and these new data sets were
trained on the neural network and tested on the energies of the
120 unused molecules, likewise to what was done for 3A/3B.

The MSE's for these multivariate regression models were
calculated differently than those for the neural network
comparison of data sets 1A/1B, 2A/2B, and 3A/3B (Table 3). For
the MSE's seen in Table 4, the training sets 3A/3B, 4A/4B, and
5A/5B were used to predict the energies of the unused 120
molecules for those data sets following each round (220 epochs)
of training. These test energies were averaged over 30 rounds of
training, and then the MSE of those average energies was
calculated. The reason why we calculated the MSE's differently
for the neural networks in Table 3 was to show the standard
deviation of the MSE's between our training rounds for the
neural network. In contexts where there are restrictions on
averaging over training rounds, it is important to know that the
MSE for a given round of training does not deviate too signi-
cantly from its average. Moreover, Welch two sample t-tests
identical to those used for the neural networks were performed
on the training and testingMSE of all regressionmodels on data
sets 3A/3B to determine generalizability.
Table 2 Percentage contributions to the variance from the first three
principal components of data sets 2A and 2B. PC1 has correlation
between the label and the L parameters, while PC2 and PC3 correlate
with the X and R parameters, respectively

Label PC1 PC2 PC3

E(dxy) 48.3% 17.9% 15.4%
E(p*)–E(dxy) 47.2% 17.9% 15.7%
Results and discussion
DFT calculations

The DFT dxy energies and dxy–p* energy gaps of all 150 mole-
cules in the sets (provided in the ESI†) were obtained aer full
geometry optimization. Consistent with changes in the coordi-
nation sphere of tungsten, we nd that the dxy energies and dxy–
p* energy gaps are most sensitive to changes in the L ligands.
When nitrogen is in the L ligand (L ¼ tmeda, cis-dmnpe, trans-
This journal is © The Royal Society of Chemistry 2019
dmnpe), the catalysts have much higher dxy energies than the
other compounds. The axial ligands have a less signicant effect
on the dxy energy, consistent with the p* orbital being oriented
along the z-axis of the molecule. The dxy–p* gaps remain in the
UV-visible range (<4 eV) for all complexes, keeping the photo-
excitation energies suitable for solar photocatalytic
applications.
Principal component analysis

PCA of data sets 2A/2B gave three major components, with
percentages reported in Table 2 (rotation matrices provided in
the ESI†). Each of the top three principal components corre-
sponds to high correlation between one of the three varied
substitutional sites and the output label. The rotation matrix of
our analyses reveals that the equatorial ligands are responsible
for the most signicant variance in both data sets, consistent
with earlier studies.4 The Hammett parameters in the L posi-
tions show anticorrelation with the dxy energy (therefore
a positive correlation with the dxy–p* gap), which can be
observed in the biplot shown in the ESI.† These results are
consistent with the fact that substituents with more negative
Hammett substituent constants are better electron-donors as
usually observed in electron density trends. The second and
third principal components, which mostly correspond to the X
and R sites, do not correlate strongly with either label although
they are responsible for about 15–18% of the variance. From the
rotation matrices, the large isolation of each substitution site
into the three highest variance principal components indicates,
as expected, that the largest contributions to the energies are
the uncoupled ligands which may be expected to give a linear
relationship. Subsequent components which make up a total of
18.4% and 19.2% respectively of the variance in the dxy and dxy–
p* gap are coupled ligand contributions that involve mixtures
the of the R, L, and X substitution sites. These coupled mixtures
may be non-linear in nature. Based on the R, L, and X compo-
nents each being responsible for high amounts of variance, all
features were kept for the 2A/2B data sets.
Neural network

Table 3 shows the average MSE for each of the neural network
data sets. These results show that the neural networks based on
Hammett parameters perform better than those based on
atomic coordinates and thereby better predict the dxy energies
and dxy–p* energy gaps. With an MSE below 0.004, the 2A/2B
model is in semiquantitative agreement with DFT. However,
Chem. Sci., 2019, 10, 6844–6854 | 6849
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Table 3 Mean-squared error in eV2, averaged over 30 runs, of
randomly chosen test sets of 30 molecules for 1A/1B and 2A/2B and
a selected test set of 120 molecules for 3A/3B

Data sets E(dxy) MSE E(p*)–E(dxy) MSE

1A/1B 0.0088(51) 0.0106(28)
2A/2B 0.0036(14) 0.0035(13)
3A/3B 0.0107(29) 0.0068(15)
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that level of accuracy results from a large data set including 80%
of all possible molecules.

Table 3 reports the average MSE for the sets 3A and 3B,
highlighting the accuracy of the neural networks generated with
a minimum amount of training. Note that 3A and 3B predicted
both labels well, with an average MSE of 0.0107 for the dxy
energy and 0.0068 for the dxy–p* gap, employing only a quarter
Fig. 5 Correlation between the NN-predicted and DFT-obtained
energies for the dxy orbitals (a) and dxy–p* gaps (b) of molecules in data
sets 3A/3B.

6850 | Chem. Sci., 2019, 10, 6844–6854
of the amount of training data used by the full sets. Fig. 5a and
b show the correlation plots for all 150 predicted values from
the sets 3A/3B of energies dxy and dxy–p* gap, respectively,
versus their corresponding DFT values. The slope and correla-
tion coefficient near 1 highlight the level of correlation and
prediction accuracy for both labels. We note that the 1A and 1B
sets have the same level of performance as 3A and 3B but
require 4 times more data (120 DFT calculations) for parame-
terization. Furthermore, there is evident clustering of data
points in Fig. 5a; this clustering can be explained by the small
amount of training data, as when 2A is trained and used to
predict all 150 energies, the clustering disappears, which is
shown in the ESI.†

Molecule 515 is identied by the neural network (NN) for set
3A to be optimal as a reducing agent. According to DFT,
however, 515 has the second-highest dxy energy with a reduction
potential of �2.40 V vs. FeCp2

0/+, only 50 mV below that of 513
which is the most reducing catalyst. Nevertheless, 513 is pre-
dicted by the NN to be within the top 5% – i.e., within a standard
deviation of the dxy energy of 515. Other complexes, such as 511,
313 and 315 with tmeda ligands also exhibit great reducing
power. This is expected, as the stronger p-donating ability of
tmeda compared to that of the other equatorial options raises
the dxy orbital energy more and decreases stabilization due to p-
backbonding. The predicted rankings are even more accurate
for the dxy–p* gaps in set 3B. The two molecules with the largest
dxy–p* gaps (521, 541) are identical for both the NN and DFT
predictions, as well as the four molecules with the smallest gaps
(114, 214, 414, 115). This is again consistent with the p-
accepting trends in the equatorial plane, as the more p-
accepting ligands have higher dxy–p* energy gaps because of
the lowering of the dxy orbital energy due to stronger p-back-
bonding. Furthermore, the NN predicts that all dxy–p* gaps are
within the UV-visible energy range, consistent with DFT. The
parity plots formed from training sets 2A/2B containing
predictions of all 150 energies, displayed in the ESI,† show
a small set of outliers that all contain sulfur in the equatorial
plane. Further exploration is needed to examine why the neural
network fails to predict the energies of those molecules well.

Fig. 6 shows complex 513, which is the most promising
photo-reducing complex since it has the highest dxy energy and
a dxy–p* energy gap within the visible range.

These results suggest that the predicted potential for 513 of
�2.45 V should be close to the actual experimental value since
we have previously gauged the accuracy of our potentials to be
in good agreement with the experimentally determined values.4

We have also performed a two-way t-test to compare the MSE's
between the molecules used for training and the molecules
used for testing for sets 3A and 3B. The p-values of the t-tests for
3A and 3B were both 0.52, well above the signicance threshold
of 0.05. Consequently, it is natural to conclude that our training
from the 3A/3B has generalized well, as the mean contributions
in MSE between the 30 training candidates and 120 test
candidates are not signicantly different. Furthermore, we have
checked that our model did not overt the data, as shown in the
ESI† by the graph of the training and validation loss for dxy
energies of all 150 molecules. These results underscore the
This journal is © The Royal Society of Chemistry 2019
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Fig. 6 Compound 513, predicted to be highly reductive, with a redox
potential of �2.45 V vs. FeCp2

0/+. Color code: gray ¼ C; white ¼ H;
dark blue ¼ N; red ¼ O; light blue ¼ W.
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computational power of the NNmethodology, since the expense
of training and testing is negligible compared to that of DFT
calculations.
Alternative regressive models

The MSE results from the alternative regressive models and the
neural network for data sets 3A/3B and 4A/4B are shown in
Table 4 Mean squared error values from trials with linear, LASSO (with
and without CV), ridge (with and without CV), and stepwise regres-
sions, and from trials of the neural network model are shown for data
sets 3A/3B and 4A/4B and 5A/5B. Note that some values are from
identical regressions, such as the linear regression of 5A being identical
to the stepwise regression of 3A

5A 4A 3A 5B 4B 3B

Linear 0.0026a 0.0026 0.0026 0.0061a 0.013 0.0059
Ridge (a ¼ 0.01) — 0.0026 0.0026 — 0.013 0.0060
LASSO (a ¼ 0.01) — 0.0092a 0.0092a — 0.020a 0.020a

NN (with CV) 0.0056 0.0038 0.0081b 0.0034 0.013 0.0034b

Ridge CV — 0.0033 0.0028 — 0.014 0.0088
LASSO CV — 0.0032 0.0026 — 0.016 0.0079
Stepwise — — 0.0026a — — 0.0061a

Gaussian process — 0.013 0.0079 — 0.060 0.0082

a These models have identical models with the same MSE's. b The NN
MSE's for 3A and 3B shown here are calculated differently than those
for Table 3, as explained in the Methods.

This journal is © The Royal Society of Chemistry 2019
Table 4. LASSO regression on set 3A generated 4A/4B, which
have parameters R sm, R sp, L1 sp, L2 sm, L2 sp, L3 sp, and X sp as
the input. As seen in Table 4, the best predictive models, as
determined by lowest MSE, are linear and ridge regression for
the dxy energy, and the neural network for the dxy–p* energy
gap. While those are the best results purely by the absolute
MSE's, it is important to note that the MSE's for every model in
each column of Table 4 are very close with the exception of
LASSO without cross validation. Without cross validation,
LASSO is susceptible to completely removing important features
as it did for the dxy–p* energy gap where the features selected
were only R sp, L1 sp, L2 sp, L3 sp. Note there is no longer
a feature describing the X position ligand, which was shown by
PCA to contain about 15% of the variance in both outputs. It is
likely for this reason that the LASSO model had an MSE much
higher than those of the other models using the 3B data set.
Comparing the use of LASSO parameters between the 4A/3A
data sets, it can be seen that the use of LASSO parameters
improves the NN case. We note that the extra regularization
does not improve the linear, ridge, or LASSO regressions. In
fact, the use of the LASSO parameters worsens the cross vali-
dated LASSO and ridge cases. Using the LASSO parameters,
which were derived from the dxy output, also increases the MSE
for the dxy–p* cases. Combining the above results and the
LASSO data set's failure to consistently produce better MSE's
than other data sets, we conclude that further examination of
the 4A/4B data sets is unnecessary. All LASSO and ridge
regressions on the 3A/3B data sets, both with and without cross
validation, are found to generalize well between training and
testing data as seen in Table 5.

The six step regressions used for each label agreed on one
particular model for the dxy energy and another one for the dxy–
p* energy gap. For the dxy energy, the regression model sug-
gested R sp, L1 sm, L1 sp, L2 sm, L3 sm, and X sp as the Hammett
parameters; for the dxy–p* energy gap, the regression model
suggested R sm, R sp, L1 sp, L2 sm, L2 sp, X sm, and X sp. The
linear regressions for the dxy energy and dxy–p* energy gap
models gave MSE of 0.0026 and 0.0061 eV2, respectively, as
shown in Table 4. We see in Table 5 that while the 5A data set's
training generalizes well, the 5B data set's training does not.
Table 5 Welch two-sample t-tests were performed on the training
and test MSE's of each regression. The corresponding p-values are
displayed below. A significance threshold of p ¼ 0.05 was used to
determine whether the training and test contributions to the MSE's
were statistically significantly different

dxy t-test dxy–p* t-test

Linear 0.96 0.56
Ridge (a ¼ 0.01) 0.96 0.50
LASSO (a ¼ 0.01) 0.88 0.99
NN (with CV) 0.53 0.53
Ridge CV 0.96 0.56
LASSO CV 0.98 0.48
Stepwise 0.99 0.0009
Gaussian process 8.7 � 10�6 1.1 � 10�9

Chem. Sci., 2019, 10, 6844–6854 | 6851
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This could be easily explained by the step regression removing
all parameters describing the L3 ligand for the dxy–p* energy
gap model, which would introduce error in the prediction of the
catalyst's frontier orbital energies when generalized to the
unused 120 molecules.

In a comparison of ridge regression cases with and without
cross validation, a predictable increase of MSE is seen when
including cross validation. As ridge regression turned into
linear regression when the hyperparameter a went towards zero
(shown in the ESI†), it can be extrapolated that the same pattern
of increased error would be seen between cross validated linear
regression and normal linear regression. The increased error
with cross validation is predictable because the model is made
less dependent on individually picked training data, making it
more generalizable which tends to make individual data points
less well described. As a generalizable model is desired, this hit
to accuracy is generally an acceptable tradeoff. However, since
ridge regression only outperforms the NN in the dxy case and
the NN does include cross validation, neither model can be
considered distinctly better.

Comparing MSE's for our models using 3A, the neural
network performed worse than the linear, ridge, and step
regressions, while for 3B, the neural network had the lowest
MSE. Similar results are found for sets 4A/4B and 5A/5B, as for
both sets it is observed that the linear model outperforms the
NN for the dxy energy but not for the dxy–p* energy gap. This
suggests that there likely is more non-linear contribution from
the Hammett parameters to the dxy–p* energy gap than to the
dxy energy. Further exploration is needed to analyze the source
behind these non-linear contributions.

It is seen that the linear, ridge, ridge cross-validated, and
LASSO cross-validated regressions developed patterns of
prediction similar to those of the neural network. For these
regressions, once again the actual top reducing agent was found
within the top 5% based off of dxy energies, and the actual
second-best reducing agent was predicted to be the best.
Furthermore, the largest DFT dxy–p* energy gap was correctly
predicted by these models, and the second biggest was within
the top 5%. As expected, the lack of generalization for the
LASSO without cross-validation case is less accurate, nding the
DFT second largest dxy–p* energy gap only in the top 10%.
Gaussian process regression also had difficulty, only predicting
the top reducing agents in the top 10%, and predicting the
largest gap in the top 5% and the 2nd largest gap to be the
biggest.

Conclusions

We have introduced the use of substituent Hammett parame-
ters as features in regressive machine learning models and have
applied the tested models to predict energies of frontier orbitals
of highly reducing tungsten–benzylidyne complexes W(^CArR)
L4X with varied R, L, and X ligands. We have shown that these
models can accurately predict frontier orbital energies,
requiring only a modest computational training cost, thus
bypassing the signicant cost of high-throughput screening
based on DFT. Using a constant molecular framework and the
6852 | Chem. Sci., 2019, 10, 6844–6854
Hammett substituent constants of varied ligands, the method-
ologies were able to predict the reducing power of tungsten
complexes by accurately identifying the candidates with the
highest dxy energies. The linear, ridge, ridge cross-validated,
LASSO cross-validated, and NN methods were thus able to
capture the electron-withdrawing/donating trends of multiple
substituents, aryl or not, showing that the resulting models
efficiently harness the breadth of existing Hammett parameters
in a new manner. The second-highest reducing catalyst, as
predicted by the DFT dxy energy, was found to be the optimal
candidate according to these models, while the highest was
found within the top 5%. These models produced results that
were even better for predictions of dxy–p* energy gaps, since the
molecules with the largest and smallest gaps were predicted
correctly. While the NN performed better for the dxy–p* energy
gap than the alternative methods, the alternative methods
proved to be better models for the dxy energy, suggesting that
these alternative multivariate linear models should always be
evaluated in addition to the NN for this methodology, with
a keen focus on generalizability. The optimal catalyst has tet-
ramethylethylenediamine (tmeda) equatorial ligands and axial
OMe, with an oxidation potential of �2.45 V. It also satises the
constraint of dxy–p* energy differences in the visible range,
making it a promising candidate for a wide range of reactions,
including reduction of CO2.

The introduced Hammett NN and alternative regressive
machine learningmodels have been demonstrated as applied to
the prediction of energies of frontier orbitals and could be
generalized for a wide range of other molecular properties
simply by training the models with calculations of the desired
properties with DFT. Because the Hammett parameters are
tabulated for hundreds of substituents, the Hammett NN could
address a broad class of molecules simultaneously varying
multiple sites.
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