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Directly introducing a beneficial functional group into biomolecules under mild, clean and easy-to-handle
conditions is of great importance in the field of chemical biology and pharmacology. Herein, we described
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Accepted 7th July 2019 an electrochemical strategy to perform the bioconjugation of tyrosine residues with phenothiazine
derivatives in a rapid and simple manner. In this electrochemical system, various polypeptides and

DOI: 10.1039/c95c02218] proteins were successfully labelled with excellent site- and chemo-selectivity, and metals, oxidants or

rsc.li/chemical-science additives were also avoided.

Introduction

Developing a site-selective, mild and biocompatible reaction for
biomolecule modification is an important pursuit in the field of
chemical biology, medical chemistry and clinical pharma-
cology." Through the attachment of synthetic molecules to
a specific position on proteins, bioconjugation can be applied to
DNA labeling, antibody-drug modification and protein visuali-
zation studies.” The advantage of naturally low abundance of
aromatic amino acid residues on protein surfaces would lead to
a higher degree of bioconjugation, without changing the overall
charge state or redox sensitivity.*> However, due to the similarity
of their redox potentials and the difficulty of C(sp®)-H func-
tionalization,* techniques for labeling these aromatic amino
acid residues were fewer than those of cysteine and lysine.*>*
Thus, aromatic amino acid residues still lack efficiency as well
as chemo- and site-selective methods to achieve bioconjugation
reactions.

As one of the important amino acids, tyrosine can be found
in many polypeptides and proteins, such as tyrosine protein
kinases, kisspeptin and myoglobin. Because of its low natural
abundance in native proteins, tyrosine is also considered as an
attractive target for labeling biomolecules.**® Previously, some
approaches have been developed for tyrosine modification,
such as Mannich-type reactions,” Pd catalysts,**®* Ru
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photocatalysts,’ click-like reactions,'® etc.'* Recently, several
strategies for site-selective protein modification based on
oxidative coupling have been reported, which could signifi-
cantly enrich the methodologies of bioconjugation chemis-
try.*»'> Accompanied by a good momentum of organic
electrosynthesis in the field of oxidative coupling reactions,
electrochemical anodic oxidation provides a green option to
prevent the usage of hazardous oxidants and harsh conditions,
and sensitive functional groups could also be well tolerated.™
Merging electrochemical organic synthesis and bioconjugation
chemistry is very promising, and therefore developing multi-
farious protocols for peptide and protein modification is highly
desirable, especially when excellent selectivity and efficiency
could be obtained.

On the other hand, as valuable labeling targets, phenothia-
zine derivatives have been recognized as highly bioactive drugs
and chromophores.™ The incorporation of phenothiazine into
biomolecules would not only demonstrate the advantage of
phenothiazines-containing protein drugs, but also potentially
lead to chemical probes. Recently, the group of Gouin has
demonstrated the electrochemically promoted tyrosine-click-
chemistry for protein labeling with a urazole reagent, which
significantly improved both the yield and selectivity compared
with the original conditions by using a pre-activated reagent.**
Herein, we described an electrochemically promoted labeling
strategy of tyrosine-containing biomolecules with phenothia-
zine derivatives under simple, mild and clean conditions
(Fig. 1a). Initially, in order to gain insight into the relative redox
activity of phenothiazine and aromatic amino acids, cyclic vol-
tammetry experiments have been performed (Fig. 1b). The
results showed that the oxidation potential of phenothiazine
was much lower than that of Tyr, Trp, Phe and His, which
indicated that the reaction proceeded through the single-elec-
tron oxidation of phenothiazine (PTZ) to generate the nitrogen
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Clean reaction system (metal-free, oxidant-free and no additives)
Mild condition (pH= 7.3 PBS solution/CH;CN at r.t.)

Easy handle electrolysis protocol with rapid reactivity (15 - 75 min)
High conversions and isolated yields

Excellent chemo- and site-selectivity of C-arylamination of Tyr

b)
—PT2Z
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Fig. 1 Discovery of an electrochemical oxidative tyrosine bio-
conjugation. (a) Proposed pathway: phenothiazine underwent single-
electron oxidization by the anode to generate a radical species, and
then coupled with the tyrosine residue of biomolecules to obtain the
labeling product. (b) Cyclic voltammograms of 0.005 M PTZ (black),
Tyr (red), Trp (green), Phe (purple) and His (blue) at a glassy carbon
electrode, in 0.05 M "BusNBF, in CH3zCN/H,O. Scan rate = 100 mV
s~1. Reference electrode: Ag/AgClL.
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radical. Following radical addition to the ortho-position of
phenol would achieve the modification of tyrosine. Due to the
less electron-rich position of other aromatic amino acid resi-
dues, the radical addition would not be favored. Thus, through
choosing phenothiazine as a valuable ‘tag’ to generate an active
species, excellent site- and chemo-selectivity on the protein
modification could be obtained.

Results and discussion

To establish suitable conditions for this electro-oxidative bio-
conjugation reaction, a protected tyrosine 1a and phenothiazine
2a were chosen as the model reaction substrates for optimiza-
tion. Under the electrolysis conditions, the reaction was con-
ducted in a three-necked undivided cell with a graphite rod
anode and a nickel plate cathode at 10 mA constant current for
75 minutes. Product 3a could be obtained in 85% isolated yield
with Na,SO, as the electrolyte in CH;CN/H,O at room temper-
ature (Table 1). To extend the scope of phenothiazine deriva-
tives, a variety of substituted phenothiazines were then applied
to couple with tyrosine 1a under the optimized reaction
conditions, which bear halogen (3b), sulfide (3c), tri-
fluoromethyl (3d), acetyl (3e), cyano (3f) and azide (3g) groups.
Under these reaction conditions, different electron-donating or
electron-withdrawing substituted phenothiazines were all
found to be suitable substrates in moderate isolated yields.
Remarkably, this method could be extended to azide group
substituted phenothiazine which could be applied in further
bio-orthogonal reactions.

Furthermore, to explore the polypeptide selectivity and
tolerance of this tyrosine labeling reaction, various dipeptides
containing tyrosine were introduced into this system. With

Table 1 Substrate scope of phenothiazines for electro-oxidative bioconjugation®
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% Reaction conditions: graphite rod anode, nickel plate cathode, constant current = 10 mA, 1a (1.0 equiv., 0.20 mmol), 2 (1.2 equiv., 0.24 mmol),
Na,SO, (2 equiv., 0.40 mmol), CH;CN/H,O (6.0 mL/4.0 mL), room temperature, N,, and 75 min (Q = 45 C, 2.3 F). Yields of isolated products are

shown. ” 10 mL CH,CN.
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phenothiazine as the coupling partner, these dipeptides made
a contribution to the desired bioconjugation reaction in
CH;CN/PBS (pH = 7.3) solution without addition of Na,SO,
(Table 2). Besides the relatively inert glycine (4a) and leucine
(4b), this established electrosynthesis protocol was also
compatible with the thioether of methionine (4c), phenyl group
of phenylalanine (4d), indole NH of tryptophan (4e), imidazole
NH of histidine (4f), amino group of lysine (4g), hydroxyl group
of serine (4h) and carboxylic acid of aspartic acid (4i), indicating
a broad functional group tolerance. Meanwhile, the labeling
was observed neither on the other aromatic amino acids Trp,
His and Phe, nor on the amino, hydroxyl and carboxylic groups
of Lys, Ser and Asp. Unfortunately, the Cys-containing dipeptide
could only obtain trace amounts of the corresponding product,
possibly due to the easily oxidizable property of cysteine under
oxidation conditions, leading to the decomposition of the
dipeptide. In most cases studied, this electrochemical bio-
conjugation reaction proceeded perfectly, selectively and
cleanly with good isolated yields.

To open an electrosynthetic pathway towards biomolecules
such as larger peptides and proteins, we next evaluated the
applicability of this electro-oxidative bioconjugation procedure
in the synthesis of phenothiazine-modified polypeptides. As
a proof-of-concept, the modification of a variety of unprotected
peptides 6 from 5-mers to 29-mers have been achieved effec-
tively with excellent conversions (Table 3). We chose the Tyr-
containing RGD peptide as the substrate originally, which was
considered as an attractive target for tumor treatment by
inducing apoptosis and caspase-3 activation. This extracellular

Table 2 Survey of amino acid selectivity for electro-oxidative
bioconjugation®
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“ Reaction conditions: graphite rod anode, nickel plate cathode,
constant current = 10 mA, 4 (1.0 equiv., 0.20 mmol), 2a (1.2 equiv.,
0.24 mmol), CH3;CN/PBS (pH = 7.3) (6.0 mL/4.0 mL), room
temperature, N,, and 75 min (Q = 45 C, 2.3 F). Yields of isolated
products are shown. ? 105 min. © CH;CN/PBS (pH = 8.0).
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Table 3 Scope of the electro-oxidative

bioconjugation®
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00060000685
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Glucagon 7h®,
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% Reaction conditions: graphite rod anode, nickel plate cathode,
constant current = 10 mA, polypeptides 6 (5 mg), phenothiazine 2a
(10 mg), CH;CN/PBS (pH = 7.3) (0.75 mL/0.75 mL), room
temperature, N,, and 30 min. Conversion of products are shown, as
determined by HPLC. ? One equiv. of phenothiazine was used.

RGD peptide was used in CH;CN/PBS (pH = 7.3) to furnish
phenothiazine-conjugate 7a in 99% conversion. Having estab-
lished the electrochemical transformation of phenothiazine 2a
with RGD, we then turned our attention to other Tyr-containing
polypeptides. For example, acyclic pentapeptide YAGFL was
reacted with phenothiazine 2a under electrolysis conditions,
and the bioconjugated product 7b was obtained in full conver-
sion. We next examined the applicability of this electrolysis
methodology for endogenous peptides with biological activity,
such as angiotensin Y, kisspeptin 10, LH-RH, tyrosine protein
kinases, MOG 35-55 and glucagon. The above peptides con-
tained at least one tyrosine at the positions of the N-terminus,
the C-terminus, or a loop. To our delight, all these polypeptides
(6c-6h) were successfully tagged with phenothiazine within 30
min at room temperature. It was worth noting that if one equiv.
of phenothiazine was added to the reaction solution of 6g and
6h, respectively, two different results could be observed. Since
the two tyrosine residues of 6g are located in different areas of
the peptide, the modification could occur on the both tyrosine
residues. For 6h, two tyrosine residues are just located on the i
and i + 3 positions, and the steric influence would make
phenothiazine specifically labelled on a less steric hindrance
position of Y10. Eventually, the modification of 29-mer peptide
glucagon 6h was conducted the single modified peptide 7h.
Meanwhile, a peptide DSIP (WAGGDASGE) 6i which lacks

This journal is © The Royal Society of Chemistry 2019
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Fig. 2 Additional application of electrochemical oxidative bioconjugation. ?Reaction conditions: graphite rod anode, nickel plate cathode,
constant current = 10 mA, polypeptides (5 mg), phenothiazine (10 mg), CHzCN/PBS (pH = 7.3) (0.75 mL/0.75 mL), room temperature, N,, and 30
min. °Conversion yields of products are shown, as determined by HPLC using diphenylamine as the standard. “Conversion yields of products are
shown, as determined by HPLC using anisic acid as the standard. “Photographs of the solution of 6a (right) and modified product 7k (left) with UV
lamp excitation.

tyrosine residue was used as a control experiment substrate to Therefore, all these examples revealed the exceptional site-
confirm the selectivity of the reaction. No desired bioconjugated and chemo-selectivity of the reaction and its application to the
product could be observed, demonstrating that this protocol peptide-labelled chemistry. In comparison with reported bio-
had the ability to specifically label tyrosine residues on conjugation methods, this electrolysis method provided fast
biomolecules with good site- and chemo-selectivity. kinetics and high productivity in a metal- and additive-free
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Fig. 3 Electrochemical modification of proteins. Reaction conditions for the bioconjugation of insulin: graphite rod anode, nickel plate cathode,
constant current = 10 mA, insulin (5 mg), phenothiazine (10 mg), CHzCN/PBS (pH = 7.3) (0.75 mL/0.75 mL), room temperature, N,, and 30 min.
Reaction conditions for the bioconjugation of myoglobin: graphite rod anode, nickel plate cathode, constant current = 0.5 mA, myoglobin (5
mg), phenothiazine (20 mg), CHzCN/PBS (pH = 7.3) (0.75 mL/0.75 mL), —20 °C, N, and 15 min. (a) Maldi-Tof MS analysis of modified insulin. (b)
LC-MS analysis of modified myoglobin. (c) Effect of electrolytic arylamination on the structure of insulin. (d) Effect of electrolytic arylamination on
the structure of myoglobin.
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manner. It is particularly noteworthy that this protocol provides
a direct access to late-stage derivatization of valuable drugs
(Fig. 2). For instance, when the biotin-containing phenothiazine
2h and probenecid-containing (uricosuric drugs) phenothiazine
2i were introduced to react with pentapeptide YAGFL 6b,
respectively, the desired products 7i and 7j could be obtained.
Noticeably, these reactions were permitted by the direct electro-
oxidative bioconjugation reaction, and exhibit a remarkable
substituent tolerance. In addition, to demonstrate that the
phenothiazine-labelled peptide might be utilized as a fluo-
rophore, molecule 7k from the reaction of 2-acetylphenothia-
zine 2e and RGDFY 6a was prepared. The photograph showed
that phenothiazine-modified peptide 7k apparently presented
the ability of fluorescence emission under irradiation of UV
light, clearly indicating that phenothiazine labelled biomole-
cules had the potential to be a possible biological fluorophore.

Afterward, we turned to discover the modification of
proteins. Two proteins, insulin and myoglobin, containing at
least one exposed tyrosine on the protein surface were electro-
lyzed with phenothiazine. When an excess amount of pheno-
thiazine was added to the solution of insulin under electrolysis,
four potentially reactive tyrosine residues on insulin were all
tagged (Fig. 3a). Next, we tested the feasibility of our developed
method for a larger protein, myoglobin. The electro-oxidative
bioconjugation could be well performed within 15 min and
generate single phenothiazine tagged myoglobin at —20 °C
(Fig. 3b). Importantly, CD spectroscopy revealed that the elec-
trochemical methodology had negligible influence on the
structure of both insulin and myoglobin (Fig. 3c and d). These
satisfactory results revealed that the exposed tyrosine could be
well-tagged by phenothiazine under our electro-oxidative
conditions without decomposition.

Conclusions

By introducing organic electrochemistry, tyrosine residues can
be well-labelled with phenothiazine derivatives with high
chemo- and site-selectivity as well as excellent conversion under
mild conditions. This strategy has been successfully applied to
the modification of valuable biomolecules such as polypeptides,
insulin and myoglobin. Moreover, this technique could
promote the development of safer and more biological
sustainable bioconjugation reactions that are operated under
metal-, oxidant- and additive free conditions. We anticipate that
advances in electrochemically induced bioconjugation will lead
to an expanding library of interdisciplinary methodologies.

Experimental

A general procedure for bioconjugation of tyrosine and
phenothiazine derivatives: in an oven-dried undivided three-
necked bottle (25 mL) equipped with a stir bar, protected tyro-
sine (0.20 mmol), phenothiazine (0.24 mmol), Na,SO, (0.40
mmol) and CH3;CN/H,0 (6 mL/4 mL) were combined and
added. The bottle was equipped with a graphite rod (¢ 6 mm,
about 15 mm immersion depth in solution) as the anode and
a nickel plate (15 mm x 15 mm x 1.0 mm) as the cathode and

7986 | Chem. Sci., 2019, 10, 7982-7987
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then charged with nitrogen. The reaction mixture was stirred
and electrolyzed at a constant current of 10 mA under room
temperature for 75 min (2.3 F). When the reaction was finished,
the reaction mixture was extracted with ethyl acetate (10 mL x
3). The organic layers were combined, dried over Na,SO,, and
concentrated. The pure product was obtained by flash column
chromatography on silica gel (dichloromethane : methanol =
100 : 1).
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