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e to complex metal oxide
nanoparticles elicits rapid resistance in Shewanella
oneidensis MR-1†

Stephanie L. Mitchell, a Natalie V. Hudson-Smith, a Meghan S. Cahill, a

Benjamin N. Reynolds,b Seth D. Frand,c Curtis M. Green, d Chenyu Wang, d

Mimi N. Hang,d Rodrigo Tapia Hernandez, c Robert J. Hamers, d

Z. Vivian Feng, c Christy L. Haynes a and Erin E. Carlson *abe

Engineered nanoparticles are incorporated into numerous emerging technologies because of their unique

physical and chemical properties. Many of these properties facilitate novel interactions, including both

intentional and accidental effects on biological systems. Silver-containing particles are widely used as

antimicrobial agents and recent evidence indicates that bacteria rapidly become resistant to these

nanoparticles. Much less studied is the chronic exposure of bacteria to particles that were not designed

to interact with microorganisms. For example, previous work has demonstrated that the lithium

intercalated battery cathode nanosheet, nickel manganese cobalt oxide (NMC), is cytotoxic and causes

a significant delay in growth of Shewanella oneidensis MR-1 upon acute exposure. Here, we report that

S. oneidensis MR-1 rapidly adapts to chronic NMC exposure and is subsequently able to survive in much

higher concentrations of these particles, providing the first evidence of permanent bacterial resistance

following exposure to nanoparticles that were not intended as antibacterial agents. We also found that

when NMC-adapted bacteria were subjected to only the metal ions released from this material, their

specific growth rates were higher than when exposed to the nanoparticle. As such, we provide here the

first demonstration of bacterial resistance to complex metal oxide nanoparticles with an adaptation

mechanism that cannot be fully explained by multi-metal adaptation. Importantly, this adaptation persists

even after the organism has been grown in pristine media for multiple generations, indicating that S.

oneidensis MR-1 has developed permanent resistance to NMC.
Engineered nanomaterials have been impactful in a wide range
of emerging technologies and materials (e.g. textiles,1,2 elec-
tronic screens,3 and environmental remediation4) due to their
unique physical and chemical properties. These characteristics
also contribute to their antimicrobial properties. Metal and
metal oxide nanoparticles such as silver,5,6 zinc oxide,7 and
copper oxide8 have been used as antibacterial agents;9 the
toxicity of these materials is strongly correlated to their size,10,11
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susceptibility of the organism. Even nanomaterials not inten-
ded for antimicrobial applications (zerovalent iron for envi-
ronmental remediation,15 carbon nanotubes,16 and CdSe/ZnS
quantum dots17) can be toxic to bacteria. This toxicity occurs
through mechanisms such as reactive oxygen species (ROS)
generation, metal dissolution, lipid peroxidation, and
mechanical stress.18 Another such nanoparticle is lithiated
nickel manganese cobalt oxide (LixNiyMnzCo1�y�zO2, NMC),
a battery cathode material that is used at large-scale in electric
vehicles.19 In January 2015, there were more than 740 000
electric vehicles in operation and it is estimated that by 2020
there will be several million electric vehicles on the road, each
containing �50 kg of nanoscale cathode materials.14,20 Nano-
particles have a large surface-area-to-volume ratio, which is
advantageous in materials such as NMC, where lithium is able
to efficiently shuttle in and out of the cathode, resulting in
increased rate capability. However, some of the properties of
NMC that make it an attractive battery cathode are also
responsible for its toxicity to bacteria, such as Shewanella
oneidensis MR-1.12,14
This journal is © The Royal Society of Chemistry 2019
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Fig. 1 Schematic of experiments performed in this work to assess S.
oneidensis MR-1 resistance to NMC. A more detailed schematic is
provided in Fig. S3.†
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S. oneidensis MR-1 is a ubiquitous, Gram-negative, soil-,
sediment-, and aquatic-dwelling bacterium that plays a critical
role in environmental metal-cycling and is therefore
a commonly used model organism in environmental
studies.21–23 The redox capabilities of S. oneidensis MR-1, espe-
cially related to the element manganese, indicate that it would
be present in environments that may be contaminated by
nanoparticle pollutants, such as NMC.24 Shewanella has been
found to have important roles in metal-cycling in freshwater
systems, despite low abundance, and is found in sh making it
the prominent cause of sh spoilage.25,26 Previous work has
shown that modest concentrations of NMC (less than
25 mg L�1) impaired the growth of S. oneidensis MR-1 to the
point that respiration and turbidity were undetectable.12 Upon
exposure to NMC (5mg L�1), bacterial cultures had extended lag
periods (�20 h), but could ultimately recover to the same level
of total respiration as an unexposed population. This led us to
develop two hypotheses about the process of bacterial recovery:
either (1) the toxicity of NMC is limited both temporally and
spatially (i.e. aggregation and sedimentation aer a period of
time or the accumulation of a biomolecular corona on the
nanoparticles), so that the nanoparticles become unavailable to
the bacteria and an unaffected population would grow
stochastically. The growth delay is due to a smaller starting
population, or (2) the delay is due to the time required for
a subpopulation of bacteria to adapt to NMC toxicity and
recover. Given the serious implications of permanently altering
bacterial behaviors, as is most widely understood in relation to
antibiotic resistance, we sought to investigate the nature of this
phenomenon further.

Toxicity studies are most commonly performed with short-
term, high-dose exposures. These studies enable rapid deter-
mination of the acute effects of a substance, but do not reveal
the complete extent of their impact. Chronic exposures are
critical in ecological toxicity investigations since pollutants
such as metals and antibiotics remain in the environment for
extended periods. Long-term exposure experiments can reveal
deeper complexities of the toxicity and multi-generational
impacts.27 This is especially true in the study of bacterial
exposures, as these organisms replicate very quickly and can
share genetic information, which enables them to rapidly adapt
to changes in their local environment. It is well-known that
repeated exposure to antibiotics, even below the minimum
inhibitory concentration (MIC), can stimulate resistance in
bacteria or change the diversity of bacterial communities.28,29

Therefore, it is important to consider both the environmental
relevance and the adaptation capabilities of bacteria when
designing toxicity experiments and to perform chronic expo-
sures to evaluate the full extent of organismal response.

In this study, we expose S. oneidensis MR-1 to NMC for
multiple generations to simulate a chronic, environmental
exposure. This resulted in the rapid adaptation of the bacteria
to both the nanoparticle and the metal ion controls used to
mimic nanoparticle dissolution. We also found that there is
a nanoparticle-specic impact based on the growth and
morphology of the bacteria that cannot be accounted for by
metal dissolution and that would not have been discovered
This journal is © The Royal Society of Chemistry 2019
without chronic exposure experiments. Thus, it is clear that
even nanoparticles that have been developed exclusively for
technological applications, such as NMC, may dramatically
affect environmental organisms should they be released acci-
dentally or through improper disposal.
Results & discussion
Impact of initial NMC exposure on Shewanella oneidensisMR-
1 (Passage A)

NMC was synthesized with a specic stoichiometry of 1 : 1 : 1
Ni : Mn : Co, which is the most toxic NMC studied to date.14

TEM images reveal the hexagonal, sheet structures of the NMC
nanoparticles with a size distribution across the planar surface
of 84 � 22 nm (Fig. S1†). The impact of NMC on S. oneidensis
MR-1 was evaluated by optical density (OD) at 600 nm as
a measure of population density. Nanoparticle exposures were
performed in minimal media to more closely represent an
environmental water system while limiting external inuences
that may also affect nanoparticle–nanoparticle or nanoparticle–
bacteria interactions as compared to nutrient rich medias such
as LB. NMC suspended in minimal media exhibit a z-potential
of �10.3 � 0.547 mV indicating that the nanoparticles are not
colloidally stable. Dynamic light scattering (DLS) further
revealed that NMC begins to aggregate substantially aer 24 h
Chem. Sci., 2019, 10, 9768–9781 | 9769
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(Fig. S2†). Initially, bacteria were exposed to NMC immediately
upon inoculation of the culture (time 0 h), yielding growth
curves similar to those previously published (Fig. 2A; brief
experimental scheme provided in Fig. 1, detailed experimental
scheme provided in Fig. S3†).12 Cultures were exposed to either
5 mg L�1 or 25 mg L�1 NMC, concentrations that previous
research indicate are representative of recoverable nanoparticle
pressure (5 mg L�1) and irrecoverable nanoparticle toxicity
(25 mg L�1).12,14 Immediate exposure to 25 mg L�1 NMC rapidly
killed the organisms, making it difficult to assess the potential
long-term effects of chronic exposure. Instead, we found that
allowing the culture to grow before addition of NMC (10 h)
enabled us to perform chronic exposures and to observe more
subtle effects than cell death. The delay in NMC addition could
also facilitate examination of a greater range of NMC concen-
trations since the cultures are less sensitive to 25 mg L�1 NMC
(Fig. 2B). This change in response is likely due to the inoculum
effect, a phenomenon oen used to describe the impact of
bacterial density on MIC values, where a higher bacterial
density requires a higher concentration of antibiotic to kill the
Fig. 2 Effect of delayed NMC and ion exposure on growth inhibition o
inoculation to noNMC (blue), 5 mg L�1 NMC (yellow), and 25mg L�1 NMC
5 mg L�1 NMC (yellow), and 25 mg L�1 NMC (red). (c) Bacterial exposure
ions of 5 mg L�1 eq. of NMC (yellow), and ions of 25 mg L�1 eq. of NM
inoculation: no NMC ions (blue), ions of 5 mg L�1 eq. of NMC (yellow), an
deviation of three replicates.

9770 | Chem. Sci., 2019, 10, 9768–9781
bacteria. Although traditionally used to discuss changes in
antibiotic toxicity, it could also explain the observed changes in
nanoparticle toxicitiy.30 More specically, this effect could
indicate that NMC has different mechanisms of toxicity at
different growth stages.31 Interestingly, previous work demon-
strated that immediate exposure caused an increase in the lag
phase; however, we found that delayed exposure (10 h,
25 mg L�1 NMC) affected the maximal population density
achieved in the stationary phase by at least half in comparison
to untreated cultures. Studies utilizing similar delayed exposure
protocols have also yielded a decrease in the stationary phase
when S. oneidensis MR-1 was exposed to chromium(VI) and E.
coli to silver nanoparticles (AgNPs).31,32

Previous work has shown that NMC toxicity to S. oneidensis
MR-1 is related to its dissolution and release of ions, particu-
larity nickel and cobalt, into the growthmedia.12 Although some
of these metals are micronutrients, metal homeostasis of the
organism is disturbed at higher concentrations of nickel and
copper, which could cause oxidative stress, the replacement of
the native metal cofactor of some proteins, or the binding of
f S. oneidensis MR-1 (Passage A). (a) Bacterial exposure at the time of
(red). (b) Bacterial exposure 10 h after the inoculation to noNMC (blue),
to constitutive ions of NMC at time of inoculation: no NMC ions (blue),
C (red). (d) Bacterial exposure to constitutive ions of NMC 10 h after
d ions of 25 mg L�1 eq. of NMC (red). Error bars represent the standard

This journal is © The Royal Society of Chemistry 2019
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metals with critical functional groups on proteins or nucleic
acids.18,33–35 Delayed exposures were also performed with solu-
tions of LiOH, NiCl2, MnSO4, CoCl2 to recapitulate the known
metal ion concentrations aer 96 h of NMC dissolution based
on ICP-OES measurements (Fig. S4†). These too revealed the
dose-dependent nature of NMC-derived ion toxicity and
strengthened the postulation that dissolved ions are respon-
sible for a large proportion of NMC toxicity to S. oneidensisMR-1
(Fig. 2C and D).12,14 Comparison of the growth curves of bacteria
exposed to NMC or the ion equivalent in Passage A reveal only
subtle differences (e.g., lag time (l), specic growth rate (m),
maximum OD; Fig. 2B, D and S5†).
Repetitive exposure to NMC (Passage B)

To examine the ability of this organism to activate processes
required for survival under toxic conditions, we performed
serial nanoparticle exposures and monitored bacterial response
(Fig. 1). Aer an initial 72 h of growth (preventing cultures from
reaching declining stage), cultures exposed to 0, 5, or 25 mg L�1

NMC (Passage A) were each diluted to the same OD (�0.1; half
of the starting bacterial density used in Passage A) to achieve
Fig. 3 Effect of repetitive NMC and ion exposure on growth inhibition of
previously exposed to control conditions in Passage A are represented i
represented in yellow, and bacteria exposed to 25 mg L�1 NMC in Pass
control conditions, (b) bacteria from Passage A cultured in 5 mg L�1 NMC
from Passage A that were previously exposed to control conditions in Pas
NMC ion eq. in Passage A are represented in yellow, and bacteria expos
Bacteria from Passage A cultured in control conditions, (e) bacteria from
cultured in 25 mg L�1 NMC ion eq. Error bars represent the standard de

This journal is © The Royal Society of Chemistry 2019
similar population densities and further diluted 1 : 10 (v/v) into
freshmedia and lactate for Passage B. Freshly inoculated cultures
generated from Passage A bacteria were immediately exposed (0
h) to either 5 mg L�1, 25 mg L�1 NMC or le untreated for 96 h.
Unperturbed S. oneidensis had a doubling time of �6 hours in
minimal media. Thus, there are �16 generations of replication
per 96 h passage. Cultures reseeded into fresh media without
nanoparticles (0 mg L�1) were able to reach exponential phase
growth in the order of apparent tness; the control cultures had
the shortest lag time, followed by the cultures previously exposed
to 5 mg L�1 NMC, and then those previously exposed to
25 mg L�1 NMC (lag time doubled in comparison to control). The
specic growth rate for cultures exposed to 25 mg L�1 NMC in
Passage A was less than half that of the control samples (Fig. 3A
and S5†). When Passage A cultures were reseeded and exposed to
5 mg L�1 NMC, only the cultures that had previously been
exposed to 5 mg L�1 or 25 mg L�1 NMC were able to grow
(Fig. 3B). These results indicate that due to the initial exposure, S.
oneidensis MR-1 has adapted and is able to replicate under
conditions that were previously toxic.

Additionally, organisms that previously experienced the
highest concentrations of NMC appeared to be the most robust
S. oneidensisMR-1 (Passage B). (a–c) Bacteria from Passage A that were
n blue, bacteria that were exposed to 5 mg L�1 NMC in Passage A are
age A are represented in red. (a) Bacteria from Passage A cultured in
, (c) bacteria from Passage A cultured in 25 mg L�1 NMC. (d–f) Bacteria
sage A are represented in blue, bacteria that were exposed to 5 mg L�1

ed to 25 mg L�1 NMC ion eq. in Passage A are represented in red. (d)
Passage A cultured in 5 mg L�1 NMC ion eq., (f) bacteria from Passage A
viation of three replicates.

Chem. Sci., 2019, 10, 9768–9781 | 9771
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in subsequent exposures. For example, when the Passage A
cultures were cultivated in media containing 25 mg L�1 NMC
for Passage B, only bacteria that had previously been subjected
to 25 mg L�1 NMC could survive (Fig. 3C). This adaptation is
signicant as the bacteria are capable of growth in NMC
concentrations that were lethal to unexposed bacteria (Fig. 2A).
Adaptation was rapid and occurred in around 6 generations
(with an estimated doubling time of 11.5 h of bacteria exposed
to 25 mg L�1 NMC during Passage A exposure). This is consid-
ered rapid compared to other work, which showed that E. coli
became resistant to AgNP exposure in 100 generations, B. sub-
tilis adapted to a concentration of nanosilver(I) oxide that was
1.5� greater than the lethal dose in 13 days, while others
indicated an increase in MIC aer only a few sub-culturing
periods of 24 h.36–38 These experiments were also performed
by reseeding cultures that had been exposed to ions in Passage
A into fresh, ion-containing media, with concentrations repre-
senting the dissolution of 5 mg L�1 and 25 mg L�1 NMC aer
96 h (Fig. 3D–F). The trend in these growth curves is similar to
that of the NMC exposures but indicates that the ions may be
less toxic than the nanoparticle when comparing adapted
cultures (compare Fig. 3C, F and S5†).14
Adaptation characterization (Passage C, D, and beyond)

The adaptation phenotype was characterized by growth studies
in addition to analysis of population respiration. For Passage C,
the adaptation to NMC toxicity and constitutive ion toxicity were
compared. The untreated populations and those that had been
exposed to 25 mg L�1 NMC and the ion equivalent of 25 mg L�1

for two passages were diluted and re-exposed to 25 mg L�1

NMC, the 25 mg L�1 ion equivalent, or control media. The
concentration of 25 mg L�1 was selected because it represents
a lethal dose of NMC and its ion equivalent to sensitive S.
oneidensis MR-1. Optical density studies reveal that when
untreated cultures were reseeded into fresh, NMC-, and ion-
containing media, the population of S. oneidensis MR-1 was
Fig. 4 Effect of repetitive NMC and ion exposure on growth inhibition of S
pristine media exposed to no NMC (purple), 25 mg L�1 NMC ion eq. (gree
with 25 mg L�1 NMC, which was then exposed to no NMC (purple), 25 m
cultured for two passages with 25 mg L�1 NMC ion eq., which was the
25 mg L�1 NMC (orange). Error bars represent the standard deviation of

9772 | Chem. Sci., 2019, 10, 9768–9781
only able to replicate in cleanmedia as expected (Fig. 4A). Again,
we found that ion- and NMC-adapted cultures had shorter lag
periods in control conditions than when the same organisms
were grown in the presence of NMC or ions (Fig. 4B, C and S5†).
Interestingly, when the population adapted to 25 mg L�1 NMC
was exposed to the equivalent metal ions, the specic growth
rate was higher than the culture that was instead exposed to
NMC (Fig. 4B and S5†). This was also seen when the population
adapted to metal ions (equivalent to 25 mg L�1 NMC) was
exposed to ions or NMC (Fig. 4C). The dissolution of metal ions
has been proposed to be the major mechanism of NMC anti-
bacterial activity to S. oneidensisMR-1, and comparison of NMC-
and ion-adapted cultures conrm this. However, in both treat-
ments of adapted cultures, exposure to NMC presented a greater
challenge to bacterial growth than the constitutive ions based
on specic growth rate differences, indicating that adaptation
to nanoparticles is more complex than adaptation to multiple
metal ions alone (Fig. S5†).14,39,40

The distinction between the toxicity of the nanoparticle or its
ions was difficult to discern during the rst exposure in Passage
A, but comparison of the adapted cultures to unadapted
organisms made these differences more apparent. We had
anticipated that exposure to the entirety of NMC dissolution
products (the metal ion control) immediately aer culture
inoculation would be more toxic than NMC due to the heavy
front-loading of the free ions on an unestablished, low-density
culture. Yet, there is more available lactate for metal chela-
tion, based on previous modeling work, which in turn could
make the toxic metal ions less bioavailable.12,14,34 As these two
effects cannot be easily reconciled, this is most likely an indi-
cation of unique particle-specic toxicity, such as ROS
generation.14,41

We tested the consistency of this trend by performing the
same experiment in Passage E with cultures that had been
continuously cultured with either 25 mg L�1 NMC, 25 mg L�1

ion equivalent, or in control media for the previous four
. oneidensisMR-1 (Passage C). (a) Bacteria cultured for two passages in
n), and 25 mg L�1 NMC (orange). (b) Bacteria cultured for two passages
g L�1 NMC ion eq. (green), and 25 mg L�1 NMC (orange). (c) Bacteria
n exposed to no NMC (purple), 25 mg L�1 NMC ion eq. (green), and
three replicates.

This journal is © The Royal Society of Chemistry 2019
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Fig. 5 Assessment of organismal fitness by measurement of oxygen
consumption. (a) Respirometry curves of S. oneidensis MR-1 control
(unadapted) cultures exposed to control conditions (purple), 25mg L�1

NMC (orange), and 25 mg L�1 NMC ion eq. (green) in Passage E. (b)
Respirometry curves of NMC-adapted cultures exposed to control
conditions (purple), 25 mg L�1 NMC (orange), and 25 mg L�1 NMC ion
eq. (green) in Passage E. (c) Respirometry curves of ion-adapted
cultures exposed to control conditions (purple), 25 mg L�1 NMC
(orange), and 25 mg L�1 NMC ion eq. (green) in Passage E. Error bars
represent the standard deviation of replicates. Representation of this
figure without standard deviations is located in Fig. S7.†
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passages. The same trend was observed in optical density
growth curves (Fig. S6†). In this passage, turbidity measure-
ments were supplemented with respirometry measurements
(cumulative O2 consumption) of the cultures, which also
demonstrated the same trend in toxicity and adaptation (Fig. 5).
Analysis of the rst derivative of these curves reveals differences
in the time required to reach peak oxygen consumption
(Fig. S7†). The organisms that were unexposed in Passage E
reached peak oxygen consumption rst, followed by the
bacteria that had been exposed to ions, and nally, cultures that
had previously been subjected to NMC took the longest to reach
their peak respiration rate. These data also indicate that
exposed organisms are respiring less overall than control
bacteria in pristine media.

We next sought to determine if the organismal adaptation(s)
were stable, which would imply a genome-level alteration was
facilitating resistance. First, cells were removed from NMC or
ion pressure and cultured in fresh media with no treatment
starting with Passage C for subsequent passages in an attempt
to rescue the sensitive phenotype. Aer each passage was grown
under normal conditions (unexposed), the adapted cultures
were again exposed to 25 mg L�1 NMC or the ion equivalent.
These cultures were compared to the control, NMC-, and ion-
adapted cultures that had been repeatedly exposed
throughout all passages. Aer ve additional passages (esti-
mated to be 67 generations) with no treatment, the NMC- and
ion-adapted cultures maintained their adaptation phenotype,
indicating that this adaption is stable in the absence of NMC or
metal ion pressure (Fig. 6A and B). This likely indicates a chro-
mosomal mutation that does not perturb organism tness,
which will be assessed in future studies.42 This is also implied
by the exposed organism's ability to achieve similar specic
growth rates and lag times in comparison to control (Passage D
and beyond; Fig. S5 and S8†). Permanent perturbations to
bacterial characteristics have the potential to change the
behavior of a microbial community and therefore have signi-
cant and long-term impact on ecosystems health and stability.
Microbes perform a wide range of functions in the environment
such as nutrient cycling, which make them excellent indicators
of environmental health.43,44

To demonstrate that the adapted organism could survive
under increasing pressure, bacteria that had been exposed to
25 mg L�1 NMC (Passage B) were reseeded into higher
concentrations of NMC, revealing that the organism could now
grow in 75 mg L�1 NMC (3� the previous exposure; Fig. 6C). We
observed an increase in the lag phase at higher NMC concen-
trations and hypothesize that this either represents the activa-
tion of additional molecular defenses (e.g. efflux pumps,
oxidative stress protection), increased preliminary killing that
decreases the initial cell density, or the development of new
mutations. An increase in lag phase has been associated with
adaptation to new environments, as well as to toxic substances
such as antibiotics. Although little is known about bacterial lag
phase, it is likely that an increased lag phase enables increased
tolerance to antibiotics to promote the further evolution of
antibiotic resistance.45 Other work has also shown an increase
in lag phase when bacteria where exposed to metal oxide
This journal is © The Royal Society of Chemistry 2019
nanoparticles.46,47 In Passage D, the population that grew in
50 mg L�1 NMC was successfully cultured in 100 mg L�1 NMC
(Fig. S9†). This conrms that the adaption is robust and exible
as the S. oneidensis MR-1 is capable of replication in a concen-
tration of NMC that is 20 times that which was found to kill
unexposed bacteria.

To quantify the increased tolerance of the organism to NMC,
we obtained the MIC values for lithium, nickel, manganese, and
cobalt ions on both the adapted and control populations in
Passage D, as the ability to withstand increased concentrations
of an antibacterial substance is one of the hallmarks of resis-
tance.38,48 The adapted bacteria were capable of surviving in
concentrations of nickel and cobalt metal ions at least three
times higher than the unadapted cultures (Fig. S10†). No
Chem. Sci., 2019, 10, 9768–9781 | 9773
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Fig. 6 Examination of the stability of the bacterial adaptation following a period of non-exposure (Passage H). (a) Bacteria cultured for two
passages in 25mg L�1 NMCwere then grown for 5 passages without exposure, and then a final passage exposed to 25mg L�1 NMC (NN00000N;
yellow) or no NMC (NN000000; blue) and compared to continually exposed cultures (NNNNNNNN; red). (b) Bacteria cultured for two passages
in the ion eq. of 25 mg L�1 NMC were then for grown for 5 passages without exposure, and then a final passage exposed to the ion eq. of
25 mg L�1 NMC (II00000I; yellow) or no NMC (II000000; blue) and compared to continually exposed cultures (IIIIIIII; red). (c) Bacteria cultured
for two passages in 25 mg L�1 NMC were then exposed to increasing concentrations of NMC (Passage C). Error bars represent the standard
deviation of three replicates.
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changes in the MIC values for dissolved lithium andmanganese
were observed, likely because the concentrations required to
cause adaptation pressure are not achieved through NMC
dissolution.

The nal conrmation of resistance is to eliminate the
possibility that there was a subpopulation of persistent
microbes in the original culture. Because we see active repli-
cation of the adapted populations and those exposed to
increasing concentrations of NMC, it is likely that the bacteria
are not persistent. As further conrmation, we performed
a minimum duration for killing 99% (MDK99) assay on the
unadapted S. oneidensis MR-1, which provides an indication of
the mechanism of bacterial adaptation [colony forming units
(CFUs) per mL]. This assay revealed that there is no persistent or
resistant subpopulation in the unadapted population
(Fig. S11†). Additionally, unadapted S. oneidensis exposed to
25 mg L�1 NMC, which appears to cause complete cell death,
were reseeded into nutrient-rich lysogeny broth (LB). There was
no growth in this subculture, which indicated that there are no
viable bacteria aer exposure to this dose of NMC (data not
shown). In combination, these three observations, adaptation
stability, increased MIC values, and the lack of persistent pop-
ulation, indicate that S. oneidensis MR-1 has developed stable
resistance to NMC, permanently altering its biochemical and
morphological characteristics (vide infra).38,49

Initial mechanistic investigation of resistance: electron
microscopy

We next examined the morphology of cultures that were resis-
tant to the ions and NMC nanoparticles in comparison to the
passaged control with scanning electron microscopy (SEM;
Passage D; Fig. 7 and S12†). The bacteria that had adapted to
NMC exposure were lamented compared to the passaged
control, showing a massive range of lengths up to 60 mm
(median length 8.9 mm, passaged control 3.1 mm). The NMC-
9774 | Chem. Sci., 2019, 10, 9768–9781
adapted bacteria (median 8.9 mm) were also substantially
longer than ion-adapted bacteria (median 3.4 mm), indicating
there was additional burden on the nanoparticle-exposed pop-
ulation. The control bacteria that had been cultured for four
consecutive passages were compared to a fresh culture that had
never been subcultured, conrming minimal lamentation
stress due to subculturing alone (median 2.3 versus 3.1 mm).

Filamentation is a known mechanism of bacterial response
and adaptive processes as it occurs when bacteria experience
stress or environmental change, and is related to some resis-
tance mechanisms.50,51 This could give bacteria an evolutionary
advantage in combatting stress and preventing further damage.
The lamentation of S. oneidensis MR-1 under exposure condi-
tions indicates that this is a part of its adaptation mechanism to
protect from NMC toxicity and has been previously observed
aer chromium(IV) and cadmium selenide quantum dot expo-
sure in S. oneidensis MR-1.52,53 Interestingly, when the ion-
adapted population is grown in pristine media, it still shows
a small increase in lamentation compared to the control,
indicating that this phenotype persists even aer the stress has
been removed. When the NMC-adapted population is grown
under control conditions, it shows a signicant decrease in
lamentation (now similar to ion-adapted), indicating
a decrease in stress while the adaptation-phenotype persists in
OD studies (Fig. 6A and 7).

Extensive bacterial lamentation may have profound
impacts on the environment due to the critical role and perva-
sive nature of S. oneidensis MR-1. This stress response could
inuence the activity of S. oneidensis MR-1 in the environment
due to changes in metabolic activity and metal and small
molecule turnover, but could also make it more difficult for
predators to consume. Finally, if lamentation is a global
response to nanoparticle adaption, this could also enable
pathogens to become more resistant to antibiotics as la-
mentation is a known antibiotic resistance mechanism.50,51
This journal is © The Royal Society of Chemistry 2019

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9sc01942a


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
A

ug
us

t 2
01

9.
 D

ow
nl

oa
de

d 
on

 9
/2

2/
20

24
 1

0:
11

:5
4 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Bacteria from Passage C were also analyzed by transmission
electron microscopy (TEM) to determine if cell envelope struc-
tures were altered during the adaptation process to either ions or
particles (Fig. S13†). The envelope of bacteria and its compo-
nents (e.g., lipopolysaccharides) are the rst interface of the
organism to interact with the nanoparticle and its ions.54,55

Previous work has shown that there is no internalization of NMC
by S. oneidensis MR-1 and no signicant membrane association
of NMC aer 30 min of exposure.12,14 The negative charge of the
nanoparticles makes it less likely to interact with the negatively
charged bacterial envelope (Fig. S2†).56 However, aer prolonged
exposure and a clear adaptation phenotype, it is important to
evaluate if the stress of NMC has caused alterations in the
membrane and cell wall structures.57Untreated S. oneidensisMR-
1 had a smooth bacterial membrane as reported previously.12,14

Cultures adapted to 25 mg L�1 NMC and 25 mg L�1 NMC metal
ions show lamentation as seen in SEM images, but no signi-
cant morphological differences in the cell envelope.
Initial mechanistic investigation of resistance: secreted
biomolecules

S. oneidensisMR-1 is well known for its ability to reduce a variety
of extracellular substances and metals via secretion of ribo-
avin, an electron shuttle that is transported through the Mtr
pathway, which is a collection of membrane-embedded cyto-
chrome proteins.58,59 The Mtr pathway of S. oneidensis MR-1 has
Fig. 7 Morphology assessment. Scanning electron micrographs of S. on
over 4 passages, (b) 25 mg L�1 NMC over 4 passages (c) 25 mg L�1 NMC
25 mg L�1 NMC over 2 passages followed by 2 passages without exposu
without exposure. Table indicates mean, median, and standard deviatio
compare the lengths of the bacteria are included in the ESI (Fig. S12).†

This journal is © The Royal Society of Chemistry 2019
been linked to the reduction of metals and metal oxides,
including manganese and cobalt under anaerobic condi-
tions.60,61 Furthermore, riboavin has been shown to increase in
the supernatant of a culture over time, as well as aer exposure
to TiO2 nanoparticles.58,62 The modication of metal oxidation
states has been identied as a mechanism of bacterial resis-
tance to toxic metals.63 Due to the change in behavior of S.
oneidensis MR-1 during repeated exposures to metals, it was
considered likely that the activity of this pathway and the
secreted concentration of riboavin may increase. As such,
throughout Passages A–E the supernatants were collected for
riboavin analysis by liquid chromatography-mass spectrom-
etry (LC-MS). We observed an increase in relative riboavin
concentrations upon treatment with NMC or its ions that per-
sisted across multiple passages, correlating with the stability of
the resistance phenotype (Fig. 8 and S14†). Populations exposed
to 25 mg L�1 of NMC during the rst passage show a slight
decrease in relative riboavin concentrations when normalized
to optical density. Yet, bacteria exposed to only 5 mg L�1 of
NMC or the ion equivalents secreted more riboavin than the
control. This contrast could be due to the tness of the pop-
ulations during the initial exposure (Passage A) and indicate
that more resources are allocated to other survival mechanism
instead of riboavin secretion aer exposure to 25 mg L�1 NMC.
During subsequent passages (B–E), the relative concentrations
of riboavin are signicantly different from the control, but do
eidensis MR-1 from Passage D exposed to (a) no nanoparticle or ions
ion eq. over 4 passages (d) no nanoparticle or ions for one passage, (e)
re, (f) 25 mg L�1 NMC ion eq. over 2 passages followed by 2 passages
n in mm for the imaged microbe populations. Statistical analyses to

Chem. Sci., 2019, 10, 9768–9781 | 9775
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Fig. 8 Riboflavin secretion as measured with LC-MS. (a) Passage A demonstrates significant differences between the treated groups and the
control. (b) Over multiple subsequent passages (average of B–E), the control differs from the ion- and NMC-treated samples, but these samples
do not differ from one another. Statistical analysis performed with non-parametric one-way ANOVA with Tukey analysis as necessary (a ¼ 0.05;
****p # 0.0001; ***p # 0.001; **p # 0.01, *p # 0.05).
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not increase when the population is exposed to triple the
quantity of NMC (Fig. S14†). Although riboavin is associated
with the ability of S. oneidensis MR-1 to reduce metals extra-
cellularly under anaerobic growth, the increased concentration
may also indicate some metal related-utility under aerobic
respiration.

Finally, we have also conrmed that there is no secreted
factor, such as a protein or small molecule, which is responsible
for the ability of the organism to survive exposure. Bacteria from
the control population were cultured using spent media from
NMC-adapted cultures. These cultures rebounded aer expo-
sure to 5 mg L�1 as seen previously, but did not grow in cultures
containing 10 mg L�1 (Fig. S15†). These data provide further
evidence that the adaptation is heritable, and not triggered by
media factors or secreted biomolecules.
Summary & conclusions

Nanoparticles have been considered a potential alternative to
existing antibiotic treatments. Because they typically trigger
multiple mechanisms of response, it has been postulated that
bacteria may not develop resistance to nanoparticles.18,64–66 Yet,
bacteria and other microorganisms have always existed in
environments that naturally contain metals, so it is not
surprising that they can also adapt to the presence of metal
nanoparticles.63 Here, we provide the rst example of stable
bacterial resistance to a metal nanoparticle, outside of antimi-
crobial silver materials, which were only recently demonstrated
to spur resistance.38 Other studies investigating nanoparticle
adaptations have shown clear bacterial response but have not
demonstrated a stable nanoparticle resistance pheno-
type.41,48,66–69 Due to the ability of S. oneidensis MR-1 to continue
replication under increasing concentrations of NMC, the heri-
tability and stability of the adaptation aer the pressure has
been removed, and the presence of a nanoparticle-specic
impact, it is rational to consider this resistance and not
simply tolerance.37,38,49,65
9776 | Chem. Sci., 2019, 10, 9768–9781
Microbial resistance is important to consider when
addressing the regulation of soluble nanomaterials. There is
a “particle-chemical duality challenge” that cannot be
addressed when only assessing particle dissolution, especially
when considering potential toxicity.70 Even for nanoparticles
like NMC, where metal dissolution is responsible for much of
the particle toxicity, there are toxic properties unique to the
particle, which have also been reported for AgNPs.71 Other
research has shown differential toxicity between a nano-
material and its ions, but the ions were more toxic than the
nanoparticle.38,72,73 In this work, we saw that ions were simi-
larly toxic to the nanomaterial, but with further culturing and
adaptation development, it was possible to distinguish
between the toxicity of NMC and its equivalent ions by char-
acterizing the adapted populations. There are several mecha-
nisms of metal resistance that a bacteria may employ to
mitigate NMC toxicity, but with multiple metals and an
undetermined “nanoparticle-specic factor,” elucidation of
these mechanism will likely be complex.63 Future studies will
work to determine the mechanisms of resistance and more
thoroughly map the variations between ion and nanoparticle
adaptation, as well as determine if nanoparticle resistance is
possible in other organisms.

In sum, the presented studies make clear that it is critical to
perform chronic exposure experiments when assessing the
toxicity of nanomaterials as this is more similar to their
environmental and medical mode of action.64 Such experi-
ments enable the elucidation of permanent adaptation
mechanisms, as seen here, and indicate that while many
previously postulated that nanoparticles were unlikely to
promote bacterial resistance due to their multiple mecha-
nisms of action, these small organisms are readily able to
adapt to such assaults. Given the essential roles that bacteria
play in our ecosystems, it is clear that careful assessment of
chronic exposure to engineered materials is required to avoid
drastic modications and unnecessary resistance in regions of
contamination.36,74–76
This journal is © The Royal Society of Chemistry 2019
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Materials and methods

The experimental ow chart across passages can be found in the
ESI (Fig. S3).†
NMC synthesis and characterization

Lithium nickel manganese cobalt oxide nanosheets with stoi-
chiometric Ni : Mn : Co were synthesized as previously pub-
lished.12 First, a nickel manganese cobalt hydroxide precursor
with stoichiometric Ni : Mn was synthesized through dropwise
addition of aqueous transition metal salt containing 0.2 M
nickel(II) acetate, 0.2 M manganese(II) acetate, and 0.2 cobalt(II)
acetate into 0.1 M aqueous LiOH with stirring. The precursor
was puried and isolated with multiple cycles of centrifugation
with water (2�) andmethanol (3�) before drying under a ow of
nitrogen. Themixedmetal hydroxide (0.250 g) was added to 10 g
mixture of molten lithium salt ux (6 : 4 molar ratio of LiNO3-
: LiOH) at 205 �C for 30 min with stirring. The reaction is
quenched with water to yield NMC nanosheets, which were
puried with cycles of centrifugation (2� water, 3� methanol)
and dried under a continuous ow of nitrogen. As described in
previous studies, TEM images show sheet-like morphologies
that average � 80 nm across and the colloidal stability and
aggregation of the particles were assessed by z-potential and
DLS (method fully detailed in the ESI†).12,14

To characterize metal dissolution into the bacteria media,
a suspension of NMC was added to media to yield a nal
concentration of 5 mg L�1 and 25 mg L�1 NMC. Samples were
agitated by an incubator shaker for 96 h at 30 �C. Samples were
collected in triplicate and centrifuged at 4696g for 20 min to
remove a majority of NMC in solution. The supernatant was
again centrifuged to collect any remaining nanoparticles at
288 000g for 2 h using a Beckman Coulter Optima Ultracentri-
fuge with a SW-41 Ti Rotor. Resulting supernatants were
measured by ICP-OES in triplicate to determine the concentra-
tion of dissolve metal species.
Bacterial cultivation

Shewanella oneidensis MR-1 (ATCC BAA1096) were grown on
lysogeny broth (LB) agar plates at 30 �C for 16 h and transferred
in a minimal medium containing 11.6 mM NaCl, 4.0 mM KCl,
1.4 mM MgCl2, 2.8 mM Na2SO4, 2.8 mM NH4Cl, 88.1 mM
Na2HPO4, 50.5 mM CaCl2, 10 mM HEPES, and 100 mM fresh
sodium lactate. Liquid cultures were grown at 30 �C, shaking at
250 RPM, for 24 h into exponential phase. The cultures were
diluted to an optical density (OD) of �0.2 at 600 nm (GENESYS
20 spectrophotometer, ThermoFisher Scientic).
Bacterial exposure cultivation and analysis

Bacteria suspensions were diluted 1 : 10 v/v into fresh media.
NMC nanoparticle (2 mg mL�1) were dispersed in minimal
media with sonication for 10 min and added to the cultures to
attain the desired NMC concentration either at the time of the
culture dilution (time 0 h) or 10 h aer dilution (time 10 h).
Likewise, stock solutions of LiOH, NiCl2, MnSO4, and CoCl2 in
This journal is © The Royal Society of Chemistry 2019
minimal media were all added to the cultures at time 0 to
achieve Li+, Ni2+, Mn2+, and Co2+ concentrations in the media
according to the expected metal ion dissolution of NMC over
96 h as determined by ICP-OES (vide supra). All conditions were
performed in triplicate. Bacterial growth was monitored by
turbidity through optical absorbance at 600 nm every few h for
72–96 h (referred to as Passage A). A blank of minimal media
with the same concentration of NMC was used.

For each subsequent exposure, the bacterial suspensions
were diluted to an OD600 of 0.1 using minimal media without
lactate and diluted 1 : 10 (v/v) into fresh media and lactate
supplemented with NMC nanoparticle or metal ions at time
0 (Passages B–E). Carry-over of NMC or metal ions into subse-
quent cultures was considered negligible since the suspensions
were diluted 20–30 times when in subsequent culture. Aer
96 h, an aliquot from each culture from Passages A–E was
collected for riboavin analysis (vide infra).

Respirometry experiments

Passage E was used for respirometry experiments. Bacterial
respiration, as a measure of bacteria tness during exposure to
NMC or metal ions, was determined by quantifying O2 (g)
consumption using a 24-vessel respirometer system (Respi-
rometry Systems and Applications, Inc., Springdale, AR).
Bacteria from Passage D were diluted to create a 100 mL
suspension with a nal OD600 of 0.01 for Passage E growth.
Cultures were placed in a 125 mL glass vessel and supple-
mented with NMC and metal ions. The vessels were placed in
a 30 �C water bath for 72 h with constant stirring (500 rpm) and
under constant O2 pressure. The CO2 produced by the respiring
bacteria was scrubbed with a KOH insert in the headspace of the
vessel. As CO2 was removed from the gas phase, O2 was deliv-
ered to the vessel every 5 min to maintain a constant pressure.
The total mass of O2 delivered to the system and the time it took
to reach the highest rate of respiration (as determined by the
rst derivative of the respiration curve) were used as a measure
of bacterial tness and metabolic activity.

Riboavin analysis

Aliquots of cultures from Passages A–E were collected at the end
of each growth curve and centrifuged to remove bacteria (3220g,
10 min). Supernatants (2 mL injected) were analyzed on an UHD
Accurate-Mass Q-TOF LC/MS instrument (Agilent, 6540), sepa-
rated on a reverse phase C18 column (Agilent, Eclipse Plus, 2.1�
50 mm, 1.8 mm), and detected by electrospray ionization (posi-
tive ion mode). Sample were separation was initiated with an
isocratic elution of 100% A at 0.40 mL min�1 for 2 min followed
by a linear gradient of 0–100% B over 7 min, then an isocratic
elution at 100% B for 1 min (A: 95 : 5H2O : ACN, 0.1% formic
acid; B: 95 : 5 ACN : H2O, 0.1% formic acid).

Bacteria morphology analysis with electron microscopy

All SEM samples from Passage D were prepared by pelleting
from growth media and washing with 1� DPBS (10 mL, 750g),
followed by a wash with 2 mM HEPES buffer (10 mL, 750g).
Samples were then xated with 5% glutaraldehyde (500 mL),
Chem. Sci., 2019, 10, 9768–9781 | 9777
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with an incubation of 30 min, followed by two washes of 0.1 M
phosphate buffer (500 mL, 1200g). Cells underwent dehydration
by ethanol in successive steps of increase ethanol concentra-
tions (35%, 50%, 75%, 95%, 100%; 500 mL, 1200g). Final
dehydration occurred by two washes with HDMS (500 mL, 800g).
Cells from the second HDMS wash were allowed to desiccate
directly onto glass cover slides. Sample slides were sputter
coated with a thin layer of gold to increase conductivity just
before being placed into the SEM for imaging. Samples were
imaged on a JEOL JSM-IT100 SEM at a working distance of
10 mm with a probe current of 0.045 mA and electron gun
voltage of 5 kV.
Analysis of SEM images

Dimensions of Passage D bacteria analyzed were blinded in
SEM preparation and analysis in ImageJ. Using ImageJ, each
cell's width and length was measured, aer the image was
calibrated using the scale bar. The cell length was measured by
using the segmented line tool down the center of the bacteria.
The width was measured with the straight line tool on a portion
of the bacteria where the cell membrane was intact and not
curving. A cell was only measured if its start and end was clearly
dened. The growth conditions of each sample were double
blinded before the bacteria were measured.
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