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Rational solvent selection remains a significant challenge in process development. Here we describe
a hybrid mechanistic-machine learning approach, geared towards automated process development
workflow. A library of 459 solvents was used, for which 12 conventional molecular descriptors, two
reaction-specific descriptors, and additional descriptors based on screening charge density, were
calculated. Gaussian process surrogate models were trained on experimental data from a Rh(CO),(acac)/
Josiphos catalysed asymmetric hydrogenation of a chiral a-B unsaturated vy-lactam. With two
simultaneous objectives — high conversion and high diastereomeric excess — the multi-objective
algorithm, trained on the initial dataset of 25 solvents, has identified solvents leading to better reaction
outcomes. In addition to being a powerful design of experiments (DoE) methodology, the resulting
Gaussian process surrogate model for conversion is, in statistical terms, predictive, with a cross-

validation correlation coefficient of 0.84. After identifying promising solvents, the composition of solvent
Received 15th April 2019 ixt d timal ti t t . d usi black-box B . timisati W
Accepted 28th May 2019 mixtures and optimal reaction temperature were found using a black-box Bayesian optimisation. We
then demonstrated the application of a new genetic programming approach to select an appropriate

DOI: 10.1039/c9sc01844a machine learning model for a specific physical system, which should allow the transition of the overall

rsc.li/chemical-science process development workflow into the future robotic laboratories.

Introduction

Process development of new reactions is a challenging,
complex, and expensive task.' Traditionally, process chemists
rely on intuition and past experience to navigate reaction
conditions and select solvents, although various design of
experiments (DoE) methodologies are increasingly being
adopted, mainly in industrial process development labs.>
Bayesian optimisation-based DoE has recently emerged as
a new method of process optimisation.*® The statistical algo-
rithms used are able to rapidly learn the complex reaction
behaviour and optimise the desired outcomes by modulating
process conditions such as temperature, reaction time, and feed
concentrations. This approach works well in the case of
continuous variables, but not so well in the case of discrete
variables, such as choice of catalyst, substrate, or solvent, that
play a crucial role in most reaction optimisation studies.'® Only
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very recently have discrete variables been considered in self-
optimisation frameworks, but without physical representa-
tion." The difficulty in representing discrete variables, as well
as the ‘curse of dimensionality’, makes it challenging to treat
them algorithmically without resorting to expensive high-
throughput experimentation.”*™* A potentially useful way to
resolve this problem is to use molecular descriptors*'® to
introduce physically meaningful continuous variables linking
discrete variables. In this study we find that solvent descriptors
can indeed be incorporated into the reaction self-optimisation
paradigm to create predictive surrogate models, thereby
dramatically enhancing process development workflows for
solvent selection in practice, as well provide new generic
mechanistic insights about the specific reaction of interest.
Attempts to utilise generalisations of fundamental physical
knowledge of discrete variables can be traced back to the 1950s
when Taft demonstrated that steric effects can be isolated, and
developed some of the first steric parameters.”” This paved the
way for ligand and substrate descriptors,'®*® which are now
common in multivariate linear regression models, and mech-
anistic interrogation.”*** Successful development towards
solvent optimisation has been far more limited. Reizman and
Jensen have attempted to bypass physical knowledge of solvents
in their microfluidic reaction droplets platform.>* A flow
experiment was combined with an algorithm based on
sequential adaptive response surface methodology and optimal
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DoE. The algorithm identified DMSO as a promising solvent out
of a pre-selected set of 10 solvents, for the alkylation of 1,2-
diaminocyclohexane. As a black box method, it does not provide
physical insights.

Exploring the solvent landscape more extensively, and
simultaneously gaining physical insights, will almost certainly
require a combination of statistics and chemical information.
Murray et al. make use of a linear dimensionality reduction
approach,® first demonstrated for solvents in the 1980s sepa-
rately by Chastrette et al.*® and Carlson et al.,”” to parametrise
a solvent map using molecular descriptors. Murray et al. used
this concept to obtain a solvent map and thus extend the
traditional factorial DoE approaches. In this study we adopted
the Principal Component Analysis (PCA) approach as one
option for extracting features,*® or meaningful input variables,
from the large dimensional descriptor space for the machine
learning surrogate models. This is also referred to as feature
engineering.***° In addition to the previous study on molecular
descriptors of solvents,” we also compute more reaction-
specific descriptors, in order to produce more relevant features.

Struebing et al. describe a computer-aided molecular design
strategy aimed at utilising physical knowledge that is concep-
tually similar to the one presented here.** They used quantum
mechanics to compute reaction rate constants in six initial
solvents and constructed a qualitative surrogate model based
on a linear free-energy relationship between the rate constant
and five molecular descriptors. The subsequent step used
mixed-integer linear programming to select the next solvent,
whose performance was predicted via quantum mechanics as
well. This single-objective method was tested on the Men-
schutkin reaction. Ultimately, nitromethane was identified and
verified as the superior solvent. The rate constants for the
solvents were shown to exhibit an approximate proportional
relationship with the dielectric constant. This demonstrates the
potential of a hybrid mechanistic-machine learning approach:
it incorporates general prior knowledge into the data analysis
framework, rather than leaving it to the algorithm to ‘redis-
cover’ this information.

The method developed in this study extends the growing use
of machine learning in chemistry and chemical engineering,***
specifically an attempt to combine multi-objective DoE algo-
rithms with physical knowledge in the form of solvent proper-
ties. The workflow and transition of chemistry knowledge into
machine learning domain and process domain is illustrated in
Fig. 1. We start with a library of 459 candidate solvents. Then,
we acquire physical knowledge from property databases and
through molecular simulations leading to 17 molecular
descriptors. The transition of physical knowledge into the
machine learning domain is achieved via a dimensionality
reduction that provides features for the Gaussian process
machine-learning models then used in Bayesian optimisation
with lab experiments and analysis in the loop. The obtained
results could be linked back to the physically-meaningful
molecular descriptors and represent new, generic physical
knowledge. The strategy is computationally inexpensive, in that
it does not require high performance computing facilities.
Furthermore, it is applicable to multi-objective problems, and
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Fig. 1 The workflow and transition of chemistry knowledge into
machine learning domain and process domain, i.e., experiment and
analysis.

to difficult reactions, exemplified here with a transition metal
catalysed asymmetric hydrogenation.

The example reaction under study is a Rh(CO),(acac)/
Josiphos(cyclohexyl/4-methoxy-3,5-dimethylphenyl)  catalysed
asymmetric hydrogenation of a complex chiral a-f unsaturated
y-lactam (I), shown in Scheme 1, used to produce UCB Pharma's
new anti-epileptic drug Brivaracetam (II).**

The aim is to develop a workflow, which reduces experi-
mental bias and, hence, explores non-intuitive solvent selec-
tions, leads to a predictive surrogate model which can be used
in an optimisation, and also helps to develop new generic
physical knowledge.

Physical knowledge about solvents is introduced to the
machine learning context via a set of molecular descriptors.
Apart from descriptor databases available in the literature,
a source of descriptors can be computational software, such as
COSMOtherm, which combines quantum chemistry and ther-
modynamics to predict properties. COSMOtherm has been used
since the 1990s for a range of applications, such as the evalu-
ation of new solvents for solid-liquid extraction of bio-
pharmaceuticals,*® partitioning of organic substances into
different phases,” and predicting solute partition in multi-
phase complex fluids.*® Among the descriptors computed in this
study, we explored screening charge density profiles.***° These
information-rich ‘o profiles’, which are histograms of screening
charge density on the molecular surface, were converted to

RN
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Scheme 1 Rh-Josiphos catalysed asymmetric hydrogenation reac-
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Fig. 2 Screening charge density profiles (‘o profiles’) of four example
solvents.

numerical descriptors per solvent, each defining a different
segment of the profile, see Fig. 2. This concept has previously
been used in multilinear regression models to correlate CO,
absorption and desorption capacities in various amine
solvents,** as well as rate constants in the case of a Diels-Alder
reaction.”” This work was later extended to identify solvents that
possess the best reaction performance under model uncer-
tainty,* which allows to explicitly account for uncertainty in the
process of descriptor design, and further solvent selection/
design workflow.

This paper comprises three sections. First, we present
a hybrid mechanistic-machine learning approach to identify
promising solvents in a large decision space. For this we eval-
uate different descriptors: (i) o profiles only, and (ii) a dimen-
sionality-reduced set of a larger set of 17 meaningful
molecular descriptors. Then, we focus on the promising
solvents identified in the first part, and algorithmically deter-
mine operating conditions (temperature and solvent mixtures).
Thus, this work presents a two-step approach, utilising advan-
tages of both a priori knowledge, and black box optimisation.
Finally, we incorporate into the workflow of solvent selection an
automated tool for determining optimal machine learning
pipelines.

Materials and methods
Experimental

Experiments were conducted in an argon-filled Vigor glovebox
in a stainless-steel screening autoclave (Cat7, HEL), using 10 mL
glass reaction vials (as illustrated in ESIf). The substrate, cata-
lyst precursor and ligand were weighed and charged into the
reactor, followed by the solvent and a magnetic stirrer. The
autoclave was sealed and purged with H, three times, before
being pressurised slowly to 10 barg and heated to 70 °C. Stirring
rate was 1000 rpm, and material loadings were 0.1 M [I],, 1%
Rh(CO),(acac), and 1.2% Josiphos. Reaction time was 17 h for
all experiments. Conversion and diastereomeric excess (d.e.)
were determined by chiral HPLC (Shimadzu Prominence,
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Chromspher column by Agilent, 8 min run time, 1 mL min "
flow rate, 22 °C column temperature, acetonitrile : H,SO, (98 : 2
v/v%) mobile phase). As the quality of machine learning models
depends heavily on the quality of the training data, experiments
were repeated two or three times; experimental error was
determined and is shown with the results. Initially we screened
34 solvents from a diverse range of solvent classes, guided by
expert knowledge. The aim was to cover as many types of
solvents, but using molecules selected by expert synthetic
chemists, based on their prior experience. From these we used
the descriptors of 25 solvents as inputs to the algorithm in order
to test the predictions on the other 9. There are numerous
methods of selecting initial data sets; this expert-guided
strategy allows for a comparison of algorithm-inspired sugges-
tions and human expertise.** The objectives of interest were
conversion and d.e. We note that using AAG* (difference in
Gibbs free energy between diastereomeric transition states,
commonly employed in data analysis for asymmetric catalysis),
showed little difference in the models, compared to d.e. For this
case study, we determined a priori that the relation between
solvents is approximately consistent across most continuous
variables, such as temperature, so that an initial focus on the
discrete variable only, with other conditions held constant, is
appropriate.

Molecular descriptors

From the available solvents library** we removed entries with no
data, those that were very similar and also solvents with boiling
points at 10 bar(g) significantly below the reaction temperature,
as this would result in a high-pressure process. This resulted in
a library of 459 solvents. For each solvent in the library we
created a set of 17 molecular descriptors. These, as well as their
sources, are listed in Table 1. Descriptors were either taken from
literature,* or calculated in COSMOtherm.*® Properties were
computed at 25 °C, except for the reaction-specific properties
(Henry's constant of H,, and In(y) of I), which were computed at

Table 1 List of solvent molecular descriptors used in this work

Descriptor (units) Source
Molecular weight (g mol™") Stenutz"®
Density (g mL™") Stenutz*®
Molar volume (mL mol ™) Stenutz*®
Refractive index (—) Stenutz*®
Molecular refractive power (mL mol ) Stenutz"®
Dielectric constant (—) Stenutz*®
Dipole moment (D) Stenutz"®
Melting point (°C) Stenutz*®
Boiling point (°C) Stenutz"®
Viscosity (cP) COSMOtherm™®
IN Poctanol-water Partition coefficient (—) COSMOtherm™®
Vapour pressure (mbar) COSMOtherm®®
Henry's constant of H, in solvent (bar) COSMOtherm®®
In(y) activity coefficient of I in solvent (—) COSMOtherm™
o) — o} profiles segmented into three (—) COSMOtherm®®
d,-a5 profiles segmented into five (—) COSMOtherm®®

t,-t4: principal components from PCA (—) —
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70 °C. For calculating screening charge density profiles (‘o
profiles’), structures were taken from the COSMOtherm 1401
database with BP-TZVP-COSMO parametrisation. We converted
o profiles to numerical descriptors by segmenting them into n
segments, and calculating the area under the curve for each
segment. We evaluated models based on n = 3 (segmented at ¢
= —0.010 and 0.010 e A™2, as illustrated in Fig. 2), and n = 5
(segmented at ¢ = —0.015, —0.005, 0.005, and 0.015 ¢ A~>). In
models 3-6 PCA was used to reduce the dimensionality of 17
descriptors to generate the first four principal components ¢;-t,,
capturing 70% of the variance in the original descriptors. In
these models ¢} — ¢’; was used in preference over o,-05 within
the 17 descriptors.

Machine learning algorithm

The recently published Thompson sampling efficient multi
objective optimisation (TS-EMO) algorithm, described in detail
elsewhere,* was used. The algorithm's utility in chemical
process optimisation was recently demonstrated in an in silico
multi-objective optimisation case study,” and for purely
experimental self-optimisation in synthetic chemistry.® A major
advantage of this algorithm is its ability to treat multiple
objectives independently, as the trade-offs in process objectives
are often complex, and are usually addressed through scalar-
isation methods that have their own drawbacks.*® When trained
on initial experimental data, TS-EMO builds a Gaussian process
(GP) surrogate model for each objective. GPs have been shown
in the literature to be able to adequately represent chemical and
bio-processes.”** Then, TS-EMO samples from this model using
Thompson sampling,* to approximate the Pareto set of optimal
solutions, and subsequently identifies the points which maxi-
mise the hypervolume of the statistical surrogate model.
Thompson sampling enables the suggestions to meet the
‘exploration and exploitation’ goal: to optimise, as well as to
suggest points that reduce the model uncertainty in the unex-
plored regions of the parameter space. By running the simula-
tions multiple times and identifying the most often-suggested
solvents, one can bias this paradigm more towards exploitation.
This closed-loop optimisation procedure is conducted until new
and superior solvents are identified. The original TS-EMO
algorithm is designed to work with continuous variables; our
modifications include a removal of the genetic algorithm within
TS-EMO (which identifies the next sampling point). This was
replaced by an exhaustive enumeration of all possible solvents
(making it faster since we only evaluated GP samples of the 459
candidate points). Unlike high-throughput screening,**> or
expert-guided approaches, this machine learning method stra-
tegically and resourcefully guides experimentation, and utilises
each data point in the determination of the next best
experiment.

An overview of the six models considered in this study is
given in Table 2. Models 1-3 are used for DoE, and then models
4-6 are compared to model 3 to investigate model robustness
when less chemical information is used.

In the solvents mixing study, the optimisation variables were
(i) temperature, and (ii) solvent volume fractions x;,_;,;. In

6700 | Chem. Sci., 2019, 10, 6697-6706

View Article Online

Edge Article

Table 2 Comparison of different GP surrogate models for conversion
using 58 solvent data (leave-one-out cross validated). t,_;_4 = principal
components, reduced from 17 descriptors. g® refers to the cross-
validated correlation coefficient

2

Model Descriptors Gconversion
Model 1 01, 0,y 03, 04, 05 0.61
Model 2 ay, ), a4 0.76
Model 3 ty, tyy tsy ty 0.81
Model 4 b, by b 0.84
Model 5 ty, ty 0.77
Model 6 ty 0.63

total, four solvents were mixed, but only three were used as
variables to avoid over-specifying the problem. The optimisa-
tion was conducted as a batch-sequential optimisation (five
reactions per batch). To do this, two further algorithm modifi-
cations were made. First, we note that the reactor used does not
allow different temperatures for parallel reactions in the same
batch. Therefore, because temperature is one of the optimisa-
tion variables, we ran the algorithm in two steps. Step 1 is the
normal algorithm run, using all variables including the reaction
temperature, generating one recipe (‘recipe’ being the set of
suggested reaction conditions to be tested experimentally). Step
2 is the application of the normal batch-sequential method in
TS-EMO but holding temperature at the previous selection, and,
hence, selecting four more recipes at that temperature. In Step 2
we also included the constraint that the solvent fractions x;_q 5 3
must sum to less than 1, so that the fraction of the fourth
solvent would be the balance. As this did not work with the
NSGA-II implementation normally used in TS-EMO, we
switched to the ‘gamultiobj’ from the ‘Global Optimisation
Toolbox’ within Matlab. Finally, we used the classification
methodology Tree-based Pipeline Optimisation Tool (TPOT),
which is described elsewhere;> its source code is available on
GitHub.

Results and discussion
o profiles as solvent molecular descriptors (models 1 and 2)

The initial screening comprised solvents from diverse classes,
selected by experienced synthetic chemists based on prior
knowledge, see Fig. 3. The results show a wide range of
outcomes for conversion, and a moderate range for d.e. Only
one solvent from this set resulted in conversion above 90%, and
no solvent lies on the approximation of the Pareto front, which
is the set of non-dominated points (those that cannot be
improved in one objective without a deterioration in the other
objective), determined later in the study. When trained on this
data using model 1 input descriptors (o;-05), the next solvents
suggested by the algorithm were dibutyl amine, methyl octa-
noate, eucalyptol, and ethyl acetate. Experimentally, the first
three of these solvents resulted in reactions with conversions
above 90%. The information contained in the outcomes of
experiments with these solvents significantly improves the
surrogate model, as shown on a test set before and after the
inclusion of the new solvents (see Fig. S1 and S21). These results

This journal is © The Royal Society of Chemistry 2019
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Fig. 3 Results of initial screening of solvents from diverse classes.

were incorporated into the algorithm, and the algorithm was re-
trained, which then identified aniline, methyl pentanoate,
propyl propanoate, and butyronitrile, to be tested experimen-
tally in the next iteration. Table S1t shows detailed results of
reaction outcomes with all new solvents.

The hyperparameters of the surrogate model trained on all
solvents tested in this study, shown in Table 3 (model 1, entries
1-5), give information on the impact of each input variable on
each objective. This is known as automatic relevance determi-
nation, and refers to the length scales that parametrise the

Table 3 Surrogate model hyperparameters using different models.
GP1 is for conversion, GP2 is for d.e. Values refer to the length scales
that parametrise the covariance matrix (automatic relevance deter-
mination). Most impactful variables are shown in bold. Note that
hyperparameters are to be compared between variables within each
model, not between different models

Model Variable GP1 GP2

Model 1: g,-05 A 4.41 0.44
Model 1: o,-05 0, 6.86 0.41
Model 1: g1-05 03 1.07 1.66
Model 1: o,-05 04 10.21 3.75
Model 1: 6,-05 as 2.92 0.82
Model 2: ¢} — d} o} 2.05 0.15
Model 2: ¢ — d} o 0.89 2.21
Model 2: ¢ — o, 7 2.17 0.03
Model 3: ,-t, ty (0, R, In P, vy 1.23 0.33
Model 3: t,~t, ty (T, Tn) 2.53 1.07
Model 3: t,-¢, ts (p, 0%) 2.42 0.74
Model 3: t,~¢, ts (In(y)) 5.51 0.11
Model 4: t,~t5 t 1.33 0.12
Model 4: t,~¢5 t 2.80 0.08
Model 4: t,—t5 ts 2.19 0.06
Model 5: t,-t, t 1.73 0.95
Model 5: t,-t, t 3.28 0.76
Model 6: ¢; 4 1.14 0.89
Mixing model X1 1.97 4.76
Mixing model X 15.35 31.62
Mixing model X3 31.62 8.52
Mixing model T 0.30 2.52

This journal is © The Royal Society of Chemistry 2019
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covariance matrix.>* The lower the value, the greater is the
significance of the variable. Thus, o3 (model 1, entry 3) bears the
greatest influence on conversion, while ¢4, 7,, and o5 are most
decisive towards d.e. One can rationalise this by noticing that
the alcohols in Fig. 3 consistently show approximately 70% d.e.,
as they contain the same hydrogen bond accepting descriptor in
the o profiles, which is the information contained in os.
Solvents of a similar class, such as alcohols and ketones, tend to
cause similar d.e., information mostly contained in the
extremes of a ¢ profile (¢; and o5). On the other hand, the
neutral segment o¢3; impacts mainly conversion, which is
demonstrated by the differences in conversion reached with
butanol, hexanol, and octanol.

When ¢ profiles were segmented into only three regions
instead of five (model 2), the initial model trained on the same
training data is significantly more accurate for conversion, as
shown in Fig. S3.1 The advantage of a smaller number of input
variables in the surrogate model outweighs the potential loss of
fidelity of chemical information through wider ranges of
screening charge densities used. Indeed, using this model,
some of the same solvents are suggested, including methyl
pentanoate and propyl propanoate, and some new ones such as
5-nonanone and 1-nonanol (Table S2} shows detailed results of
the outcomes). Both new solvents gave =90% conversion, and 1-
nonanol is amongst the best solvents found in this reaction,
with 70% d.e. A further iteration led to experimentally testing
tert-butylamine.

Unlike conversion, d.e. is challenging to predict accurately,
due to the limited range of the data. However, d.e. predictions
appear to be better using model 1 (0,-05) than model 2
(o), — 05). We have already identified that solvents primarily
affect reactivity and only in part, d.e. Therefore, a model based
on solvent descriptors cannot be expected to be accurate for d.e.
in this case. Thus, it is more useful to think of d.e. prediction as
a classification problem (50-60% as ‘low’, 60-70% as ‘high’).
Using model 2, the final model correctly predicts the class of
only five out of the nine data points, whereas seven out of nine
are correctly classified using model 1. Solvent polarity, which is
information contained in the profile extremes (non-neutral
regions), is more impactful towards d.e.
described by ;-5 than o) — ¢}. Hyperparameters using ¢}, — a5
are shown in Table 3 (model 2, entries 6-8).

and is Dbetter

Solvent molecular descriptors based on PCA (models 3-6)

Selecting to use only-profiles as descriptors we introduce
a descriptor-bias. To overcome this we use a large set of
descriptors and identify a set of the reduced dimensionality
composite descriptors that can practically be used in ML-
optimisation workflow. Utilising the set of all literature and
calculated descriptors, shown in Table 1, PCA was used to
reduce the dimensionality, and the first four principal compo-
nents were used as inputs in TS-EMO (model 4). The base
descriptors shown in parenthesis for model 3 in Table 3 indi-
cate what properties are approximately described by each
principal component, as determined by a correlation analysis.
The algorithm selects for 2,6-dimethyl-4-heptanone, which was

Chem:. Sci,, 2019, 10, 6697-6706 | 6701
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Table 4 Comparison of algorithm performance vs. human intuition:
number of solvents found in each strategy showing outcome that is
high in conversion (>90%), high in d.e. (>60%), and high in both
objectives

Conversion >

90% and
Strategy Conversion > 90% d.e. > 60% d.e. > 60%
Human 1 of 34 (3%) 13 of 34 (38%) 1 of 34 (3%)
Algorithm 12 of 18 (67%) 10 of 18 (56%) 7 of 18 (39%)

tested experimentally, and gives >90% conversion. Additional
solvents leading to excellent conversions selected by this
method include 2,4-dimethyl pentane, propyl benzene, mesity-
lene, cumene, and tributyl amine, see Table S3.1 Evidently the
method learns of promising solvents and suggests them to the
human researcher, providing a workflow that may elude expert
intuition. Many algorithm-inspired solvents have outperformed
the outcomes achieved using the initial human-selected
solvents, as shown in Table 4. We note that results of
a human strategy are based on the level of expertise in this
particular case and are not universal across all researchers.

The surrogate model for conversion that uses PCA (model 3)
is superior to the model that uses o profiles only (models 1 and
2). This is likely because model 3 includes further physico-
chemical information, such as viscosity and solubility of
a reactant. These descriptors capture information regarding
phenomena that affect reaction conversion, such as mass
transfer and molecular interactions. This highlights the
importance of developing correct molecular descriptors for
a specific reaction of interest. Model 3 does not improve the d.e.
prediction; the additional descriptors do not contain extra
important information for d.e., as compared to models 1 and 2.
The hyperparameters are shown in Table 3 (model 3, entries 9-
12), as well as the descriptors that most contribute to the
principal components.

Whilst excellent conversions (>90%) could be achieved,
attaining high d.e. proved to be more challenging, as the
behaviour rendering this outcome requires specific interactions
between the chiral ligand, and the substrate, and d.e. in this
case is unlikely to reach >75% in any solvent under the same
conditions for temperature and pressure. Therefore, the choice
of chiral ligand is also key in this case, rather than just the
solvent. The highly promising solvents described above are
rarely reported in the vast body of literature on asymmetric
hydrogenation. This is partially due to experimenter bias, and
due to ease of access to the most commonly used laboratory
reagents. Certainly, further analysis of the suggested solvents is
required, specifically with respect of cost, supply chain and
downstream separation.

Evaluation and cross-validation of different surrogate models

The developed surrogate models described above are statisti-
cally predictive. It was not entirely expected that the model
based on continuous GPs with the chosen molecular descrip-
tors would correctly model discrete variables in such a complex
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reaction. Nonetheless it works reasonably well: model robust-
ness and predictive ability was investigated using leave-one-out
cross-validation,* as summarised in Table 2. For this, all 58
data points, selected by a human experimentalist and by the
algorithm, were included. The model robustness for conversion
is best in model 4 using ¢,~t; (¢> = 0.84), followed by model 3 (g*
= 0.81), capturing only 62% of the variance in the original data,
model 5 (g> = 0.79), model 2 using ¢; — ¢ (¢° = 0.76), model 1
using ¢,-05 (¢° = 0.61), and finally using just one parameter, ¢;
(model 6, g* = 0.59), capturing only 32% of the variance in the
original data. For d.e., model 1 is best (¢> = 0.33), predicting
73% of the solvents to be in the correct category (‘high’ vs. ‘low’
d.e.), whereas the other models are weak. The cross-validated
predictions for the best models for conversion and d.e. are
shown in Fig. 4. These results suggest that an ensemble of GP
models, each based on different descriptors, provides better
results than using the same descriptors for the different
objectives.

A solvent mixing black box approach

The concepts discussed so far demonstrate algorithmic navi-
gation of the solvent space using molecular descriptors. As
a next step, we zoned in on the promising solvents and inves-
tigated algorithmic identification of optimal operating
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Fig. 4 Leave-one-out cross validated surrogate model for conver-
sion, g° = 0.84 (top: using model 4 input descriptors) and d.e. (bottom:
using model 1 as input descriptors), g% = 0.33 (73% correctly classified,
as >60% or <60%).
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conditions, such as temperature and composition of solvent
mixtures. It is relatively common to mix solvents to utilise the
combined solvent properties,*** and some methods of deter-
mining composition of solvent blends exist.®* At this stage it is
appropriate to treat the physical system as a ‘black box’ using
concentrations of solvents as continuous variables.

We found that the combined properties of 1-octanol and
triethyl amine, produced superior results to either of the pure
solvents (see Table S47), and that the combined solvent ¢ profile
fits the predictive models discussed earlier, where the
combined ¢ profile is a linear combination of the concentra-
tions of the two individual ones, as shown in Fig. S9.1 In
addition to temperature and the two solvents mentioned, we
included two further solvents — 1-nonanol and tributyl amine -
as optimisation variables to investigate the temperature-
dependent mixed solvents' landscape of amines and alcohols,
with the aim of identifying promising recipes and temperature
operating conditions. The trade-off between reactivity and
selectivity makes the temperature landscape complex and non-
intuitive. Algorithm modifications are described in Materials
and methods.

Table S47 shows the suggested recipes. The first five sug-
gested reactions are at 82 °C, which was a temperature that
achieved full conversion in all suggestions. In four out of five
cases, an even higher selectivity than the training set entries
that achieve full conversion. In a second algorithm-guided
batch experiment, five mixtures at 65 °C were selected,
showing in one case 96% and 70% (entry 25 in Table S47t). Three
iterations were conducted, and outcomes of these recipes are
shown in Fig. 5. The hyperparameters of the more accurate GP
model (trained on all the available data) show that temperature
is the most impactful variable towards each objective. Further-
more, alcohol content impacts conversion more than it does
d.e., and that amine content impacts d.e. more. Out of the five
recipes that lie on the determined Pareto front (entries 4, 20, 25,
28, 31 in Table S4+), four were selected by the algorithm. Cross-
validated results show excellent GP predictive ability (qcom,ersim,2
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Fig. 5 Outcomes of initial and algorithm-suggested solvent mixtures
and the determined Pareto front. Labels refer to experiments (entries
in Table S57).
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Qae” = 0.88.

=0.91 and g4 = 0.88, shown in Fig. 6). The advantage of this
approach was the lack of significant a priori knowledge, whereas
the descriptors approach described earlier gives detailed
explanation of the importance of certain descriptors, giving
further mechanistic insight into the reaction. Unlike in the case
of other descriptors, it is straightforward to compute g-profiles
for solvent mixtures using a linear weighting of the pure
solvents' g-profiles. This is an advantage that allows predicting
outcomes of solvent mixtures using models such as those dis-
cussed earlier in the paper.

Automating machine learning pipelines using descriptors and
classification

Recently, several automated machine learning strategies have
been developed. Tree-based Pipeline Optimisation Tool (TPOT),
a genetic programming-based method,* is one such method
and has proven to be a powerful tool for automating one of the
most tedious parts of machine learning-pipeline design. A
typical machine learning algorithm may be built with a pipeline
as shown in Fig. 7. At each step, there are various possible
choices to make, such as how to pre-process the data, what
machine learning model to choose, and what hyperparameters
to use.

We adapted the pipeline optimization for our given problem
domain. The aim was to determine its utility as a classification
method, in conjunction with in silico modelling to amplify data,
to navigate the descriptor space, and to optimise for superior

solvents. The thresholds were set to 80% and 65% for

Feature
selection

Model
validation

Dataset Parameter

optimization

Fig. 7 Illustration of machine learning pipeline workflow.

Chem. Sci,, 2019, 10, 6697-6706 | 6703


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9sc01844a

Open Access Article. Published on 30 May 2019. Downloaded on 2/6/2026 8:11:10 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

Generate 10 initial experimental outcomes (solvent screen).

Train Gaussian process (GP) surrogate models for 90 new in silico data.

\

Use amplified data (expt. + in silico) in TPOT to give classified suggestions (from 450 solvents).

|

Select from the predicted best, and test these (by expt. or using high-fidelity in silico). ‘

N S

Do all outcomes meet target
(high conversion and d.e.)?

v

Fig. 8 Strategy to investigate the applicability of Tree-based Pipeline
Optimisation Tool (TPOT) to the solvent selection problem.

conversion and d.e. respectively. The workflow is illustrated in
Fig. 8. Given the large amount of data required to be used in
classification and genetic programming, we decided to amplify
a small set of 10 experimental data points to 100 by using the
best GP surrogate models described earlier in the paper,
specifically model 4 for conversion and model 1 for d.e. TPOT
was then used to select some new solvents, which were tested
experimentally and used to improve the accuracy of the ampli-
fied data by retraining the GP surrogate model. This loop is
repeated until superior solvents are consistently found. The
results show that this method rapidly classifies the experi-
mentally confirmed excellent solvents as shown in Fig. 9, which
shows reaction outcomes for the set of the initial 10 solvents in
the first iteration (as individual data points). The experimentally
verified solvents from Iteration 2 were used to improve the
amplified data, which leads to very well-classified experimen-
tally confirmed results in Iteration 3. Finally, these were incor-
porated into the feedback loop, and all solvents classified as
‘high’ were simulated in the highest fidelity versions of models
1 and 4 (for d.e. and conversion respectively), confirming

100
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Fig.9 Results from the TPOT approach. Data labels correspond to the
different solvents.
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excellent classification accuracy. Table S5,f which includes
solvents described previously using TS-EMO, shows the detailed
outcomes. Tables S6-S91 show the hyperparameters of models
used in each iteration. Details of the best pipelines found, as
well as classification accuracy at each iteration, are found in the
ESIT as well.

Conclusions

In conclusion, we have developed a new hybrid mechanistic-
machine learning based method for rational solvent selection.
This incorporates physically meaningful solvent descriptors with
a Gaussian process-based algorithm, which has led to the rapid
identification of promising solvents in asymmetric hydrogena-
tion, outperforming those selected by human intuition in terms
of conversion and diastereomeric excess. Screening charge
density is shown to be an information-rich solvent descriptor for
conversion and especially for diastereomeric excess. Using
a dimensionality-reduced set of 17 physiochemical descriptors
produces better models for conversion than those based only on
screening charge density (cross-validation correlation coefficients
of 0.84 and 0.76 respectively). Over 15 solvents with >90%
conversion were algorithm-inspired, whereas only one such
solvent existed in the training set suggested by a human expert.
Using black-box optimisation we identified a set of optimal
operating conditions and successfully explored the idea of using
mixed solvents to attain the range of experimental space not
accessible through pure solvents. Furthermore, the automated
machine learning work-flow was successfully utilised for the
problem of solvent selection. However, this approach is data-
hungry and was supplemented with the statistically predictive
surrogate model. In other circumstances, a predictive mecha-
nistic model may be used instead of a statistical model for the
same purpose. Ultimately, we expect the bridging between
chemical information and data intensive machine learning
methods to continue to advance. This opens the door for process
chemists to adopt efficient robotic workflows in process devel-
opment, saving time and resources, and freeing up researchers to
make new discoveries.
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