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Desymmetrization of cyclic 1,3-diketones via Ir-
catalyzed hydrogenation: an efficient approach to
cyclic hydroxy ketones with a chiral quaternary
carbonf
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We herein report an efficient method to synthesize cyclic hydroxy ketones with a chiral quaternary center.

Catalyzed by an Ir/f-ampha complex, cyclic a,o-disubstituted 1,3-diketones were hydrogenated, giving
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and C=C bonds could survive in this catalytic system. This method was applied in the preparation of
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(+)-estrone. No diols were observed in this chemical transformation. The enantiomeric and

rsc.li/chemical-science diastereomeric induction were achieved as a result of steric hindrance.
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Introduction

Desymmetrization reactions have been proved to be an efficient
method to generate compounds bearing chiral quaternary
carbons® which have historically been problematic in synthetic
chemistry.>® A successful example of this strategy is mono-
reduction of cyclic a,a-disubstituted 1,3-diketones, which typi-
cally gives hydroxy ketones with two vicinal stereogenic centers."
This product has been demonstrated to be a versatile synthon
that attracts synthetic chemists. Many synthetic studies were
documented to use this 5- or 6-member ring synthon to
construct complex molecules with multiple stereogenic centers.
Successful examples include coriolin,* anguidine,® (+)-croto-
goudin,® (+)-paspaline,”® (+)-estrone,® cortistatins® and aply-
siasecosterol A (Fig. 1).**

The construction of this important synthon, however, is
limited to enzyme catalyzed reduction,'** Ru-catalyzed transfer
hydrogenation'*** and Corey-Bakshi-Shibata® reduction with
borane. These methods suffer from the drawbacks of narrow
substrate scope, moderate selectivity and high catalyst loading.
The challenges of mono-reduction of cyclic a,o-disubstituted
1,3-diketones lie in areas such as (1) enantioselectivity and
diastereoselectivity being realized in one step and (2) the
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prevention of over-reduction to diols. In the hydride transfer
step, different facial approaches towards the substrate lead to
two pairs of diastereomers (marked with blue and red arrows in
Fig. 2). Enantioselectivity originates in the differentiation of
a quaternary carbon from a methylene group (Fig. 2).

Our group has been dedicated to transition metal catalyzed
ketone reduction during the recent two decades and has
developed a series of ferrocene-based tridentate ligands for
iridium catalyzed hydrogenation.’**® A variety of simple or
functionalized ketones can be hydrogenated to chiral alcohols
with remarkably high ees and turnover numbers (TONs). To the
best of knowledge, direct hydrogenation has not been applied
in the preparation of the aforementioned synthon. Due to our
continuous interest in construction of chiral molecules via
transition metal catalyzed asymmetric hydrogenation, we
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Fig. 1 Chiral cyclic hydroxy ketones in total synthesis.
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Fig. 2 Origin of stereoselectivities in mono-reduction of 1,3-
diketones.
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Scheme 1 Methods of mono-reduction of a cyclic 1,3-diketone to
generate a chiral quaternary carbon.

envisioned that this efficient catalytic system could be applied
in the mono-reduction of 1,3-diketones (Scheme 1).

Results and discussion

We initiated our investigation by screening a suitable ligand.
Although simple ketones such as acetophenone could be
reduced efficiently with all these ligands (f-amphox,'® f-
amphol'” and f-ampha'®), their performances in functionalized
ketones different. We selected 2-benzyl-2-methyl-
cyclopentane-1,3-dione as the model substrate and conducted
hydrogenation with iridium in isopropanol with potassium tert-
butoxide. To prevent further reduction, less forcing conditions
(20 atm H,) and a short reaction time (1 h) were applied. These
ligands performed differently: f-amphox and f-ampha gave
promising results in the preliminary assessment (Table 1).
Extending the reaction time and increasing the hydrogen
pressure drove this reaction to a full conversion. Interestingly,
no over-reduction product (diol) was observed under harsher
conditions. After careful optimization [for detailed condition
screening, see ESIt], we finally obtained satisfactory conditions:
catalyzed by an Ir/fampha complex (0.1% loading),
symmetric 1,3-diketone was reduced in dichloromethane in the
presence of sodium tert-butoxide, giving the corresponding
chiral hydroxy ketone with 99% ee and 21/1 dr. To our delight,
no diol was observed in the crude reaction mixture. The turn-

were

over number of this reaction could reach 10 000 without
obvious reduction of stereoselectivities (Scheme 2).*°
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Table1 Preliminary investigation of ligands in hydrogenation of cyclic
1,3-diketones®

o

£o0

4
Hp Hg 8@5@ <t

[I(COD)CI], / ligand, S/C = 500
P

(BuOK, 'PrOH, 20 atm Hy, rt, 1h

=3,5- ('Bu); -CgHa
(Sc.Sc ,Rec)-f-amph Indan-f-amph f-amphol f-ampha
Entry Ligand Conversion® dr® ee’
1 f-amphox 24% 7.3/1 93%
2 Indan-f-amphox 11% 5.4/1 28%
3 f-amphol 50% 4.1/1 37%
4 f-ampha 84% 10.1/1 95%

¢ Reaction conditions: 1a (0.1 mmol, 0 1M), 1a/[Ir(COD)CI]Z/hgand/base
= 500/0.5/1.1/10, 20 atm H,, rt, 1 h. * Conversion was determined by 'H
NMR analysis, no by-product was observed. ¢ dr and ee were determined
by HPLC on a chiral stationary phase.

We applied the optimized conditions to explore the scope of
this method with 0.1% catalyst loading. Various substitution
groups on the benzene ring, no matter whether electron-with-
drawing or electron-donating groups, did not bring significant
changes in both the stereoselectivity and conversion (2a to 2j).
1,3-Diketones with an allyl group, instead of benzyl, were
hydrogenated with high enantioselectivities as well as satisfac-
tory diastereoselectivities (2k to 2m). In addition to alkenes, the
alkynyl group also survives in this chemical transformation (2n).
The preference of reducing polar C=0 bonds demonstrated its
chemoselectivity. To our surprise, a dialkyl substrate also worked
well in this reaction (20 and 2p). This excellent stereoselectivity
indicated that this catalytic system could discriminate two
different alkyl groups (methyl vs. ethyl and methyl vs. propyl).
Discrimination between simple alkyl groups has always been
a top challenge in asymmetric catalysis, while alkyl and aryl
groups are easy to differentiate (2q). When we expanded the ring
size of the substrate from five to six, the performance faded and
moderate stereoselectivities were obtained (2r). o, a-Disubstituted
1,3-indandiones could also be hydrogenated, giving desired
yields and stereoselectivities (2s and 2t).

This reaction could be scaled up smoothly (Scheme 3, top).
In order to exploit the potential applications of this method in
synthetic chemistry, we chose (+)-estrone as a target. This
molecule plays a key role in steroidogenesis® and chemical
synthesis of steroids.”*"*> We followed Corey's route,’ as well as
List's route,” to synthesize Torgov's 1,3-diketone* in a sub-
gram scale. Hydrogenation of this diketone under the opti-
mized conditions quantitatively gives a hydroxy ketone with
>99% ee and 8 :1 dr. After Prins cyclization/dehydration and
oxidation with IBX, Torgov's diene* was obtained* which could
be easily converted to (+)-estrone by a two-step transformation.>

Our curiosity was drawn by the phenomenon of only one
carbonyl group being reduced. When applying harsh

Chem. Sci,, 2019, 10, 6350-6353 | 6351
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Scheme 2 Reaction scope of desymmetrization of cyclic 1,3-dike-
tones via hydrogenation. Reaction conditions: 1 (0.2 mmol, 0.2 M), 1/
[Ir(COD)Cll,/f-amphox/'BuONa = 1000/0.5/1.1/10, 40 atm Hy, rt, 14 h;
isolated yields; dr and ee were determined by HPLC on a chiral
stationary phase. “Substrate/catalyst/base = 200/1/10, 15 min. ®Sub-
strate/catalyst/base = 200/1/10, 14 h. “Volatile compound, >99%
conversion.

conditions, it was also difficult to form diols (Scheme 4, eqn (1)).
The purified product 2a could not yield a diol under these
forcing conditions as well (eqn (2)). Hydrogenation under the
same conditions with the other enantiomer of the ligand,
however, also failed in this transformation (eqn (3)). The chiral
pocket of both catalyst enantiomers seemed not to be compat-
ible with the hydroxy ketone. Reduction of 2a with sodium
borohydride exclusively gave a chiral ¢rans-diol in a quantitative
yield. After protecting the hydroxyl group, however, reduction of
this ketone with sodium borohydride under the same condi-
tions exclusively gave a cis-diol (Scheme 4, eqn (5)). Plausible
explanations included an intramolecular hydride transfer after
the formation of a boron alkoxide, which could be a result of
transesterification of borate.”**
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Scheme 3 Scale-up reaction and application of desymmetrization via
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borohydride reduction in desymmetrization of cyclic diketones.
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While reduction of a five-membered-ring cyclic 1,3-diketone
by both sodium borohydride and iridium catalyzed hydroge-
nation gave the same diastereoselectivity, the reduction of the
six-membered-ring substrate was different. Hydrogenation
under the optimized conditions gave an alcohol with the -OH
cis to the larger benzyl group, but mono-reduction with sodium
borohydride* yielded the other diastereomer® (Scheme 5).
These results indicated the same facial preference of iridium
catalyzed hydrogenation and sodium borohydride reduction in
the five-membered ring but a different facial preference in the
six-membered ring.

Conclusions

We applied the strategy of transition metal catalyzed hydroge-
nation in the mono-reduction of cyclic 1,3-diketones. This
desymmetrization reaction efficiently gave chiral hydroxy
ketones with high stereoselectivities. Gratefully, further reduc-
tion that leads to diols was not observed in the hydrogenation
step. This catalytic system was highly compatible with C=C and
C=C bonds, therefore making it a practical method to prepare
complicated molecules with a chiral quaternary carbon.
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