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Lanthanide ions when complexed by polyamino-polycarboxylate chelators form a class of compounds of
paramount importance in several research and technological areas, particularly in the fields of magnetic
resonance and molecular magnetism. Indeed, the gadolinium derivative is one of the most employed
contrast agents for magnetic resonance imaging while the dysprosium one belongs to a new generation
of contrast agents for T,-weighted MRI. In molecular magnetism, Single Molecule Magnets (SMMs)
containing lanthanide ions have become readily popular in the chemistry and physics communities since
record energy barriers to the reversal of magnetization were reported. The success of lanthanide
complexes lies in their large anisotropy due to the contribution of the unquenched orbital angular
momentum. However, only a few efforts have been made so far to understand how the f-orbitals can be
influenced by the surrounding ligands. The outcomes have been rationalized using mere electrostatic
perturbation models. In the archetype compound [Na{Dy(DOTA) (H,O)}-4H,0O (Na{DyDOTA}-4H,0) an
unexpected easy axis of magnetization perpendicular to the pseudo-tetragonal axis of the molecule was
found. Interestingly, a dependency of the orientation of the principal magnetization axis on the simple
rotation of the coordinating apical water molecule (AWM) — highly relevant for MRI contrast — around
the Dy-Oawm bond was predicted by ab initio calculations, too. However, such a behaviour has been
contested in a subsequent paper justifying their conclusions on pure electrostatic assumptions. In this
paper, we want to shed some light on the nature of the subtle effects induced by the water molecule on
the magnetic properties of the DyDOTA archetype complex. Therefore, we have critically reviewed the
structural models already published in the literature along with new ones, showing how the easy axis
orientation can dangerously depend on the chosen model. The different computed behaviors of the

orientation of the easy axis of magnetization have been rationalized as a function of the energy gap
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Introduction

Lanthanide ions when complexed by polyamino-polycarboxylate
chelators form a class of compounds of paramount importance
in several research and technological areas, particularly in the
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pseudo C, axis is occupied by a non-innocent apical water
molecule (AWM) which contributes to the unique properties of
this series of complexes. Indeed, this is the reason why the
gadolinium derivative (commercialized as DOTAREM) is one of
the most employed contrast agents for magnetic resonance
imaging (MRI), along with other complexes such as
[GA(DTPA)(H,O)]>” (DTPA = diethylenetriamine penta-acetic
acid). Moreover, ligands derived from DOTA are widely
employed and investigated in order to improve selectivity and
contrast enhancement.®®

The exchange of the AWM between the complex and the
solvent selectively increases the longitudinal relaxation rate of
the water protons in certain tissues,” a principle on which the
T;-weighted magnetic resonance imaging (MRI) is based. On
the other hand, complexes of the series based on anisotropic
lanthanides, like dysprosium, are promising contrast agents for
T,-weighted MRI, a new generation of MRI contrast agents'"
exploiting also new MRI contrast mechanisms such as the
chemical exchange saturation transfer (CEST).*> The access to
the magnetic anisotropy tensor is also an important piece of
information for interpreting the solution and solid-state NMR
of paramagnetic proteins. [LnDOTA]™ complexes already dis-
played good qualities for assessing the structure of proteins by
NMR spectroscopy.”™ Indeed, the pseudo-contact shift
depends on the position of the atom with respect to the orien-
tation of the magnetic susceptibility tensor and the distance
from the paramagnetic center, and its effect is felt on the local
environment up to 40 A.

In the field of molecular magnetism the series of
[Ln(DOTA)(H,0)]” was extensively studied®* as one of the
pioneer complexes of lanthanide based Single Molecule
Magnets (SMMs).'* SMMs are a class of compounds that present
below a certain temperature, called the blocking temperature,
Thiock, Slow relaxation of the magnetization and eventually the
opening of a hysteresis loop.'” These properties arise from the
electronic structure of the isolated molecule and not from long-
range interactions like in classical magnets. The rate of this
process is modeled with an Arrhenius-like law t = 7, exp(U/kpT),
where 7 is the mean time necessary for the spin to overcome the
barrier U. Great efforts were devoted to increasing U, the
relaxation time and the blocking temperature in order to
employ these systems in real devices such as magnetic memo-
ries of molecular dimensions,'*?° quantum computers,*** and
electronic devices based on molecular spintronics.>*>*

The pioneering work of Ishikawa*® demonstrated that in
mononuclear complexes containing lanthanide ions anisotropy
barriers of hundreds of K could be reached, an order of
magnitude higher than the ones observed so far. Generally, the
contribution to the coordination bonding of the 4f orbitals,
where the unpaired electrons in Ln(m) ions reside, is not as
significant as for the 3d orbitals due to their ‘core’ character.
Therefore, their orbital angular momentum is largely
unquenched causing a rise in magnetic anisotropy of the first
order. Despite record energy barriers of thousands of K, the
blocking temperatures remained around the temperature of
liquid helium, confirming the complex relation between the
anisotropy barrier and the blocking temperature and the
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geometry. On this topic some light has been shed in some
recent papers both for lanthanide and transition metal mono-
nuclear compounds.>”~** Very recently, new successful efforts
have provided blocking temperatures around the nitrogen
boiling point.***>* An important contribution to the achieve-
ments in the field has been given by computational
approaches.*** In order to rationalize the properties of
lanthanide complexes on a computational basis, in the last ten
years ab initio methods based on Complete Active Space Self
Consistent Field*® (CASSCF) with the introduction of Spin-Orbit
(SO) coupling through the Complete Active Space State Inter-
action®” (CASSI) proved to be able to reproduce experimental
findings coming from different experimental techniques such
as DC*® and AC magnetometry,®*® electron paramagnetic
resonance,*** cantilever torque magnetometry,*>**** and
inelastic neutron scattering.*>*®

However, a clear understanding of some key aspects is still
lacking, first of all, a reliable reproduction of the ligand field
around the lanthanide ion. In other words, the main challenge
is finding how to correctly account for the electrostatic field and
the covalent interactions between the f orbitals, the ligands and
the crystal environment. Indeed, the idea that the 4f orbitals are
not strongly involved in the coordination bond as their d orbital
counterparts supported the idea that a rationalization of the
magnetic anisotropy in lanthanide complexes could be based
only on electrostatic considerations. Several attempts were
made following this idea going from employing formal charges
on the ligands*” or more sophisticated effective charge
models.*® The common limitation of these approaches is the
underestimation of covalent interactions, which are account-
able only with the explicit calculation of the whole electronic
structure of the complex. The role of each of the two contribu-
tions (covalent and electrostatic) can obviously vary from case to
case but even if the former is expected to be, in general, smaller
than the latter, the complete neglecting of it can be risky.*
Indeed, magnetic properties are really sensitive to small
perturbations, like tiny deviations from idealized geometry*® or
variations of the bond distances,’™** i.e. to different combina-
tions of electrostatic and covalent contributions.

In this framework, not only is the employment of the highest
affordable level of calculation necessary but also the choice of
molecular model is crucial because it can seriously affect the
results. To make things even more complicated, a reliable
reproduction of the crystal environment, ie. the Madelung
potential, becomes another key aspect. To our knowledge, only
few attempts toward such a direction have been made.*"**>*
However, these attempts made use of gas-phase computed
molecular point charges.

The archetype compound [Dy(DOTA)(H,O)]” complex
(DyDOTA in the following), Fig. 1, is particularly suitable for the
investigation of the interplay of all these contributions. Such
a complex has been deeply characterized both at the computa-
tional and experimental levels.>*** It presents a first coordina-
tion sphere with a pseudo-tetragonal symmetry, and for this
reason either an easy axis of magnetization along the C, or an
easy-plane behavior in the four coordination DOTA oxygens
could be expected. However, DyDOTA presents an easy axis of
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Fig.1 Main geometrical parameters employed for magneto-structural
correlations. « is the angle of rotation around the Dy-Oawm bond; vo,1
represents the angles between the calculated and experimental easy-
axis of magnetization for the ground and first excited Kramers'
doublets; and ¢ is the angle between the Dy-Oawm bond and the plane
of the water molecule. The dysprosium atom is coloured in light green,
oxygen atoms in red, nitrogen atoms in cyan, carbon atoms in grey and
hydrogen AWM atoms in white. Hydrogen atoms of DOTA were not
reported for the sake of clarity.

magnetic anisotropy which is perpendicular to the pseudo-
tetragonal axis of the molecule. Interestingly, for the first
time, a dependence of the orientation of the main magnetic axis
as a function of a tiny structural modification was predicted by
ab initio methods. Indeed, to reproduce the experimental data
(direction and magnitude of the anisotropy axes and the
magnetic multiplet energy ladder) a particular orientation of
the apical water molecule (AWM)'s hydrogens was necessary.
For this reason, it was supposed that there was an interplay
between the electrostatic potential determined by the ligands
and a small, but not negligible, covalent interaction between the
dysprosium's f orbitals and the AWM's molecular orbitals.

This uncommon behavior makes the computational study of
this complex a hard but intriguing task. It offers an extraordi-
nary possibility to gain insights into how to handle from
a computational point of view the subtle equilibrium between
covalent contributions and electrostatic field strength.

The different structural models proposed in the literature led
to apparently contrasting results. Both the orientation of the
AWM 's protons and the extent of the number of atoms explicitly
or implicitly considered in the model were analyzed in the
original article by Cucinotta et al.> The results showed a prom-
inent role of the orientation of the AWM protons in determining
the energy ladder and the directions of the anisotropy axes. On
the other hand, Chilton et al*” showed no influence arising
from the AWM's orientation on the single ion magnetic
anisotropy. The difference in the obtained results lies in the
different models employed in the two articles, in particular, the
inclusion of distinct coordination spheres surrounding the
central [Dy(DOTA) (H,O)]™ cluster, which can strongly affect the
electrostatic field strength.

In summary, the aim of this work is two-fold: (i) to critically
revise the model proposed so far in the literature to provide
a general approach to model magnetic lanthanide-based
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complexes with a better description of the Madelung potential
thanks to periodically computed point charges; (ii) to shed
some light on the perennial question about the interplay
between covalent and electrostatic contributions in f-
coordination compounds.” For these purposes the magnetic
anisotropy tensor - which is a “pure” f orbital-originated
observable — has been used as a reliable probe. It has been
investigated here by performing a large variety of magneto-
structural correlations involving different structural bonding
parameters (rotations, stretching and bending) of the AWM and
by an electrostatic multipolar expansion analysis.””"*

This work is focused on a single lanthanide derivative, but
the conclusions and the proposed approach can be extended, in
general, to other lanthanide based complexes and even
beyond the solid state, including MRI relaxation mechanisms in
solution.®”** Indeed, even if in crystals the rotation of the water
molecule is not allowed by supramolecular interactions, in
solution this is not true: the water molecule is free to rotate and
undergo the solvent exchange process. This could shed new
light on the mechanism of the relaxation enhancement in
solution in the presence of MRI contrast agents based on
anisotropic lanthanide atoms.

Computational approach

All employed models are based on crystallographic structural
data, with the exclusion of the two Huwy, Which have been
optimized at the DFT level for M1 and M2 models (see below
and the Computational details). All models are shown and
schematically described in Table 1 and Fig. 2 (see the ESIT for
further details). The differences among the presented models
arise from the number of explicit atoms considered at the
highest computational level (QM) and the eventual addition of
a different number of point charges (Table 1). For all of them
the same computational protocol CASSCF/CASSI-SO along with
all-electron basis sets for all the explicit atoms considered were
used (Computational details). Rigid rotations of the apical water
molecule were performed on all the presented models.

Model 1, M1, was built based on the necessity to fulfill both
chemical soundness (Fig. S1 and S2t) and an accurate repre-
sentation of the electrostatic environment around the very
sensitive Dy(m) ion. Indeed, the most correct way to model
a system as DyDOTA would be by considering it in its periodic
environment. The problem of this approach is related to the
impossibility of performing such a calculation at the level of
accuracy afforded by the CASSCF/CASSI-SO approach. To over-
come this problem we mimicked the first four neighbouring
[Dy(DOTA)(H,O)]” units, the counterions and the co-
crystallized water molecules with point charges, leaving
a single [Dy(DOTA)(H,0)]™ complex explicitly computed at the
highest level of accuracy. Due to its a priori nature, i.e. without
any arbitrary assumption about the extension of the geometry,
we chose M1 as our reference model.

With the aim of reducing the computational effort and
consequently testing a reliable but lighter ‘operative’ model, we
reduced M1 to a different one consisting of only one
[Dy(DOTA)(H,0)]” unit and two aldehydes mimicking the

Chem. Sci,, 2019, 10, 7233-7245 | 7235
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Table 1 Summary of the different structural models considered in this paper (M1-5) and the already published ones by Cucinotta et al.?2 and
Chilton's et al.#’ For the colour code, refer to Fig. 2

4 Dy ions of All atoms of

Models [DyDOTAH,O]~ 3 Na' ions surrounding the  Coord. sphere neighbouring 2 neighbouring

( .) DyDOTA complex () of 3 Na" ions (| ) molecules (l) crystal cells (L )
M1 Explicitly QM handled = DDA point charges DDA point charges DDA point charges DDA point charges
M2/M2m Explicitly QM handled — — — —
M3 Explicitly QM handled  Explicitly QM handled — — —
M4 Explicitly QM handled  Explicitly QM handled 3(2HCOO™ + H,0) — —
M5 Explicitly QM handled  Explicitly QM handled 3(2HCOO™ + H,0) DDA point charges —
Cucinotta et al.>  Explicitly QM handled  Explicitly QM handled 3(2HCOO™ + H,0)  Explicitly QM —
Model A/A/ mimicked by Na" ions
Cucinotta et al.>  Explicitly QM handled — — — — —
Model C

Chilton et al.*’

Explicitly QM handled

Explicitly QM handled

Fig.2 Scheme of the different models employed. The different colors
indicate different parts of the system modeled according to Table 1.

carbonyl groups of an adjacent DyDOTA molecule (Fig. S37).
M2m differs from the M2 model by the removal of the two
aldehydes. M2 and M2m represent the most intuitive, and
therefore, the simplest possible models. By the way, this type of
model is widely used in the literature when a lanthanide
complex is handled at the CASSCF/CASSI-SO level of
approximation.’*®>%

In the unit cell, each DyDOTA complex is surrounded by
three counter-ions. Model 3 (M3) has been designed to account
for these three cations at their crystallographic positions
(Fig. S41). M3 was considered because it closely resembles the
model used by Chilton et al.*”

Model 4, M4, is obtained by adding to M3 four more formate
anions and two water molecules around each of the three Na"
ions. The first coordination sphere of each Na' ion is now
complete (see also Fig. S5t). Finally, to reduce the charge
unbalance in M4, the computed DFT point charges (see
Computational details) of the four dysprosium ions belonging
to the surrounding complexes were added (Fig. S61) to it (M5).
Such a model is very close to the Model A/A’ (total charge equal
to 0) proposed by Cucinotta et al.”

7236 | Chem. Sci., 2019, 10, 72337245

Computational details

Geometry optimization of the positions of the two Haww atoms
in M1 and M2 was performed with the quantum chemistry
package ORCA.** For both models the dihedral angle ¢ between
the plane of the water molecule and the Dy-Opwnm bond (see
Fig. 1) was computed to be 53.6° and was used throughout all
the other models.

The unrestricted DFT/B3LYP® functional, together with van
der Waals empirical dispersion correction D3, has been used.
VTZPP basis sets for all the atoms were chosen. Relativistic
effects were accounted for by using the second-order Douglas-
Kroll-Hess (DKH2) Hamiltonian. The spin multiplicity was set
to six. The Def2-TZVPP basis set was employed for all the atoms
except for the lanthanide atom where the SARC-TZV basis set®”
was used.

To simulate the effect of the crystal environment on a larger
scale than considering just few neighbouring atoms or pieces of
adjacent DyDOTA complexes but still at a computationally
affordable level, atomic point charges were added to the explicit
models. Point charges were computed as density derived atomic
point charges (DDAPC)®® obtained by a single point calculation
on the [NaDy(DOTA)(H,O)]-4H,O unit cell using the PBEO
functional® with periodic boundary conditions included. The
software package CP2K™ based on a mixed Gaussian and plane
wave” (GPW) formalism was used. Since basis sets for dyspro-
sium were not available at the time in the package, Dy(m) ions
were substituted by La(m) ions. Double-{ polarized basis sets
(mid-PBE for La, DZVP-MOLOPT-SR47 for other atoms) with
Goedecker-Teter-Hutter norm conserving pseudopotentials
were employed. The PW cutoff was set to 400 Ry.

Calculations to estimate the excited state energies and
magnetic anisotropy were performed with the package of
programs MOLCAS 8.1.”> The active space consisted of nine
electrons in the seven 4f orbitals of the lanthanide ion, i.e.
CASSCF(9,7).”»7* All-electron ANO-RCC’*”” basis sets were
employed in all the calculations (see Table S1t for details and
contraction schemes). State-average calculations were per-
formed only considering all the sextets (21 roots). The Complete

This journal is © The Royal Society of Chemistry 2019
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Active Space State Interaction (CASSI-SO) was calculated, using
the previously computed CASSCF states to check the effect of
the spin-orbit splitting on the °H;s,, ground state. Only the
sextets (°H, °F, and °P sextets) were taken into consideration
since the inclusion of other multiplets did not improve the
solution.>*® Moreover, we chose not to include a second order
perturbation on top of the CAS solution (CASPT2) since the
effect on energy of the first two excited Kramers' doublets was of
the order of only a few wavenumbers.”

The main magnetic axes for the first eight Kramers' doublets
were computed with the SINGLE-ANISO module” with pseu-
dospin S = 1/2. v, and vy, correspond to the angles between the
experimental magnetic easy axis and the computed one for the
ground and the first excited Kramers' doublets, respectively
(Fig. 1).

The atomic electric multipole moments were computed with
the LOPROP module”™ on the ground state electronic density
obtained with the CASSCF/CASSI-SO method. The highly reli-
able®® LOPROP electrostatic charges, dipoles and quadrupoles
computed for all the atoms in the DyDOTA models were
employed as a basis for the analysis of the electrostatic field
around the Ln ion, performed with the homemade CAMMEL
(CAlculated Molecular Multipolar ELectrostatics) code.?**

Rigid rotation of the two optimized Hawy atoms along the
Dy-Oawnm axis defines an angle «, whose original value of
0° corresponds to the optimized Hawy positions and it can vary
from 0 to 27 values (Fig. 1). For M1 and M2, « was varied along
the whole [0, 27t] range. For M3, M4, and M5, calculations were
performed only for « = 0° and 90°. The ¢ angle has been set to
the following values: 0°, 53.6°, and 90° (see Fig. 1).

Results and discussion
Rotation of the ground state’'s easy axis of magnetization

The results obtained for all models for angles « = 0° and 90°,
and with no AWM, are reported in Table 2 (see also Tables S2
and S3t). The observed behaviour immediately appears to be
strongly model dependent. For M1 (reference model), the
computed g-values for « = 0° show a very good agreement
between the experimental and the computed easy axis of
magnetization orientations (Fig. 3 and 4, and Tables S2 and
S37). The deviation of 3° is well below the experimental uncer-
tainty. However, the role of the AWM seems not to be innocent
at all.

Indeed, for « = 90°, the easy axis of magnetization remains
in the plane containing the DOTA oxygen atoms coordinating
the Dy(m) ion but the value of vy, is now 34.1° and reaches
a maximum of 71.7° (Fig. 3 and 4) for « = 120°. The obtained
results show a similar trend with respect to the ones obtained by
Cucinotta et al.> However, in the latter work, they found the
maximal extent of the rotation of the easy axis of magnetization
(yo = 85.8°) for a = 90°. Puzzled by these differences, we
changed the ¢ value in Cucinotta et al.'s model from 0° to the
optimized one (53.6°), as previously stated in the Computa-
tional details: the v, values for « = 0° and 90° changed to 0.6°
and 41°, respectively, in very good agreement with M1 findings.
These results also evidenced how significant the effects derived

This journal is © The Royal Society of Chemistry 2019

View Article Online

Chemical Science

from a different geometrical modeling of the AWM can be on
the description of the magnetic properties of the system.
Moreover, different from what was calculated by Cucinotta
et al.,”> by removing the water molecule we observed a v, angle of
only 3°.

A completely different approach from M1 is represented by
the choice of M2. Indeed, this model represents, along with
M2m (see the ESIt), the simplest possible model and the most
common approach used in the literature for lanthanide-based
SMMs, at the same time.*?*% A similar trend to the one
observed for M1 was found. The main difference lies in the
maximal extent of the rotation of v, and the value of « at which
it is obtained: 81.1° vs. 71.7° (M1) and 90° vs. 120° (M1),
respectively. The effect of the removal of the AWM has also been
studied for this model. In this case, the easy axis of magneti-
zation shows a v, angle of 77.5°, in agreement with the article by
Cucinotta et al.”

The results obtained for M3 are in agreement with the ones
reported by Chilton et al.*’: no reorientation of the easy axis of
magnetization was observed (y, = 5.5° and 3.5° for &« = 0° and
90°, respectively). This result, compared to the ones obtained
for M1 and M2, gives a strong indication of how sensitive to the
modeling of its electrostatic environment the Dy(m) ion can be.
In this framework, the M3 model shows a possible bias
constituted by the arbitrariness of having three Na" ions with
their coordination sphere unsaturated.

To overcome such a bias, M4 was built to have the Na* ions
fully coordinated (see the Computational approach and ESIY).
The non-innocence of such a change in the modeling is wit-
nessed by the results reported in Tables 2 and S2.7 Indeed, the
easy axis of magnetization was found at vy, values of 88° and 84°
for o = 0° and 90°, respectively. This means that the addition of
formate ions and water molecules has strong effects on the fine
magnetic structure of the system, even if they belong only to the
second and third coordination spheres of the Dy(m) ion. Such
results show, once again, how sensitive the Dy(ir) ion can be to
the modelling of its electrostatic environment. No reorientation
of the easy axis of magnetization, but now with small v, values,
was also found for M5, which is very close to the findings for the
Model A/A’ proposed by Cucinotta et al> Despite the close
similarity, v, values of 4.6° and 11.9° (Tables 2 and S2t) were
found for & = 0° and 90°, respectively. Instead, a change of
orientation of the easy axis of magnetization of about 90° was
found for Model A/A’ passing from « = 0° to a = 90°. This result
confirms once again the strong modeling effects on the fine
electronic structure of the Dy(m) ion when partial, not to
mention “arbitrary”, models are chosen.

AWM's influence on the energy ladder

Given for granted the role of the AWM in the modulation of the
magnetic properties of DyDOTA, we wanted to shed more light
on it, also from the perspective of the more ambitious aim of
quantifying the covalent contributions in the Dy-O,wy bond
(see the next section). We, therefore, monitored the evolution of
the electronic structure of M1 for twenty values of the « angle.
The principal g-values of the ground and first excited Kramers'
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Table 2 Orientation of ground Kramers' doublets’ main magnetic axis in the molecular frame for the different structural models considered in

this paper (M1-5) and for the already published ones

Cucinotta” Cucinotta®
et al* et al* Chilton
Model  (Mod. A) (Mod. A) et alV’ M1

M2 M3 M4 M5

a=0°

Yo 2.8°
o = 90°

Yo

No H,0

Yo 7.6° 3.0°

8° 5.5°

3.5°

77.5°

“ Exact Model A in Cucinotta et al.” (¢ = 0°).  Modified Model A in Cucinotta et al.* (¢ = 53.6°).  Extracted values from Fig. 3 of Chilton et al.”” (exact

values were not reported).

doublets and the angle between the computed g, components
and the experimental value are reported in Table S41 and Fig. 3
and 4, respectively.

The computed g-values for « = 0° show a stronger Ising
character of the Dy(m) ion than the one experimentally observed
but in agreement with the previously computed g-values by
Cucinotta et al. (Table S4t) and the usual trend reported in the
literature.>*>%°

The ground and the first excited Kramers' doublets show
a prominent contribution from the |M;) = 15/2 and |M;) = 13/2

o = 12001290

Fig. 3 Model M1. Computed ground state easy axis for different
a angles inside the molecular frame.
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components (ESI and Tables S5 and S6t) and they are separated
by 47 em ™", in excellent agreement with an experimental value
of 52 ecm ™. A very good agreement is also evidenced for higher
energy doublets which differ from the experimental ones of
16 cm ' at maximum. Only for E, and Es, a more significant
deviance from the luminescence experimental values® was
found: deviations of 28 and 31 cm ™, respectively (Table S47).

The overall agreement with the experiment is evident. This is
not surprising since the present computational model repre-
sents so far the most accurate representation of the environ-
ment that a single [Dy(DOTA)(H,O)]™ unit can experience. In
a nutshell, the geometrical and chemical arbitrariness were
reduced to the minimum in this model.

Interestingly, the first excited Kramers' doublet also shows
a significant Ising character and the orientation of its g,
component is quasi-orthogonal (80.1°) to the one of the ground
doublet.

Encouraged by these results, we performed the same calcu-
lations for different « values. First of all, we tried to calculate the
evolution of the orientation of the easy axis of magnetization for
0° < a0 < 90° as already reported in the literature>*” (Fig. 3 and 4
and Table S47) and then extended it to 90° < « < 360°. The choice
to extend the « range is due to the asymmetry introduced by the
presence of the two carboxylate groups coordinating the Hawm
atoms in the explicit [Dy(DOTA) (H,0)]™ unit. For more clarity,
the g, orientations as a function of the « angle are collected for
both the ground and the first excited Kramers' doublet in Fig. 3
and 4. Regarding the ground state (blue curve in Fig. 4), the

This journal is © The Royal Society of Chemistry 2019
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Fig. 4 Model M1. Variation of the angle vq 4 as a function of the rotation of the AWM («), for ground and first excited states.

value of v, remains almost constant up to « = 60° and only
beyond this value does it increase up to its maximum value of vy,
= 71.7° computed for o = 120°. Therefore, the easy axis orien-
tation change can be considered as a smooth process since
a range of 60° is needed by the angle « to cover the gap between
the minimum and maximum v, values. Moreover, the easy
magnetization axis took about 60° (a« = 180°) to recover a value
of v, close to 0°.

A similar trend is also observed for 180° < « < 360°, even if
a slightly higher maximum was achieved (y, = 78.5°), main-
taining practically unaltered the range of « values for which the
variation of v, takes place.

These results are important for two main reasons: first, they
show that a strong reorientation of the easy axis of magnetiza-
tion can be induced by the simple rotation of the AWM but at
larger values than a = 90°, in contrast to what was reported for

120° Second Magnetic Rotation‘
k Energy Quantum (E,ot2)
90° E i
Crossing Magnetic wa
Energy Quantum (Eross)

1

70°
First Magnetic Rotation

Energy, cm

00

Energy Quantum (Eygt1) ‘

previous models.>* Secondly, the reorientation is a smooth
phenomenon and not an abrupt one as reported in Cucinotta
et al.,”» where the change in the orientation of y, was observed
within 15° of the « angle: v, passed from ~1° to 92° from « =
45° to o = 60°. However, by only changing ¢ to the Cucinotta
et al. value, we can recover the abrupt switch between E, and E;
doublets.

It is also worth stressing that similar results, but opposite in
trend, were obtained for the first excited Kramers' doublet.
Interestingly, the sum of the two v, values observed for the
ground and the first Kramers' doublet state, respectively, is found
to be constant (80° + 3°) for the entire 27t 