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iels–Alder reaction by using
a self-assembled macrocyclic boronic ester
containing two crown ether moieties†

Kosuke Ono, Morikazu Niibe and Nobuharu Iwasawa *

A K+-promoted Diels–Alder reaction of 1,4,9,10-anthradiquinone with various dienes is achieved in the

presence of a self-assembled macrocyclic boronic ester [2+2]crown containing two crown ether moieties.

The reaction rate is remarkably accelerated (up to 206-fold) compared to that in the absence of the

promoter. Furthermore, the reaction proceeds regioselectively to yield an internal adduct. The self-

assembly protocol was also demonstrated.
Introduction

One of the major goals for utilization of synthetic host mole-
cules is their application as catalysts.1 Among various organic
reactions, the Diels–Alder reaction, which is one of the most
useful reactions for the construction of 6-membered carbo-
cycles, has been studied using synthetic host molecules, such as
hydrogen-bonded capsules,2 cyclic metalloporphyrin trimers,3

coordination cages,4 and so on.5 Through these studies, reac-
tion characteristics such as acceleration of the reaction rate,1–5

formation of products with unique regio- or stereo-selectivi-
ty,4b–d catalytic turnover,2c,d,4b,h or asymmetric induction4f were
demonstrated depending on the host molecules. These reaction
characteristics were mostly achieved by a strategy in which both
a diene and a dienophile were pre-organized inside the host
molecules. However, this strategy oen led to a problem known
as product inhibition, because the host usually binds the
product more strongly than the substrates.1–5 To solve this
problem, we devised a new type of supramolecular catalyst
using a macrocyclic boronic ester containing two crown ether
moieties. The macrocyclic host binds and activates the dien-
ophile through M+-crown ether moieties and promotes the
Diels–Alder reaction with various dienes. Aer the reaction, the
bent-shaped product that showed weaker binding affinity could
be replaced by the dienophile easily through the open frame-
work. In this strategy, the entropic disadvantage arising from
the need to bind both substrates is also reduced. Thus, the
exchange process of the product with the dienophile is thought
to be energetically neutral. Recently, the group of Lusby intro-
duced this simple dienophile-binding strategy and realized the
of Technology, O-okayama, Meguro-ku,

chem.titech.ac.jp

ESI) available. CCDC 1541693. For ESI
other electronic format see DOI:
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efficient catalytic turnover by using the coordination cage that
activated the dienophile by hydrogen bonding.4h,6

Research is being carried out on dynamic self-assembly
utilizing boronic ester formation of diboronic acids with an
indacene-type tetrol.7 During the examination of the possibility
of utilizing our hosts as catalysts, we observed a concise self-
assembly of the macrocyclic boronic ester [2+2]crown, contain-
ing two dibenzo-18-crown-6 moieties, and a hitherto unknown
K+-accelerated Diels–Alder reaction, which showed not only
acceleration of the reaction rate but also enhancement of the
internal regioselectivity in the reaction of 1,4,9,10-anthradi-
quinone and various dienes (Fig. 1).
Results and discussion

The macrocyclic boronic ester [2+2]crown was quite easily
prepared in high yield by simply mixing a diboronic acid of
dibenzo-18-crown-6 2 and optically pure tetrol (+)-3 (ref. 8) in
MeOH–CH2Cl2 (1 : 1), followed by GPC purication (Fig. 1b).9,10

Formation of the desired [2+2]crown was fully conrmed by 1H
NMR and FAB-MS, and the structure was conrmed by X-ray
crystallographic analysis (Fig. 1c), which suggested that its
cavity size (16.9 � 12.7 Å) was suitable for inclusion of quinone
type compounds (Fig. 1c).11

With the desired macrocyclic boronic ester [2+2]crown in
hand, the binding behavior of [2+2]crown containing alkaline
metal salts with several quinonoid compounds was examined.
From 1H NMR and isothermal titration calorimetry (ITC)
studies, 1 : 1 complexation behavior was revealed for 1,4,9,10-
anthradiquinone 1 and [2+2]crown$2K

+ with a high association
constant (Ka¼ 3.54� 103 M�1; CHCl3/CH3CN (1 : 1))12 (Fig. 2)9,13

(see the ESI†). It should be noted that the use of other metal
cations (Li+ or Na+) instead of K+ or a mixture of monomeric
pinacol ester of dibenzo-18-crown-6 diboronic acid 2pin,14 KOTf,
and 1 did not show an obvious shi of the signals of 1 by 1H
NMR. These results suggested that the macrocyclic structure of
Chem. Sci., 2019, 10, 7627–7632 | 7627
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Fig. 1 (a) Schematic representation of the Diels–Alder reaction of
1,4,9,10-anthradiquinone 1 and various dienes accelerated using
[2+2]crown$2K

+. (b) Self-assembly of [2+2]crown. (c) X-ray structure of
[2+2]crown.

Fig. 2 Complexation of [2+2]crown with diquinone 1 in the presence
of K+.
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[2+2]crown with K+ ions was essential for the efficient binding of
1.9,13

As it is known that the Diels–Alder reaction of 1 with dienes
occurs at both the C-2 and C-4a double bonds giving an internal
and a terminal regioisomeric adduct and sometimes a dia-
dduct,15 the reaction of 1 with anthracene 4 in the presence or
absence of [2+2]crown and K+ was examined with the expectation
that high regioselectivity owing to the restriction of the host
framework would be achieved.16 When a mixture of 1 and 4 was
kept at room temperature in a mixed solution of CHCl3 and
CH3CN (1 : 1) for 1.5 hours, the Diels–Alder reaction proceeded
very slowly (2% conversion) and amixture of the internal adduct
and terminal adduct was obtained in about a 4 : 1 ratio (Table 1,
entry 1). Addition of [2+2]crown without K+ did not affect the
result of the reaction (Table 1, entry 2). On the other hand, when
the same reaction was carried out in the presence of
7628 | Chem. Sci., 2019, 10, 7627–7632
a stoichiometric amount of [2+2]crown and 2 equivalents of
KOTf, the reaction was dramatically accelerated to give the
product in 95% yield under the same reaction conditions, and
the rate constant k was 206 times larger than that of the reaction
without [2+2]crown and KOTf. Importantly, only the adduct with
the internal alkene was obtained selectively (entry 3). Control
experiments were carried out using monomeric 2pin with KOTf,
and almost no accelerating effect was observed (entry 4). Thus,
the macrocyclic host structure of [2+2]crown was essential for the
acceleration. Potassium cations were much more effective than
sodium cations, which only had a small accelerating effect
(entry 3 vs. 5).

It is well known that Lewis acids accelerate the Diels–Alder
reaction by coordinating with the lone pair of the carbonyl
group resulting in lowering of the LUMO level of the dien-
ophile.17 TiCl4, SnCl4, BF3$OEt2, etc. are employed as typical
Lewis acids, and the use of alkaline metals for the acceleration
of the Diels–Alder reaction has been mostly limited to the
reaction using LiClO4 in ether.18 In fact, Na+ or K+ has not been
employed for this purpose due to their very low ability to accept
electron pairs in the vacant orbital of the metal to activate
dienophiles.19,20 To our knowledge, this is the rst example that
the Diels–Adler reaction was effectively promoted by potassium
ions19 and this unique effect was specic to the combination of
[2+2]crown and potassium ions.

The catalytic version of this reaction was also examined, and
even 5 mol% of [2+2]crown$2K

+ was sufficient to promote the
reaction (Scheme 1). Aer 3 hours, 45% of 1 was transformed
into the Diels–Alder adduct 5 (5int/5ter ¼ 30 : 1), while only 5%
conversion was observed without the catalyst. From the second-
order plot, aer 90 minutes, the reaction rate became slightly
slower than that in the initial period, suggesting moderate
product inhibition (Fig. 3).21 However, reasonable catalytic
activity was maintained under the conditions even where the
amount of the product was considerably larger than that of the
catalyst.

The acceleration of the reaction was observed with various
2-mono and 2,3-di-substituted 1,3-butadienes (Table 2).
When dienes with small substituents 6–8 were used, the
reactions were remarkably accelerated and the reaction rate
constants kcat were approximately 20–50 times larger than
those of the reaction without [2+2]crown$2K

+ (entry 1–6). On
the other hand, the reactions with dienes with bulky
substituents 9–12 were less accelerated (kcat/kno cat � 10) as
shown in entries 7–14. Steric repulsion between the [2+2]crown
framework and the bulky substituent has made it difficult to
promote the reaction smoothly. However, in all cases,
enhancement of the regioselectivity of the product was
observed in the presence of [2+2]crown$2K

+. In particular, in
the case of diene 12 (entry 13 and 14), the ratio of the internal
adduct/terminal adduct was dramatically increased from
1 : 1 to 45 : 1 by the addition of [2+2]crown$2K

+. Furthermore,
chirality induction was observed when 2-mono-substituted
1,3-dienes were used (see the ESI, Table S1†). This also sug-
gested that the [2+2]crown framework recognized the substit-
uent of dienes and the reaction proceeded inside the host,
although the enantioselectivities were low (up to 19% ee). 1-
This journal is © The Royal Society of Chemistry 2019
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Table 1 Examination of the Diels–Alder reaction of 1 and 4a

Entry Crown ether M+OTf� Conversionb at 90 min 5int : 5ter
b kc (M�1 min�1) k/kno cat

c

1 None None 2% 4 : 1 0.033 —
2 [2+2]crown None 2% 4 : 1 0.030 0.9
3 [2+2]crown KOTf 95% 5int only 6.87 206
4d 2pin KOTf 2% 4 : 1 0.038 1.1
5 [2+2]crown NaTOf 5% 13 : 1 0.175 5.2

a Reaction conditions: 1 (6.5 mM), 4 (9.8 mM),M+OTf� (13 mM), [2+2]crown (6.5 mM). b Conversion at 1.5 h and ratio of 5int/5ter were determined by
1H NMR. c Reaction rate k was estimated by using a second-order kinetic model. The value of kno cat is taken from the reaction in the absence of
crown ether and M+OTf�. d 2pin (13 mM).

Scheme 1 Catalytic conditions of the Diels–Alder reaction.
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Mono- and 1,4-di-substituted 1,3-butadienes were not appli-
cable to this reaction probably because these dienes could
not approach the quinone inside [2+2]crown$2K

+ due to the
steric hindrance of the [2+2]crown framework (see the ESI,
Table S2†).
Fig. 3 Second-order plot (1/([4]0 � [1]0)ln([4][1]0/[1][4]0)/M
�1 vs. t/min)

for the catalytic conditions of the Diels–Alder reaction. [4]0 ¼ initial
concentration of 4, [1]0 ¼ initial concentration of 1.

This journal is © The Royal Society of Chemistry 2019
The reason why anthracene 4 shows excellent activity
compared to the other dienes 6–12 was also investigated. In
the reaction of anthracene (Table 1, entry 3), the signal of the
anthracene shied slightly up-eld compared to that of free
anthracene in 1H NMR spectra, suggesting the formation of
a weak Michaelis complex 1$4@[2+2]crown$2K

+ (Fig. S10†),
while no obvious shi was observed without [2+2]crown$2K

+

(Fig. S11†).22 The formation of a substrate pair inside the host
was thought to contribute to the acceleration of the reaction
of anthracene as a result of the high local concentration of
substrates. Subsequently, the possibility of whether the
stabilization of the transition state (TS) was involved in the
high activity of anthracene was also investigated. The adducts
were used as TS analogues and their association constants
with the host [2+2]crown$2K

+ were measured by ITC study.4h

Interestingly, the association constant of the anthracene
adduct 5int was 1.08 � 103 M�1 in CHCl3/CH3CN (1 : 1)
(Fig. S12†),21 while the association constants of other internal
adducts derived from acyclic dienes such as 6, 9 and 11 that
show lower activity were almost 0 M�1 (Fig. S25†). These
results suggested that the TS stabilization effect of
[2+2]crown$2K

+ could also contribute to the high activity of
anthracene.

Finally, we examined the possibility of the self-assembly
protocol for this reaction. All the components, 1, 2, (+)-3,
and 4, were mixed together and the process of the formation
of the Diels–Alder adduct was monitored by 1H NMR (Scheme
2). The internal adduct 5int was obtained as the exclusive
product in 83% yield aer 90 min. From the second-order plot
shown in Fig. 4, the gradual increase of the reaction rate was
observed and the reaction rate reached 5.95 M�1 min�1 from
60 min later. This value is comparable with that obtained by
the reaction using preformed [2+2]crown$2K

+ (6.88 M�1 min�1,
Table 1 entry 2). Thus, the self-assembly of the active
[2+2]crown$2K

+ occurred rapidly in the reaction mixture simply
by mixing the component molecules to accelerate the
reaction.
Chem. Sci., 2019, 10, 7627–7632 | 7629
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Table 2 Diels–Alder reaction of 1 and various 2-mono and 2,3-di-substituted 1,3-butadienes in the presence or absence of [2+2]crown$2K
+a

Entry Diene [2+2]crown$2K
+ kd (M�1 min�1) kcat/kno cat

e Internal : terminalf Conversionf at 30 min

1b 1.0 equiv. 1.43 19 19 : 1 60%
2b None 0.077 — 1.6 : 1 8%

3 1.0 equiv. 10.90 51 Internal only 84%
4 None 0.21 — 2.4 : 1 11%

5 1.0 equiv. 18.27 43 Internal only 93%
6 None 0.43 — 9 : 1 21%

7 1.0 equiv. 0.74 9.1 10 : 1 13% (40% at 90 min)
8c None 0.081 — 1.5 : 1 4% (13% at 90 min)

9 1.0 equiv. 4.64 10 13 : 1 60%
10 None 0.46 — 2 : 1 25%

11 1.0 equiv. 0.64 8.1 Terminal trace 15% (37% at 90 min)
12 None 0.078 — Terminal trace 7% (17% at 90 min)

13 1.0 equiv. 3.30 11 45 : 1 51%
14 None 0.32 — 1 : 1 38%

a Reaction conditions: 1 (6.5 mM) in the presence of the catalyst; 1 (15 mM) in the absence of the catalyst. b 3 equiv. of diene were used. c 1 (13 mM).
d reaction rate k was estimated by using a second-order kinetic model with the assumption that 1 is completely complexed with [2+2]crown$2K

+,
although the estimated value of complexation based on the association constant is about 80% in the beginning. e The value of kcat or kno cat is
taken from the reaction in the presence or absence of the catalyst. f Ratio of internal adduct/terminal adduct and conversion were determined
by 1H NMR.

Scheme 2 Self-assembly protocol for the Diels–Alder reaction of 1
and 4.

Fig. 4 Second-order plot (1/([4]0� [1]0)ln([4][1]0/[1][4]0)/M
�1 vs. t/min)

for the self-assembled promoter system, where all components were
mixed at the same time. [4]0 ¼ initial concentration of 4, [1]0 ¼ initial
concentration of 1.

7630 | Chem. Sci., 2019, 10, 7627–7632 This journal is © The Royal Society of Chemistry 2019
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Conclusions

The present study shows that the macrocyclic boronic ester
[2+2]crown$2K

+ efficiently promotes the Diels–Alder reactions of
1,4,9,10-anthradiquinone and various dienes with high regio-
selectivity. It is noteworthy that four-point binding of the
carbonyl groups with potassium cations in the [2+2]crown
framework effectively accelerated the Diels–Alder reaction.
Furthermore, the self-assembly protocol was successfully
demonstrated by utilizing the dynamic nature of boronic ester
linkages, offering the possibility of a novel catalytic system
combined with the reversibility of boronic ester formation.
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