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We report a photoinduced three-component radical process, which couples readily available alkyl
chlorides, maleimides, and heteroaromatic fragments to rapidly generate complex chiral products with
high diastereocontrol. This method generates radicals via an Sy2-based photochemical catalytic

mechanism, which is not reliant on the redox properties of the precursors. It therefore grants access to
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Introduction

Multicomponent reactions (MCRs) are important in synthetic
chemistry because they allow the rapid construction of complex
molecules from simple substrates and in a single step." While
chemists have predominantly developed methods based on
polar pathways, radical reactivity provides a powerful alterna-
tive.>* However, methods to initiate radical MCRs have tradi-
tionally required unstable initiators or stoichiometric oxidants
or reductants (Fig. 1a).* These relatively harsh conditions for
generating open-shell intermediates (high temperatures, toxic
reagents or strong redox-active reagents) significantly affect the
selectivity and the functional group tolerance of the overall
radical cascade processes. Recently, the field of photoredox
catalysis® has overcome some of these limitations, offering
effective tools to trigger radical MCRs under mild conditions
while avoiding the need for stoichiometric metals or harsh
atom abstractors.® However, this radical generation strategy
mainly activates substrates via single-electron transfer (SET)
pathways, thus relying on their redox properties.” This intrinsic
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feature poses a voltage-gated limit to the generality of the
radical precursors that can be used.

In this context, our laboratory recently reported a unique
photochemical catalytic strategy, which harnesses different
physical properties of the substrates to generate radicals
(Fig. 1b).® Specifically, we designed the readily available and air-
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Fig. 1 (A) Classical radical-generating strategies to initiate multi-
component reactions require precursors with suitable bond-dissoci-
ation energies (BDE) or redox properties. (B) Our recently developed
Sn2-based method to photochemically generate radicals is not reliant
on the redox properties of substrates. (C) Proposed photoinduced
three-component radical reaction using redox-inert alkyl chlorides 1,
mediated by dithiocarbamate (DTC) anion catalysis.

This journal is © The Royal Society of Chemistry 2019


http://crossmark.crossref.org/dialog/?doi=10.1039/c9sc00833k&domain=pdf&date_stamp=2019-05-28
http://orcid.org/0000-0003-2105-6233
http://orcid.org/0000-0001-8722-4602
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9sc00833k
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC010021

Open Access Article. Published on 30 April 2019. Downloaded on 1/8/2026 2:31:24 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article

and moisture-stable dithiocarbamate (DTC)® anion catalyst A,
which is adorned with an indole chromophoric unit. This
organic catalyst is nucleophilic enough™ to activate alkyl elec-
trophiles by displacing a variety of leaving groups via an Sx2
pathway. The resulting photon-absorbing intermediates I afford
radicals upon excitation by visible light and homolytic cleavage
of the weak C-S bond." This catalytic Sy2-based strategy, which
is not reliant on the redox properties of the radical precursor,
grants access to open-shell intermediates from substrates that
would be incompatible with or inert to classical radical-
generating strategies, including photoredox catalysis.

Here, we demonstrate how this photochemical strategy can
be translated into the realm of radical MCRs to design cascades
that would be difficult to implement with other methods.
Specifically, we report a three-component reaction mediated by
the DTC potassium salt catalyst A that uses difficult-to-reduce
alkyl chlorides 1 as radical precursors and couples them with
readily available maleimides 2 and heteroaromatic fragments 3
(Fig. 1c). This carbo-difunctionalization of maleimides'
combines two sequential intermolecular radical-based bond-
forming processes to afford complex products 4 containing
a succinimide moiety. This structural element is found in
numerous biologically active molecules.”® Importantly, the
method's redox neutral conditions and high functional group
tolerance allow us to easily adorn products 4 with a variety of
biologically relevant N-heterocycles," which would not be
compatible with strong redox-active reagents.

Mechanistic plan

The specific mechanistic details of our proposed photochemical
radical MCR are outlined in Fig. 2. We envisioned a catalytic
cycle where the DTC catalyst A would activate alkyl chlorides 1
upon Sy2 attack.’ The resulting intermediate I possesses
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Fig. 2 Proposed mechanism for the visible-light-driven three-

component radical reaction; Z: chromophore.
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a weak C-S bond, which would be cleaved by low-energy
photons (blue LEDs) to generate the target carbon radical II
and the dithiocarbonyl radical III.** The nucleophilic open-shell
intermediate II would initiate the radical cascade upon inter-
ception from maleimide 2, which forges a new C-C bond. The
emerging electrophilic radical IV would in turn participate in
a second trapping event with an electron-rich heteroaromatic
compound, affording the open-shell intermediate V. This
crucial intermediate would act as a reductant to turn over
catalyst A upon SET reduction of the dithiocarbonyl radical III.**
Overall, this net redox-neutral transformation would deliver the
functionalized cascade product 4.%

Results and discussion

To test the feasibility of our strategy, we selected the commer-
cially available N-(chloromethyl)phthalimide 1a as precursor of
a nucleophilic radical, N-methylmaleimide 2a as the radical
trap, and N-methylpyrrole 3a as the terminal electron-rich het-
eroaromatic trap (Table 1). The experiments were conducted at
60 °C in DCE using blue LEDs emitting at 465 nm, 20 mol% of
the DTC catalyst A and a large excess of 3a. These conditions
furnished the cascade product trans-4a in good chemical yield
and with excellent diastereoselectivity (dr > 20: 1, entry 1).
Under these conditions, we did not observe any byproduct
arising from either a pyrrole alkylation radical path with 1a or
a polar addition of 3a to maleimide 2a. Variations of the initial
conditions, including a lower catalyst amount and temperature
(entries 3 and 4), led to poorer results. Control experiments
established that both catalyst A and light are necessary to trigger
the three-component radical process (entries 5 and 6), thus
excluding an alternative polar pathway for the formation of 4a.

Table 1 Optimization studies®

J\
PhthN—. 2,

NPhth
— (20 mol%)
O (¢]
N . O N . ,}‘ blue LEDs o) \
2,6-lutidine (1.2 equiv.) .
Cl Me Me  BCE (0.5 M), 60 °C, 20 h Me dr >20:1
1a 2a 3a 4a

Entry Deviation from the standard conditions Yield 4a” (%)
1 None 70 (57)

2 AcOEt instead of DCE 45

3 40 °C 23

4 10 mol% catalyst A 47

5 No light 0

6 No catalyst A 0

7 fac-Ir(ppy)s (3 mol%); no catalyst A 0

“ Reactions performed on a 0.1 mmol scale at 60 °C for 20 h using
0.2 mL of solvent under illumination by blue LED strip (Amax = 465
nm) and using catalyst A (20 mol%), 1.5 equiv. of 1a, and 10 equiv. of
3a.” Yield of 4a determined by "H NMR analysis of the crude mixture
using trichloroethylene as the internal standard; value in parenthesis
refers to the yield of isolated 4a. DCE: 1,2-dichloroethane; AcOEt:
ethyl acetate; NPhth: phthalimide.
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Interestingly, no product formation was observed when
replacing catalyst A with the strongly reducing fac-Ir(ppy)s
photoredox catalyst (Ey/, Ir(wv)/Ir(m*) = —1.73 vs. SCE),*® which
highlights the inability of photoredox catalysis to trigger the
radical MCR process (entry 7)."”

Using the optimized conditions described in Table 1, entry 1,
we turned our attention to exploring the generality of the
photoinduced radical cascade process (Fig. 3). The method is
amenable to synthetically useful purposes, since a high effi-
ciency was maintained when running the reaction on a 5 mmol
scale. This experiment did not require any modification of the
standard experimental set-up (see ESIf for details), and it
afforded product 4a in good yield and with complete diaster-
eoselectivity (0.91 g, 52% yield, >20 : 1 dr). We then explored the
scope of the radical precursors 1 that could be activated by the
DTC catalyst A. Our approach displayed a high degree of

blue LEDs

DTC catalyst A (20 mol%)

View Article Online
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tolerance towards N-heterocycles, as the cascade products 4
could be readily adorned with triazole (4b), pyrazole (4c), iso-
xazole (4d), benzothiazole (4e), and thiazole (4f) scaffolds. Other
heterocyclic moieties, such as furan (4g) and thiophene (4h),
were also tolerated. These common motifs are typically found in
drug molecules. However, they generally represent a significant
tolerability challenge for synthetic methods."* The corre-
sponding MCR products 4 were obtained with good yields and
complete diastereoselectivity. Importantly, the reduction
potentials of the heterocyclic-containing substrates 1, evaluated
by cyclic voltammetry, are sufficiently negative (Eyeq < —2.0 V vs.
Ag/AgCl, see ESIt) to remain out of reach of most commonly
used photoredox catalysts.® Therefore, SET-based reduction
methods to generate the target radicals and trigger this MCR
process would require strong reductants, greatly limiting func-
tional group compatibility.

S

Br J\

N SK

2,6-lutidine (1.2 equiv.)
DCE (0.5 M), 60 °C, 20 h

—

DTC catalyst A

4a (5 mmol scale)
52% yield, 910 mg
>20:1 dr

64% yield
>20:1 dr

38% yield
>20:1dr

Me
R = H, 49% yield; 7.6:1 dr (4i)°
R =F, 55% yield, 5.3:1 dr (4j)°
R = Cl, 41% yield, 6.3:1 dr (4k)®
R = Br, 57% yield, >20:1 dr (41)°
R =1, 63% yield, >20:1 dr (4m)°
R = CF3, 41% vield, 4.2:1 dr (4n)®

66% yield
>20:1dr

Me'
|
Me
4b 4c?
56% yield 40% yield
>20:1dr >20:1 dr

Me
4f
41% yield
>20:1dr

58% yield®
>20:1dr

72% yield
>20:1dr

R = BPin, 28% yield, >20:1 dr (40)°
R = C(O)NCy, 71% vield, >20:1 dr (4p)°
R = CH,0H, 49% yield, >20:1 dr (4q)°

; R =H, 77% yield, 1.9:1 dr (4u)? 560/4‘”4 i R = H, 36% yield, >20:1 dr (4x)?
47% yield R = Bu, 64% yield, >20:1 dr (4v) e R = CH,CN, 20% yield, >20:1 dr (dy)
2.9:1dr >20:1 dr

Fig. 3 Reaction scope: reactions performed on 0.5 mmol scale using 1.5 equiv. of 1, 10 equiv. of 3, and 1.0 mL of 1,2-dichloroethane; yields of
products 4 refer to isolated material after purification. °NMR vyield determined using 1,1,2-trichloroethylene as the internal standard. ®The
corresponding bromides 1 were used as radical precursors. “3 equiv. of 1; NPhth: phthalimide.
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Benzylic radical precursors, bearing both electron-rich and
electron-poor aryl substituents, were also competent substrates,
affording the complex products in moderate to high chemical
yields (4i-4s, 28-72% yield). Reactive functional groups,
including an aryl iodide (4m), a boron ester (40), an amide (4p),
and a free alcohol (4q), were all tolerated and activated exclu-
sively at the desired benzylic position. Regarding the diaster-
eoselectivity, full control was achieved with electron-rich benzyl
systems, while the presence of electron-withdrawing moieties
affected the relative stereocontrol (4i-k, 4n). In addition, prenyl
chloride, which delivered an allylic radical upon activation,
could be successfully used in the MCR (product 4t), albeit with
reduced diastereoselectivity. The N-protecting group of the
maleimide 2 was found to be important for stereocontrol, as
unprotected maleimide resulted in low diastereoselectivity
(product 4u). Substrates 2 bearing more encumbered protecting
groups were well tolerated (adducts 4v, 4w), and thiophene was
found to be an alternative terminal radical trap (4x and 4y). A
complete list of moderately successful and unsuccessful
substrates for this radical MCR strategy is reported in Section D,
Fig. S5 of the ESL¥

To showcase the system's synthetic utility, we used this
strategy to prepare highly functionalized pyrroles, which are
relevant motifs found in natural products, pharmaceuticals,
and materials.'® Specifically, we envisioned an assembly line
protocol that combines two sequential radical processes, gov-
erned by the DTC catalyst A and visible light, to achieve a 2,5-
difunctionalization of a commercial pyrrole building block
(Scheme 1a). First, the photochemical activation of chlor-
oacetonitrile 5 by A generates an electrophilic radical, which is
readily intercepted by N-methyl pyrrole to deliver the function-
alized intermediate 6 in 92% yield.? By exploiting the residual
nucleophilic character of C5, the pyrrole 6 was then used in the
MCR process with N-(chloromethyl)phthalimide 1a and N-
methylmaleimide 2a to rapidly assemble the difunctionalized
pyrrole 7 from commercially available substrates.

Finally, we demonstrated that the succinimide moiety within
the MCR products 4 can be readily transformed into a pyrroli-
dine, which is a synthetically and biologically relevant frame-
work.™ As highlighted in Scheme 1b, the reduction of adduct 4w
with LiAlH, affords the corresponding trans-3,4-disubstituted

A Assembly line synthesis of difunctionalized pyrroles

N N¢) 5 (1.5 equiv.) PhthN._

A (10 mol%) 1a (1.5 equiv.)
ﬂ blue LEDs ﬂ\\ 2a,blue LEDs /\
5 N 2 > L — N
h NaOAc (1.2 equiv.) '}l SN lutidine (1.2 equiv.) N l\llle eN
/

Me  DCE (0.5M),60°C,24h  Me DCE(05M) %

Nemethyl . 60°C, 24 h
6: 92% yield : i
pyrrole 2 - functionalization oy C5 - functionalization 7 35?1),;':’

B Accessing diastereopure pyrrolidines

N _N
N, . LiAH, NN, |
T Me — Me
0PN "S0 THF (0.2 M)
) 25°C, 8h I
Bn Bn
aw 8: 94% yield
MCR product dr >20:1 dr
Scheme 1 (A) Photochemical radical assembly line and (B) derivati-

zation of MCR products.
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pyrrolidine 8. This transformation further testifies to the
potential of this MCR strategy to cover biologically relevant
chemical space.

Conclusions

We have developed a visible-light-mediated three-component
radical strategy, which couples readily available alkyl chlo-
rides, maleimides, and heteroaromatic fragments to rapidly
generate complex products. The MCR is founded upon an Sy2-
based radical-generation strategy, which is not reliant on the
redox properties of the radical precursors and therefore over-
comes the limitations of photoredox chemistry. The redox
neutral conditions of this process make it tolerant of redox-
sensitive substrates and allow the installation of multiple bio-
logically relevant heterocycles within the products. These find-
ings, along with the experimental simplicity and the low cost of
the catalyst, suggest that this method can inspire the design of
other voltage-independent radical applications and would be
amenable to interrogating new chemical space in medicinal
chemistry.
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