Synthesis of unsymmetrical $B_2E_2$ and $B_2E_3$

heterocycles by borylene insertion into boradichalcogeniranes†

Siyuan Liu,ab Marc-André Légaré,ab Alexander Hofmann,ab Anna Rempel,ab Stephan Hagspielab and Holger Braunschweigidkab

We report the selective insertion of a range of borylene fragments into the E–E bonds (E = S, Se, Te) of cyclic boron dichalcogenides. This method provides facile synthetic access to a variety of symmetrical and unsymmetrical four- and five-membered rings.

Introduction

1,3-Dithietanes† – four-membered [C$_2$S$_2$] cyclic molecules – comprise a scarce class of compounds. This, however, is at odds with the fact that the cyclic 1,3-dithiyethyl moiety is found in bioactive compounds§ such as antibacterialab and hepatoprotective agentsab and pesticides. Even more rare are the heavier analogues of 1,3-dithietanes, 1,3-diselenetane and 1,3-ditelluretane, which typically arise from the dimerization of a handful of selenones and tellurones. In the main group, Group 13 analogues of these heterocycles are known but remain limited in scope due to a dearth of options for their selective synthesis.

Molecular compounds of aluminium and gallium that feature a central planar M$_2$E$_2$ ring surrounded by organic substituents may be accessed by reaction of dihydride or dimethyl precursors with elemental chalcogens. Substituents may be accessed by reaction of dihydride or dimethyl precursors with elemental chalcogens. The factors for the rarity of $B_2O_2$ rings, such as antibacterial and hepatoprotective agents and pesticides, are yet to be reported.

More recently, our group reported the convergent reactivity of low-valent boron species $[[[(CAAC)(NC)B(E)E]]]$ with sulfur and selenium to give, among other products, $[[[(CAAC)B(E)]]]$ and $[[[(CAAC)B(E)]]]$ with sulfur and selenium to give, among other products, $[[[(CAAC)B(E)]]]$. The outcome of the reaction is highly dependent on the stoichiometry of the reagents used, yielding larger and smaller rings when different amounts of chalcogen were employed. We have also observed the slow, yet selective, dimerization of monomeric, N-heterocyclic carbene (NHC)-stabilized boradichalcogenanes $[[[(CAAC)(NC)B(E)E]]]$. The outcome of the reaction is highly dependent on the stoichiometry of the reagents used, yielding larger and smaller rings when different amounts of chalcogen were employed.

We now report that these complexes selectively reacted with a number of dihydrides containing two different transition metal borylene fragments to afford a range of unsymmetrical substituted $B_2E_2$ four-membered rings under mild conditions (Fig. 1).

Results and discussion

Borylene complexes of the group VI metals figure among the most studied metal-stabilized sources of borylene fragments."
In recent years, borylene complexes of chromium, molybdenum and tungsten have been shown to engage in metal-to-metal, metal-to-carbon and metal-to-nitrogen borylene transfer, in C–H activation and in [2 + 1] addition reactions. Towards our study of the reactivity of borylene complexes of low-valent boron fragments, the sterically protected borylene complex [(OC)Cr=B(Tp)] (3) (Tp = 2,6-bis(2,4,6-trimethylphenyl)phenyl) was deemed a good starting point. Treatment of boraditellurirane complex 1 with one equivalent of 3 in toluene allowed us to isolate cyclo-[iBu][IMe]B–Te–B(Tp)–Te (4) after recrystallization from a toluene/pentane mixture (yield: 24%). High-resolution mass spectrometry (HRMS) and single-crystal X-ray diffraction analysis allowed us to identify 4 as an NHC-stabilized 1,3-ditellurido-borylene complex arising from the insertion of a [BTp] fragment into the Te–Te bond of 1. To the best of our knowledge, 4 represents the first example of such a four-membered B2Te2 ring (Fig. 2).

This new species features two resonances in its $^{11}$B NMR spectrum ($\delta = -33.0$ and 61.1) which differ considerably from those of both starting materials ($\delta = -2.0$ (1) and 147 (3)), as expected for its unsymmetrical substitution pattern. The new signal at $-33.0$ ppm is attributable to the sp$^3$-hybridized tetrahedral boron atom that is coordinated by an IMe ligand (B2), while the peak at 61.1 ppm can be assigned to the BTp moiety. In the solid state, 4 features a near-planar four-membered cycle which is close to perpendicular with the CBC plane of the (iBu)B2(IMe) group. The Tp substituent is rotated approximately 15° from perpendicularity with the B2E3 cycle. Interestingly, the B–Te distances are different for both boron centers. Indeed, the TpB1–Te bonds are significantly shorter (2.153(2) and 2.139(2) Å) than the corresponding iBu(IMe)B2–Te distances (2.358(2) and 2.331(2) Å), likely owing to Te-to-B π-donation, which is not present in the case of the sp$^3$-hybridized B2.

Borylene complex 3 was also reacted with the Se and S analogs of the four-membered B2Te2 compound 4 were only observed as minor products, which we were unable to isolate, however we were able to obtain a few crystals of the selenium-containing analog of 4, which allowed us to determine a solid-state structure and

![Fig. 1 Synthesis of boradichalcogeniranes (and a manganese adduct thereof) from a manganese borylene complex, and reaction of these chalcogenides with chromium borylene complex 3.](image1)

![Fig. 2 POV-Ray depictions of the crystallographically determined structures of compounds 4 (top), 5a (bottom left) and 5b (bottom right). Atomic displacement ellipsoids depicted at the 50% probability level. Hydrogen atoms and ellipsoids of peripheral groups omitted for clarity. Selected bond distances (Å) and angles (°): 4: B1–C(Tp) 1.569(3), B1–Te1 2.153(2), B1–Te2 2.139(2), B2–C(iBu) 1.637(4), B2–C(IMe) 1.624(5), B2–Te1 2.358(2), B2–Te2 2.331(2), Te1–B1–Te2 102.7(1), B1–Te1–B2 82.38(9), Te1–B2–Te2 91.23(9), B1–Te1–B2 83.33(9), 5a: B1–C(Tp) 1.585(5), B1–Se1 1.919(5), B1–Se2 1.921(4), B2–C(iBu) 1.641(7), B2–C(IMe) 1.630(7), B2–Se1 2.115(4), B2–Se2 2.106(4), Se1–B1–Se2 119.4(3), C(Tp)–B1–Se1 120.3(3), C(Tp)–B1–Se2 120.2(3), C(iBu)–B1–C(IMe) 112.7(3), Se1–B1–Se3 105.4(2), B2–Se3–Se2 102.7(1), Se3–Se2–B1 100.7(2).](image2)
confirm its connectivity (see ESI†). In these reactions, after crystallization from a THF/pentane mixture, the five-membered rings cyclo-[(tBu)(IMe)B–E–B(Tp)–E] (E = Se (5a) and S (5b)) were obtained (yield 22% in both cases). In the 1,2,4-triseleno-3,5-diborolane 5a, the 11B NMR signals for the two boron atoms were found at 6.2 and 72.1 ppm. Similarly, in 5b, they are found at 7.7 and 66.2 ppm. The five-membered rings 5a and 5b are likely to arise from the initial formation of Se and S analogues of 4, which then undergo ring expansion using the starting materials or reaction intermediates as sacrificial chalcogen sources. While 11B NMR monitoring of the reaction showed the formation of other boron chalcogenide species – as is predicted from the stoichiometry of the reaction – these byproducts could not be identified. 5a and 5b can however be reliably crystallized from the reaction mixture and isolated.

In the solid state, 5a is structurally comparable to the three previously reported examples of crystallographically characterized BSeBSeSe non-cluster five-membered rings.15 Interestingly, it represents, to our knowledge, the first example of such a cycle with an unsymmetrical substitution pattern. The planar sp2-hybridized TpB site features B–Se distances (1.919(5) and 1.921(4) Å) that are close to those reported by Tokitoh and coworkers in a symmetrical five-membered ring of selenium and sp3 boron.15a In contrast, on the (tBu)(IMe)B side of 5a, the B–Se distances (2.115(4) and 2.106(4) Å) are analogous to those found in triseleno-1,3-diborolanes with sp3 boron atoms.16,17c Unfortunately, while we were able to grow crystals of 5b, their poor quality, combined with the absence of heavy elements, did not yield crystallographic data of a precision that would allow us to discuss structural parameters. Instead, the single-crystal X-ray diffraction analysis only allows us to confirm the connectivity and the substitution pattern in the molecule.

Since the insertion of TpB fragments into 2a and 2b did not allow us to selectively synthesize unsymmetrical B–Se dichalcogenadiboratanes, we elected to react these precursors with other borylene sources. Thus, the Group 6 aminoborylene complex [(OC)3Mo=BN(SiMe3)2] [6] was reacted with 2a and 2b in toluene. In both cases, four-membered cyclic products, cyclo-[(tBu)(IMe)B–E–B[N(SiMe3)2]–E] (E = Se (7a) and S (7b)), were obtained after recrystallization from a toluene/pentane mixture (yield: 52% (7a) and 38% (7b)). The possibility of ring expansion processes (vide supra), combined with the difficulties in quantitatively crystallizing these products, explains the moderate yields of the reactions.

In 7a, 11B NMR signals at −13.4 and 46.7 ppm can be assigned to the sp3 and sp3 boron centers, respectively. In the solid state, the 1,3-diseleena-2,4-diborolane cycle is nearly planar, as in the case of 4. A slight pyramidalization of the N(SiMe3)2 group, as well as dihedral angles of ca. 35° between this group and the B2Se2 and a B–N bond distance of 1.442(7) Å (longer than 1.3549(18) Å in 6), suggest only a small amount of N-to-B π-donation. Consistent with this observation, the (Me3Si)2NB–Se bond distances (1.957(5) and 1.958(5) Å), while being longer than in 5a, are short enough to suggest some Se-to-B π-donation competing with the N–B multiple bonding. On the other side of the molecule, the (tBu)(IMe)B–Se distances (2.112(5) and 2.116(5) Å) are considerably longer, consistent with the presence of an sp3 boron center. In the case of 7b, 11B NMR signals were found at −6.1 and 49.8 ppm. The solid-state structure of 7b is comparable to that of 7a, with (Me3Si)2NB–S bond distances of 1.844(4) and 1.855(3) Å, tBu(IMe)B–S distances of 1.990(3) and 1.998(4) Å and a B–N bond measuring 1.440(5) Å (Fig. 3).

2a and 2b also react with [Cp(OC)3Mn=BrBu] (Cp = cyclopentadienyl) [8],12a a manganese borylene complex that has a rich reactivity12 and that is a precursor of 1, 2a and 2b. While we were not able to obtain high-quality crystals from this reaction, HRMS of the isolated products revealed a formula consistent with cyclo-[(tBu)(IMe)B–E–B(Tp)–E] (E = Se (9a) and S (9b)), arising once again from the transfer of a borylene fragment (tBuB) from 8 to 2a and 2b. The solution 1H and 13C NMR spectra of 9a and 9b are consistent with the formula assignment from HRMS, revealing a 1 : 1 : 1 ratio of IMe and two inequivalent tBu groups. The 11B NMR resonances of 9a (δ = −10.8 and 77.5) and 9b (δ = −3.6 and 72.9) reveal a similar environment for the sp3 boron atom as that in the corresponding four-membered rings 7a and 7b, which leads us to
postulate that products 9a and 9b are indeed the cyclic compounds cyclo-[(tBu)(IMe)B–E–B(tBu)–E].

Finally, 2a was also found to react with the macrocyclic complex cyclo-[(CAAC)BCN]₄ (10). This metal-free tetrameric borylene was previously shown to be a useful source of the corresponding monomer [(CAAC)BCN] in its reaction with Lewis bases and to generate one of the few reported examples of cyclo-[BSe₂] complexes by reaction with potassium selenide. Thus, the reaction of 2 and 10 in toluene led to the isolation of the new 1,3-diselena-2,4-diborolane cyclo-[(tBu)(IMe)B–Se–B(CAAC)CN–Se] (11) in a 3% yield. While once again unsymmetrically substituted, this compound is the first of the series reported herein to feature two sp³-hybridized boron atoms. The ¹¹B NMR spectrum of 11 shows two signals at −9.5 and −32.8 ppm. While both signals lie within the typical range for sp³ boron atoms, we can assign the former to the (tBu)(IMe)B moiety (2.111(1) Å and 2.114(1) Å, respectively) and the latter is similar to the signals of both isomers of the previously reported cyclo-[(CAAC)(CN)B–S–B(CAAC)–S] (δ = −31.8 and −33.5 ppm).¹⁰

Rather surprisingly, and in contrast with other 1,3-diselena-2,4-diborolanes,¹⁰ ¹¹B 11 adopts a clearly bent butterfly structure in the solid state. This situation is plausibly a consequence of the unsymmetrical substitution pattern, which gives rise to a large difference in steric bulk on both faces of the cycle. The B-Se distances are slightly shorter on the (CAAC)(CN)B side (2.067(1) Å and 2.079(2) Å) than around the (tBu)(IMe)B moiety (2.114(1) Å and 2.111(2) Å) (Fig. 4).

Conclusions
In conclusion, we demonstrate that borylene fragments can be inserted into the E–E bonds (E = Te, Se and S) of boradichalcogeniranes. This reaction gives unprecedented synthetic access to unsymmetrically substituted 1,3-dichalcogen-2,4-diborolanes and 1,2,4-dichalcogen-3,5-diborolanes. We have thus reported the synthesis of heterocycles featuring unsymmetrical boron centers in sp³–sp³ and sp³–sp³ hybridization combinations. Given the lack of methods for the synthesis of such unsymmetrical compounds, this approach will provide us with a useful platform to study the properties and applications of these unusual heterocycles.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
The authors gratefully acknowledge financial assistance from the Deutsche Forschungsgemeinschaft. S. Liu thanks the China Scholarship Council for a Ph.D. Scholarship. M.-A. L. acknowledges the Natural Science and Engineering Research Council of Canada for a postdoctoral fellowship.

Notes and references
