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Au and Ru are elements that are immiscible in the bulk state and have the largest gap in reduction potential

among noble metals. Here, for the first time, Au,Ru;_, solid-solution alloy nanoparticles (NPs) were

successfully synthesized over the whole composition range through a chemical reduction method.

Powder X-ray diffraction and scanning transmission electron microscopy coupled with energy-dispersive
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X-ray spectroscopy showed that Au and Ru atoms are homogeneously mixed at the atomic level. We

investigated the catalytic performance of Au,Ru;_, NPs for the oxygen evolution reaction, for which Ru
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Introduction

Noble metals (Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au) show their own
unique properties and excellent performance as catalysts,"™
despite being minor elements and expensive. They are used as
nanoparticles (NPs) for industrial applications; for example, Ru
is well known for ammonia synthesis,>” Rh is used for NO,
purification of car exhaust,®® and Au is used as an oxidative
esterification catalyst.’*** On the other hand, noble metal alloy
NPs have received much attention during the past few decades,
because they show synergetic properties derived from each
constituent metal."*" Among noble metal alloy NPs, solid-
solution alloy NPs, in which different metals are randomly
mixed at the atomic level, are more promising than other types
of alloys such as the core-shell or segregated type to
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is well known to be one of the best monometallic catalysts, and we found that even alloying with a small
amount of Au could significantly enhance the catalytic performance.

continuously tune the properties because their electronic states
can be continuously controlled by changing compositions.*®
However, the development of solid-solution alloy NPs has long
been limited by the immiscibility of the constituents, because
most of the metal combinations are immiscible in the bulk
state.” Although several new solid-solution alloy NPs in
immiscible systems such as Ag-Rh** and Pd-Ru** have been
recently obtained, it is still challenging to synthesize solid-
solution alloy NPs, particularly those that have a large gap of
reduction potential between the constituent metals.

The key point in the synthesis of these solid-solution noble
alloy NPs is the concurrent reduction of metal precursors.*»* If
the two kinds of metal ions are not reduced simultaneously,
phase-separated NPs, such as core-shell or segregated types,
would be obtained.”® However, it is not easy to simultaneously
reduce two kinds of noble metal ions that have a large gap of
reduction potential causing a remarkable difference in reduction
speed, such as Au and Ru which have the largest gap among
noble metals (Ru** +3e~ = Ru, E° = 0.455 Vvs. Au’ +3e~ = Au,
E° = 1.498 V, as shown in Table S1}%7).24*

Ru is one of the best known highly active catalysts for the
oxygen evolution reaction (OER).?*** However, Ru catalysts are
generally unstable in acidic solutions because Ru is easily
oxidized in the working potential range of the OER.>**** Au is
known as the most stable metal and is used to improve the
stability of metal catalysts.>*>* Actually, it is recently reported
that even phase separated Au-Ru NPs show an enhanced OER
performance.*® Therefore, the alloying of Au and Ru at the
atomic level could be an effective way to improve the catalytic
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performance of Ru OER catalysts. In general, varying the
composition of the solid-solution alloy has a great significance
on its properties because the electronic structure of the alloy
can be changed with its composition.”»**?*” Thus, it is inter-
esting and challenging to create Au,Ru;_, solid-solution alloy
NPs over the entire composition range and to further system-
atically investigate their OER catalytic performance.

In this study, we carefully chose metal precursors with suit-
able ligands to overcome the limitation of the reduction
potential difference and successfully obtained AuRu solid-
solution alloy NPs over the entire composition range for the
first time, although Au and Ru are immiscible throughout the
entire composition range in the bulk state even at high
temperatures up to their melting points (Fig. S11).>®* We also
examined the OER catalytic performance of Au,Ru;_, NPs and
found that the activity continuously changed with composition
and the alloy NPs exhibited an enhanced performance
compared with pure Au and Ru.

Results and discussion
Synthesis and characterization

To synthesize the Au,Ru; _, solid-solution NPs, we controlled
the reduction speed of the precursors by choosing appropriate
coordinating ligands of the metal precursors because the
ligands can profoundly affect the ions' stability and reduction
potential, and thus their reduction kinetics can be desirably
tuned.> Potassium pentachloronitrosylruthenate(u)
(K,Ru(NO)Cl5)* and hydrogen tetrabromoaurate(m) hydrate
(HAuBr,-nH,0) were chosen as metal precursors to form the
solid-solution alloy NPs. Au,Ru,_, solid-solution NPs were
synthesized using a polyol reduction method. First, the
precursors were dissolved in 10 ml diethylene glycol (DEG)
with an appropriate molar ratio. Then, the metal precursor
solution was slowly dropped into 100 ml ethylene glycol (EG)
solution containing 444 mg poly(vinylpyrrolidone) (PVP) at
190 °C. The temperature of the solution was maintained at
190 °C during the dropping process. The NPs were separated
by centrifugation after cooling to room temperature. The
details of the experimental conditions are described in the
ESLT

The prepared samples were characterized by transmission
electron microscopy (TEM) (Fig. S2t). The mean diameters of
the Au,Ru,_, (x = 0.1, 0.3, 0.5, 0.7, and 0.9) NPs were deter-
mined from the TEM images to be 6.6 + 1.4, 15.7 + 2.9, 15.4 +
2.5,15.3 + 2.3, and 15.3 £ 2.7 nm, respectively. The particle size
of Au, 1Ruy is relatively smaller compared to other composi-
tions. This may be related to the nature of Ru. X-ray fluores-
cence (XRF) and energy-dispersive X-ray (EDX) analyses
confirmed the atomic ratios of Au and Ru in the prepared NPs
(Table S27). These results are consistent with the nominal ratios
of the metal precursors used in the synthesis.

To clarify the structure of the obtained AuRu NPs, high-angle
annular dark-field scanning TEM (HAADF-STEM) and EDX
elemental mapping of Au and Ru were carried out. HAADF-
STEM images and the maps of Au and Ru elemental distribu-
tion on the obtained Au,Ru; _, NPs are shown in Fig. 1a-e and f-

5134 | Chem. Sci., 2019, 10, 5133-5137

View Article Online

Edge Article

T ~
%,}

0 5 0 15 20 0 &
Distance /am

i rg/}

0o 10_» o W% 0
Distanca ! Distance /nm

Fig. 1 High-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM) images of (a) Aug 1Rug .9, (b) Aug 3Rug7, (c)
Aug sRug s, (d) Aug7Rug 3, and (e) AugoRug 1 NPs. (f)—(j) are the corre-
sponding overlay images of the Ru-L and Au-L STEM energy-disper-
sive X-ray (EDX) maps of (a)—(e). (k)—(o) are the EDX line profiles of the
NPs along the arrows shown in the inset figures. Au and Ru are indi-
cated in green and red colors, respectively. The scale bars shown in
(a)—(j) and the inset figures of (k)—(o) are 20 and 5 nm, respectively.

J, respectively. Au-L and Ru-L STEM-EDX maps of Au,Ru; _, NPs
are separately shown in Fig. S3.7 These results give direct
evidence of the homogeneous distribution of Au and Ru atoms
in each particle. The typical EDX line scan profiles shown in
Fig. 1k-o also demonstrate that Au and Ru atoms are well
distributed in the particles, and the metal composition of the
particles gradually changes from Ru-rich to Au-rich. These
results show the formation of Au,Ru, _, solid-solution alloy NPs
over the entire composition range.

The crystal structure of the obtained AuRu NPs was investi-
gated by synchrotron powder X-ray diffraction (XRD) analysis at
BL02B2, SPring-8.*° The XRD patterns of Au,Ru,_, NPs gradu-
ally change from face-centered cubic (fcc) to hexagonal closed-
packed (hep) patterns with increasing amounts of Ru (Fig. 2a).
We then performed Rietveld refinement on each pattern of the
alloy NPs (Fig. 2b, ¢ and S4-S77). The best fit of Au, sRu, 5 was
obtained with two components of fcc and hep (Fig. 2c). The
lattice constant of the fcc component was calculated to be
3.960(6) A, which is smaller than that of Au NPs (a = 4.077(1) A,
Fig. S8t). For the hcp component, the lattice constants were
2.795(1) and 4.435(3) A for @pep and chep, which were larger than
those of Ru NPs (a = 2.709(5) and ¢ = 4.307(8) A, Fig. 591). As
both hcp and fcc are close-packed structures, the lattice
parameter ag. in a fec structure is nearly \/Zahcp in an hcp
structure. Given that the lattice constant follows Vegard's law,*!
the Au : Ru compositions of the fcc and the hcp phases were
estimated to be 0.52 : 0.48 and 0.50 : 0.50, which are similar to
the results of EDX and XRF analyses. These results strongly
suggest that Au, sRuy s NPs contain two phases; however, both
phases are solid-solution structures with the same composition.
The lattice constants of Au,Ru;_, NPs increased linearly with
increasing Au content (x) as estimated by Rietveld refinement
(Fig. 2b). The linear correlation between the composition and
the lattice constant follows Vegard's law, which also confirmed
the formation of the solid-solution AuRu alloy over the entire
composition range.

This journal is © The Royal Society of Chemistry 2019
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Fig. 2 (a) The synchrotron powder XRD patterns (20 = 10-45°) of
Au,Ru;_, NPs at 303 K. The radiation wavelength was 0.58068(1) A. (b)
Dependence of the lattice constant on the metal composition in
AusRu;_, NPs. Ofred), @(red), and 4 (blue) indicate the lattice
constant apc, and cpep Of the hcp component and ag.. of the fcc
component, respectively. (c) The diffraction pattern of AugsRug s NPs
(red circles) at 303 K and the calculated profile (blue line) by Rietveld
refinement. The profiles of the difference, background, and the fcc and
hcp components are shown as gray, dark yellow, green and orange
lines, respectively.

Catalytic properties

The electrocatalytic OER activity of Au,Ru;_, NPs was investi-
gated in a 0.05 M H,SO, solution in a standard three-electrode
system with a Pt wire and an Ag/AgCl (3.5 M NaCl) electrode as
the counter and reference electrodes, respectively. The synthe-
sized NPs were first loaded on carbon black (VXC 72R) with
20 wt% metal (Fig. S101). The catalysts were uniformly cast onto
a rotating disk electrode for recording iR-corrected OER polar-
ization curves at a scan rate of 5 mV s~ . The working electrode
was continuously rotated at 1600 rpm during the measure-
ments. The Au and Ru catalysts were also measured as
a reference.

Fig. 3a shows the linear sweep voltammetry (LSV) curves of
the Au,Ru, _, catalysts. The current densities of each catalyst at
potentials of 1.5 and 1.6 V are shown in Fig. 3b and c. For the Ru
catalyst, the current density has the highest value at around
1.5 V, but gradually reduces after that, which is caused by the
dissolution of Ru with the potential increasing.**** The Au
catalyst does not show obvious catalytic activity.*” The Au,Ru;
catalysts demonstrated the composition dependence of the
catalytic performance. With increasing Ru content, the current
density becomes higher. More importantly, Au is inactive for the
OER; nevertheless, Augz;Ruy; and Aug;Rugo catalysts show
higher activity than Ru at 1.5 V. The current densities of the
Au,Ru, _, catalysts continuously increase with the potential
increasing and are higher than that of the Ru catalyst at 1.6 V.

This journal is © The Royal Society of Chemistry 2019
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Fig. 3 (a) Linear sweep voltammetry (LSV) polarization curves of the
OER catalyzed by AusRu; , catalysts. The current density of each
catalyst at potentials of (b) 1.5V and (c) 1.6 V. (d) Chronopotentiometry
curves of the AugsRugy catalyst compared to the Ru catalyst at
a constant current density of 2.5 mA cm~2 for 1 h. All the tests were
performed in an Ar-saturated 0.05 M H,SO4, solution at a scan rate of
5mV s~1 All the polarization curves were collected with iR-correction.

This confirms the stability improvement of the Au,Ru,_, cata-
lysts. We further investigated the stability of Auy;Ru,; and
Au, ;Rug o catalysts by chronopotentiometry tests at a constant
current density of 2.5 mA cm™> for 1 h (Fig. 3d and S117).%*
The curves show the potential change at a current density of 2.5
mA cm 2. The potential of the Ru catalyst quickly changed from
1.4 to above 2.0 V in 5 min, essentially losing all its activity. In
contrast, the Au, 3Ru, ; and Aug ;Rug o catalysts showed a much
slower deactivation during the stability test. From these results,
it can be concluded that the alloy catalysts show much higher
stability than the pure Ru catalyst.

We then investigated the structures of the Ru, Au, 3Ru, ; and
Au, 1Ru, o catalysts after the stability test by TEM, STEM-EDX
and X-ray absorption near-edge structure (XANES). From TEM
observations, we found that there were no Ru NPs on the carbon
in the Ru/C catalyst after the test due to the rapid oxidation and
dissolution of Ru (Fig. S12a7t).>** In contrast, a large amount of
Aug 3Rug; or AugiRugo NPs remained on the carbon support
(Fig. S12b and ct). We further analyze the structure of the alloy
catalysts after the OER with Au, ;Ru, ;. HAADF- and bright field
(BF)-STEM images (Fig. 4a—d) show the comparison of the alloy
structures before and after the stability test. Both of the parti-
cles show the same fcc lattice and {111} interplanar spacing,
indicating that the metallic structure of alloy NPs was mostly
retained. However, a thin amorphous layer was observed on the
alloy surface after the stability test. STEM-EDX analysis
confirmed the good distributions of Au and Ru in the NPs
(Fig. 4e-h, S13 and S14t). We further investigated the structure
of the catalysts with XANES. The Au Lz-edge and Ru K-edge
spectra confirmed that the original alloy structure was main-
tained after the stability test, and indicated that the thin
amorphous layer on the alloy surface would be RuO, (Fig. 4i-j).

To elucidate the enhancement of the catalytic performance,
the change in the electronic structure caused by atomic level
alloying of Au and Ru was investigated by XPS (Fig. S14, Table
S31). The Au 4f peaks of the alloys shifted to higher energy with
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Fig. 4 HAADF-STEM images of the Aug 3Rug ; catalyst before (a) and
after (c) the chronopotentiometric stability measurement. (b) and (d)
BF images of the NPs in (a) and (c). (e) HAADF-STEM image of the
Aug 3Rug 7 catalyst after the stability measurement, (f)—(h) Au-L (green),
Ru-L (red), overlay (Ru + Au) STEM-EDX maps of NPs in (e). Au Lz-edge
(i) and Ru K-edge (j) XANES spectra of the Aug 3Rug; catalyst before
and after OER stability measurement.

increasing Ru content. By contrast, with the Au content
increasing, the Ru 3p peaks of the alloys shifted to a lower
energy. These results indicate electron transfer from Au to Ru in
alloy NPs. According to the mechanism of the OER in an acid
solution (Table S4t), the formation of intermediate oxygen
species on the surface of the catalyst (e.g., *OH, *O, and *OOH;
* represent active sites on the metal surface) is a key step for the
OER process.” These steps would be significantly affected by
the change in the electronic structure of the catalyst. Thus, the
change of the electronic structure in Au,Ru; _, NPs could lead to
better balance between adsorption and dissociation energies for
oxygen species and further enhance the catalytic activity.***” At
the same time, the electron transfer from Au to Ru in Au,Ru;
NPs could suppress the oxidation of Ru, which would be one of
the origins of the enhancement in the stability of the Au,Ru;_,
alloy catalysts. Therefore, the alloying of Ru with Au improves
the activity and stability of Ru as the OER catalyst in acid
solutions.

Conclusions

In summary, we synthesized and characterized Au,Ru,_, solid-
solution NPs over the whole composition range for the first
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time, where Au and Ru have the largest gap in reduction
potential among noble metals and are completely immiscible
even at high temperatures up to their melting points in the bulk
state. STEM-EDX and PXRD results demonstrated that Au and
Ru were randomly and homogeneously distributed in a single
NP. The alloy catalysts showed an enhanced catalytic perfor-
mance compared with Ru which is known as one of the best
monometallic OER catalysts. By alloying Ru with Au, the
stability of the catalyst was significantly improved. Our present
work provided not only an effective OER catalyst that could work
in an acidic environment, but also triggered the development of
undiscovered solid-solution alloy NPs from immiscible noble
metals.
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