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Dinuclear manganese alkoxide complexes as
catalysts for C—N bond cleavage of simple tertiary
N,N-dialkylamides to give esterst

Daiki Kato, @ Shusei Soma, & Shin-ya Akebi

Amide bonds are stable due to the resonance between the nitrogen lone pair and the carbonyl moiety, and
therefore the chemical transformation of amides, especially tertiary amides, involving C—N bond fission is
considered one of the most difficult organic reactions, unavoidably requiring harsh reaction conditions

and strong acids or bases. We report the catalytic C-N bond cleavage of simple tertiary N,N-

dialkylamides to give corresponding esters using a catalyst system (2 mol% based on Mn atoms) of
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a tetranuclear manganese alkoxide, [Mn(acac)(OEt)(EtOH)],4 (1c), combined with four equivalents of 4,7-

bis(dimethylamino)-1,10-phenanthroline (L1: Me,N-Phen). Regarding the reaction mechanism, we
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Introduction

Amides are ubiquitous and abundant in a huge number of
natural and synthetic organic compounds, such as proteins,
poly(amides), and pharmaceuticals, due to the extraordinarily
stable nature of the amide bond.*” The stability of the amide
bond is attributed to the resonance between the nitrogen lone
pair and the carbonyl moiety, and many researchers have
attempted to diminish the resonance structure of the C-N bond
by introducing the coordination of transition metals to the
nitrogen atom, as exemplified by the complexation of N,N-(2-
pyridylmethyl)amides with Cu(u) sources,*” and constructing
a twisted structure around the nitrogen atom,®’ whose amide
bonds were readily cleaved under mild conditions. Nonetheless,
cleavage of the amide bond requires harsh reaction conditions
such as using stoichiometric amounts of strong acids or bases
at a high temperature. TiCl,- and FeCl;-catalyzed alcoholysis of
inactivated primary amides was independently reported by
Fisher et al. and Sun et al. but more than one equivalent of
aqueous HCI was necessary.'® Shimizu et al. reported catalytic
esterification of primary amides without using any additives by
utilizing CeO, as a heterogeneous catalyst under a high reaction
temperature.'* Thus, catalytic transformation of amides to the
corresponding esters or acids in an atom- and step-economical
manner is in high demand. Recently, we reported a catalytic
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isolated a dinuclear manganese complex, [Mn(acac)(OEt)(Phen)l, (6c),

which was revealed as the

catalytically active species for the esterification of tertiary amides.

C-N bond cleavage of primary and secondary amides using
a catalyst mixture of Sc(OTf); and boronic esters,'” and Atkinson
et al. also reported Sc(OTf);-catalyzed esterification of secondary
amides."® In addition, catalytic esterification of 8-aminoquino-
line amides was achieved with Ni(tmhd), (TMHD = 2,2,6,6-
tetramethyl-3,5-heptanedionate) in methanol.*

In contrast, the catalytic transformation of tertiary amides
remains a challenging task, and only a few catalyst systems
developed to date are able to break the stable C-N bond of
tertiary amides. Recently, Garg and Houk reported that nickel(0)
complexes served as catalysts to activate the C-N bond of
tertiary amides bearing functional groups such as Ph or Boc via
oxidative addition as a key step to afford the corresponding
esters (Fig. 1A),""” and Danoun and Gosmini reported that low-
valent cobalt species supported by 2,2'-bipyridine using metallic
manganese as a reductant catalytically activated the C-N bond
of activated amides bearing a Boc group to give the corre-
sponding esters (Fig. 1B),"® though the oxidative addition of the
C-N bond of activated amides bearing functional groups such
as Ph, Boc, and Ts on the nitrogen atom into low-valent tran-
sition metals was reported to be involved in several catalytic
reactions."”***® On the other hand, we reported a catalytic C-N
bond cleavage of N-alkyl-N-B-hydroxyethylamides via N,O0-acyl
rearrangement by manganese complexes supported by an N*N-
bidentate ligand®” and zinc complexes (Fig. 1C),*® though these
catalysts required substrates with functional groups, such as
a B-hydroxyethyl group on the nitrogen atom. Very recently,
Shimizu and Siddiki reported the first example of the esterifi-
cation of N,N-dialkylamides using CeO, as a reusable hetero-
geneous catalyst, though the catalyst system requires a high
reaction temperature and large amount of catalyst. In this

This journal is © The Royal Society of Chemistry 2019
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A) Ni(0) catalyzed esterification of N-Ar or N-Boc tertiary amides!'5-16!
o Ni(cod), (5-15 mol%) o

2 SIPr or terpyridine
R1szR + HOR R1JJ\O,R + HNRZR®
és toluene, 80-100 °C
R3 = Ar or Boc
B) Low-valent Co catalyzed esterification of N-Boc tertiary amides!'®!
0o CoBr, (5 mol%)
1L g 2,2 bipyridine o
RSN+ HOR R1JJ\0’R + HNR?R®
é DMF/Py, 60 °C
oc Mn (1 equiv.)

C) Esterification of N,N-dialkylamides through N,O-acyl rearrangementl?7-281
Mn(acac), (5 mol%)

2,2'-bipyridine
0 and o 0
lj\ Zn(OTf), (5 mol%)
.R? 2 2
RN + HR —M R1JI\O/R + R-NJ\O
HOJ 85-135 °C J
carbonate
D) Esterification of simple tertiary amide by heterogeneous CeO, catalysti2°!
(0] (0]
CeO,
R1kN’R2 + HOR R1JJ\O’R + HNRZR3
Il?S 175 °C

E) This work: Well-defined Manganese catalyzed esterification of simple tertiary amides

[Mn(acac)(OEt)(EtOH)]4
(2 mol%)

o Me,N-Phen o]
2
R1KN/R2 + HOR JU R+ HNRZR®
s 120-170 °C R" O
R (carbonate)

Fig. 1 Catalytic esterification via the C-N bond cleavage of tertiary
amides.

reaction, Lewis acid and base sites of the CeO, surface coop-
eratively activate the carbonyl moiety and alcohol (Fig. 1D).> To
achieve the esterification of simple N,N-dialkyl tertiary amides
under milder reaction conditions, we focused our attention on
cooperative activation of multinuclear complexes whose
multi-metallic structure is often found in metalloenzymes.
Herein, we report a new and efficient catalyst system of
[Mn(acac)(OEt)(EtOH)], (1¢c), as Mn(u) precursors to evaluate the
general tendency that metal-alkoxide species accelerate the
nucleophilic attack of the alkoxide group on the carbonyl group
(2 mol% based on Mn atom), and 4,7-bis(dimethylamino)-1,10-
phenanthroline (L1: Me,N-Phen) (2 mol%) for the esterification
of simple tertiary N,N-dialkylamides to give the corresponding
esters with broad substrate scopes including halogenated
amides (Fig. 1E). Furthermore, we determined a reaction
mechanism by isolating an alkoxide-bridged manganese dinu-
clear complex [Mn(acac)(OEt)(Phen)], (6¢) as the key catalyst,
and measuring kinetic studies in n-butanol which showed first-
order rate dependence on the concentrations of N,N-dimethyl-2-
naphthamide (2a) and 6c, indicating that the dinuclear alkoxide
complex acted as a catalytically active species.

Results and discussion

We began by searching for the suitable catalyst among the re-
ported alkoxy-bridged tetranuclear complexes,
[M(tmhd)(OMe)(MeOH),], (1; M = Mn,*** Fe,** Co,* and Cu;*
1.0 mol%; x = 1 or 0; TMHD = 2,2,6,6-tetramethyl-3,5-

This journal is © The Royal Society of Chemistry 2019
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heptanedionate), as catalyst precursors with  4,7-
bis(dimethylamino)-1,10-phenanthroline  (L1: Me,N-Phen,
1 mol%) for the catalytic esterification of N,N-dimethyl-2-
naphthamide (2a) under the conditions of using n-butanol
(0.25 mL) at reflux temperature for 18 h, and the results are
shown in Table 1.** The use of the manganese tetranuclear
complex, [Mn(tmhd)(OMe)(MeOH)] (1a), afforded 3a in 80%
yield (entry 1). Iron and cobalt tetranuclear complexes exhibited
lower catalytic activities (16% and 42% yields, respectively,
entries 2 and 3) than the manganese complex. The copper tet-
ranuclear complex, [Cu(tmhd)(OMe)],, which does not have
methanol as a ligand, also showed low catalytic activity (49%
yield, entry 4). Accordingly, we selected the manganese complex
as the best catalyst precursor among the tetranuclear
complexes, [M(tmhd)(OMe)(MeOH),],, we tested.

Next, we searched for the best manganese precursor for the
catalytic esterification of 2a with n-butanol under the conditions
of Mn precursors (1 mol% based on Mn atoms) and L1 (1 mol%)
at reflux temperature for 18 h, and the results are shown in
Table 2. The manganese tetranuclear alkoxide complex
[Mn(dbm)(OMe)(MeOH)], (1b: DBM = dibenzoylmethanate)**
exhibited almost the same catalytic activity as 1a to give the
corresponding ester 3a in 79% yield (entry 1), and a newly
synthesized manganese complex, [Mn(acac)(OEt)(EtOH)], (1c),
showed the highest catalytic activity among the alkoxy-bridged
tetranuclear complexes to yield 3a in 90% yield (entry 2). We
also surveyed other simple Mn precursors such as Mn(acac),,
Mn(tmhd),, Mn(hfac), (HFAC = hexafluoroacetylacetonate),
and Mn(OAc), but these catalyst precursors showed moderate
activity to afford 3a in 85%, 57%, 52%, and 57% yields,
respectively (entries 3-6). In the absence of the L1 ligand, 1c

Table 1 Screening of alkoxy-bridged tetranuclear complexes

cat. (1 mol% on metal)
0 L1 (Me,N-phen, 1 mol%) o)

2-naph N )J\

‘ "BuOH (0.25 mL), 135 °C, 18 h 2-naph
2a (0.5 mmol) 3a

O"Bu
- HNMe,

Entry cat. Yield [%]?

1 [Mn(tmhd)(OMe)(MeOH)]4 (1a) 80
2 [Fe(tmhd)(OMe)(MeOH)], 16
3 [Co(tmhd)(OMe)(MeOH)]4 42

4 [Cu(tmhd)(OMe)]4 49

M = Mn, Fe, and Co

“ Determined by GC analysis with dodecane as an internal standard.
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Table 2 Screening of manganese precursors Table 3 Screening of ligands
[Mn] (X mol% on Mn) [Mn(acac)(OEt)(EtOH)]4 (1¢)
o Me,N-Phen (L1: X mol%) 0 (1 mol% on Mn)
2-naph™ NMez ng,01 (0.25 mL), 135 °C, 18 h  2-naph” ~O"Bu Ligand
2a (0.5 mmol) - HNMe; 3a 0 (Y mol%) o]
Entry [Mn] X [mol%] 3a: Yield[%] 2-naph™ "NMe; ngu0oH (0.25 mL), 135 °C, 18 h  2-Naph” "O"Bu
1 1b 1 79 2a (0.5 mmol) - HNMe, 3a
2 1c 1 90 Entry Ligand Y Yield [%]?| Entry Ligand Y  Yield [%]?
3 Mn(acac), 1 8 1 L2 1 67 11 L1121 14
4 Mn(tmhd), 1 57 2 L3 1 54 12 L13 1 28
5 Mn(hfac), 1 52
3 L4 1 36 13 L14 1 19
6 Mn(OAc), 1 57
b 4 L5 1 68 14 L15 1 14
7 1c 1 22
8 1c 2 >99 5 L6 1 27 15 L16 1 16
90 ) 1 nre 6 L7 1 49 16 L7 2 18
10 - 1 n.r.® 7 L8 1 23 17 L18 2 19
w2 R? 8 L9 1 20 18 L19 2 29
9 L10 1 31 19 L20 2 20
B p e
RNy =M 1a: R' = Me, R2 = Bu 100 L 33
RIOH 1 j‘l\ 1 1b: R" = Me, R2 = Ph ; ;
Rz\)@jw{nﬁo " o 1eR'=EL RZ=Me R R
R\
R? =N N=
RZ
L1: R! = NMe, L8: R2 = OMe
L2: R} = OMe L9: R? Z-'Bu
“ Determined by GC analysis with dodecane as an internal standard. ti 21 - Me H? E = Me
Wlthout L1. ©1 mol% of KOMe was used as the catalyst 1nstead of L5: Rl =Ph L12: R?2 = COOMe R4_/E
1c. ¥ 1 mol% of NaOMe was used as the catalyst instead of 1c. © n.r. L6:R' =Cl BN
No reaction.
7 / B MR L16:R! = H
_ L17: R* = 4-Me
N L18: R* = 4-NMe,
. . . . L13: R3 = Me L19: R? = 4-CN
exhibited low catalytic activity (entry 7, 22% yield). The yield of L7 L14: R® = CF3 L20: R* = 2,6-Me;

3a was increased to >99% when increasing the catalyst loading
of 1c to 2 mol% (entry 8). The use of 1 mol% of strong bases,
such as KOMe and NaOMe, did not result in catalytic activity
(entries 9 and 10). Thus, we selected catalyst 1c as the best
precursor, and optimized the conditions using 2 mol% of 1c
and L1 in n-butanol at reflux temperature for 18 h. Under the
optimized reaction conditions, we detected signals of cationic
manganese dinuclear complexes, [Mn(acac)(O"Bu)(Me,N-
Phen)]," (m/z = 986.4) and [Mn(acac)(O"Bu)(Me,N-Phen)], + H'
(m/z = 987.4), by ESI-MS spectroscopy. In addition, we isolated
a dinuclear complex, [Mn(acac)(OEt)(Phen)],, and characterized
it by single crystal X-ray analysis (vide infra).

We then searched for a suitable chelating nitrogen ligand for
the catalytic esterification of N,N-dimethyl-2-naphthamide (2a)
under the conditions of using [Mn(acac)(OEt)(EtOH)], (1c:
1.0 mol%) and a nitrogen ligand (1.0 mol%) in refluxing n-
butanol (5.5 equiv.) for 18 h, and the results are shown in
Table 3. We first used 1,10-phenanthroline derivatives L2-L7.
Electron-donating groups at 4,7-positions on 1,10-phenanthro-
line exhibited remarkable substituent effects for increasing
catalytic activities: L2 with methoxy groups, L3 with methyl
groups, and L5 with phenyl groups produced 3a in moderate

2862 | Chem. Sci., 2019, 10, 2860-2868

¢ Determined by GC analysis with dodecane as an internal standard.

yields (67%, 54%, and 68%, respectively; entries 1, 2, and 4). In
contrast, 1,10-phenanthroline (L4) and L6 with electron-
withdrawing chloro groups exhibited decreased -catalytic
activity, affording 36% and 27% yields of 3a, respectively
(entries 3 and 5). The sterically congested chelating nitrogen
ligand 2,9-dimethyl-1,10-phenanthroline (L7) gave 3a in 49%
yield (entry 6). 4,4'-Substituted 2,2"-bipyridine derivatives, such
as L8 with methoxy groups, L9 with tert-butyl groups, L10 with
methyl groups, 2,2’-bipyridine (L11), and L12 with methyl ester
groups, exhibited low catalytic activities (entries 7-11). In
addition, 5,5'-dimethyl-2,2"-bipyridine  (L13), 5,5'-bis(tri-
fluoromethyl)-2,2"-bipyridine (L14), and 6,6'-dimethyl-2,2'-
bipyridine (L15) produced 3a in low yields (28%, 19%, and 14%,
respectively, entries 12-14). Monodentate pyridine derivatives
L16-L20 afforded 3a in 16%, 18%, 19%, 29%, and 20% yields,
respectively (entries 15-19), which was almost the same as the
catalytic activity of 1c without any ligand (Table 2, entry 7).

This journal is © The Royal Society of Chemistry 2019
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Consequently, we selected L1 as the best ligand for
[Mn(acac)(OEt)(EtOH)], (1c) with 2 mol% catalyst loading.

We next evaluated the substrate scope for the esterification
of N,N-dimethylamides (Table 4). N,N-dimethylbenzamide (2b)
afforded n-butyl benzoate (3b) in a good yield (78%, entry 1).
The electronic effects of the para-position on N,N-dime-
thylbenzamide were examined: 2c¢ having a methoxy group
slightly decreased the yield to 65% (entry 2), while substrates 2d
and 2e with a trifluoromethyl group at the para- and meta-
positions afforded 3d and 3e in the same high yield as 3b (3d:
84%, 3e: 77% yields, entries 3 and 4). Benzamides 2f-h having
chloro, bromo, and iodo atoms at the para-position gave the
corresponding products 3f-h in high yield without any loss of
the C-X bond (entries 5-7). Notably, in the case of methyl
substituted compounds, the steric congestion around the
carbonyl moiety of the amides was crucial: 4-methyl- and 3-
methyl derivatives 2i and 2j produced 3i in 77% yield and 3j in
27% yield, while N,N-dimethyl-2-methylbenzamide (2k) led to
a trace amount of 3k (entries 8-10). 4-Cyano-N,N-dime-
thylbenzamide (21) gave 31 in 86% yield (entry 11). On the other
hand, the use of an aliphatic substituted amide, N,N-dimethyl-
3-phenylpropanamide, afforded 12% of the corresponding ester
3m (entry 12). N,N-Dimethylisonicotinamide (2n) and N,N-
dimethyl-2-furamide (20) were converted to the corresponding
esters 3n and 30 in 98% and 88% yields, respectively (entries 13
and 14).

We varied the alcohols used for the esterification of 2a
(Table 5). We used alcohols with a low boiling point and

Table 4 Scope and limitation of amides 2

1¢ (2 mol% on Mn)

Q L1 (2 mol%) i
1 1
R NMe2  ng,0H (0.25 mL), 135 °C, 18 h R" "O"Bu
2 (0.5 mmol) - HNMe; 3
Entry R’ 3: Yield?[%] || Entry R’ 3: Yield?[%]
1b ©)( 2b  3b:78 8> /©X 2 377
2b /©}(2c 3c: 65 9 \©X 2 3j:27
MeO
3 /©%2d 3d: 84 10 E:i 2k 3k: trace®
FsC
FsC
4 \©X 2 3e:77 11 21 3186
NC
5 /@X 2f 392 12 pp ¢ 2m  3m: 12
cl
| X
6 /@X 2g 3g:78 13 N_J 2n 3n:98
Br
o)
7 2h  3h: 86 14 <\j{ 20 30:88
I

“ Isolated yield. ” Reaction time was 45 h. © Determined by 'H NMR
analysis with phenanthrene as an internal standard.

This journal is © The Royal Society of Chemistry 2019
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Table 5 Scope and limitation of alcohols

1c (4 mol% on Mn)

9 L1 (4 mol%) 0
2Z-naph™ 'NMe;  RoH (025 mL), temp., 45h  2-naph” “OR
2a (0.5 mmol) - HNMe, 4
Entry R Temp. [°C] 4: Yield?[%)]

1 4a: 93

2 shdl 120°C 4a: 78

3¢ )A\/\ 140 °C 4b: 69

4° )J/v 135 °C 4c: 43

5 ;Ji:\ 170 °C 4d: 78

gde )(\K 135 °C 4e: 51

79 }{\©\ 135 °C 4f: 92
o)

g > 135 °C 4g: 61
(o]

god J(\><OH 135 °C 4h: 53

“ Isolated yield. ” 2 mol% of 1c (based on Mn) and L1 were used.
° Reaction time was 72 h. ¢ 1.2 equiv. of alcohol was used in toluene
solution. ¢ Reaction time was 18 h.

sterically bulky secondary alcohols, and modified the reac-
tion conditions by increasing the loading of 1c to 4 mol%
based on Mn metal with L1 (4 mol%) and using a longer
reaction time depending on the alcohols we assessed. The
reaction with n-propanol at reflux temperature (120 °C) for
45 h gave n-propyl benzoate (4a) in 93% yield, although the
reaction of n-propanol with 2 mol% of 1e¢ and L1 for 45 h
afforded 4a in lower yields (78%) (entries 1 and 2). Secondary
alcohols such as 2-pentanol and 3-pentanol, respectively,
afforded 4b and 4c in 69% and 43% yields at reflux temper-
ature (140 °C and 135 °C, respectively) for 72 h (entries 3 and
4), while 4-heptanol produced the corresponding ester 4d in
78% yield at reflux temperature (170 °C) for 72 h (entry 5).
Solid alcohols such as 2,2-dimethylpropanol, (4-methyl-
phenyl)methanol, and piperonyl alcohol could be used for the
esterification of 2a in toluene at 135 °C, giving the corre-
sponding esters 4e (51% yield for 18 h reaction time), 4f (92%
yield), and 4g (61% yield) (entries 6-8). When 3-methyl-1,3-
butanediol was used for the esterification, 3-hydroxy-3-
methylbutyl-2-naphthoate (4h) was selectively obtained in
a moderate yield (53% yield, entry 8).

In contrast to the catalytic esterification of N,N-dimethyla-
mides, in which volatile dimethylamine was readily removed,
the addition of 1 equiv. of diethyl carbonate was required to
trap liberated amines to accomplish smooth esterification of
various substituents on the nitrogen atom of benzamide under
conditions of using 1c¢ (5 mol% based on Mn atom) with L1

Chem. Sci,, 2019, 10, 2860-2868 | 2863
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Table 6 Substrate scope for benzamides 5

1¢ (5 mol% on Mn)
(o] L1 (5 mol%)
)J\ R? diethyl carbonate (1.0 equiv)

[0}
Ph N ph)J\

‘R3 "BuOH (0.19 mL), 135 °C, 45 h
5 (0.5 mmol) 3b

O"Bu

Entry 5 3b: Yield®(%) || Entry 5 3b: Yield?(%)

o
6 Ph)L

81(74)

o
7 Ph)J\N/ 5g 60

o)

)J\’\D 5¢ 76 8 ppy N | 5h 83
HooNe

n(\ 5d 25 9

o)
)J\ 5i 82

Ph” “NH,

“ Determined by GC analysis with dodecane as an internal standard.
Isolated yield is given in parentheses.

(5 mol%) in refluxing n-butanol for 45 h (Table 6). Cyclic
derivatives of benzamide with piperidine 5a, morpholine 5b,
and pyrrolidine 5c¢ were converted into n-butyl benzoate 3b in
81%, 88%, and 76% yields, respectively (entries 1-3), though
acyclic N,N-diethylbenzamide (5d) significantly decreased the
yield of 3b, (25%, entry 4), probably due to the steric hindrance
around the carbonyl group of 5d. Esterification of N-methyl-N-
phenylbenzamide (5e) and 1-benzoyl pyrrole (5f) gave 3b in
93% and 92% yields, respectively (entries 5 and 6). Moreover,
the manganese catalyst system effectively mediated the
esterification of secondary and primary amides, such as
N-methylbenzamide (5g: 60% yield), N-(quinolin-8-yl)
benzamide (5h: 83% yield), and benzamide (5i: 82% yield)
(entries 7-9).

When we conducted a large scale reaction by using 0.996 g
of 2a under the conditions of using 1c (2.0 mol%) and L1
(2.0 mol%) in refluxing n-butanol (2.5 mL, 5.5 equiv.) for
72 h, we obtained 1.07 g of corresponding 3a in 94% yield

(eqn (1)).

[Mn(acac)(OEt)(EtOH)]4 (1¢)
(2 mol% on Mn)

o L1
)k 2 mol%) )OJ\
- 1
2-naph ’T‘ "BUOH (2.5 mL), reflux, 72h  2-naph” ~O"Bu @
- HNMe,
2a 3a

(0.996 g, 5.00 mmol) (1.07 g, 94% yield)

When radical scavengers, such as TEMPO and BHT, were
added to the reaction mixture, the yields of 3a were slightly
decreased to 83% and 73%, respectively, and by-products con-
taining TEMPO or BHT moieties were not detected (eqn (2)).

2864 | Chem. Sci,, 2019, 10, 2860-2868
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Thus, we proposed that the reaction mechanism is not a radical
pathway.

[Mn(acac)(OEt)(EtOH)]14 (1c)
(2.0 mol% on Mn)
L1 (2.0 mol%)

0 radical scavenger (10 mol%) i
2-naph” 'NMez  ng,0H (0.25 mL), reflux, 18 h ~ 2-naph” ~O"Bu (2)
2a (0.5 mmol) - HNMe, 3a

radical scavenger: TEMPO, 83% yield
BHT, 73% yield

Regarding the reaction mechanism, we isolated an alkoxide-
bridged Mn(u) dinuclear complex, [Mn(acac)(OEt)(Phen)], (6¢c:
47% yield), by treating complex 1c with 1,10-phenanthroline
(L4) (eqn (3)), as the corresponding manganese complex con-
taining Me,N-Phen (L1) provided no single crystals suitable for
X-ray analysis. Complex 6c was characterized by elemental
analysis and X-ray analysis due to its paramagnetic nature. In
the solid state, complex 6¢ has a dimeric structure, in which two
manganese centers are doubly bridged by two p-ethoxy groups
and each manganese atom adopts a distorted octahedral
structure (Fig. 2).

0 7 N\
/géoi\o_EL w)/@\ <_N; ;N_>

I/Mn—O N
EtOH~ ﬂcf)’E' | | Weawm |
~OLMZ o toluene, 100°C
e Y|
E\oﬁox)
1c 6c (47% yield)

Fig. 2 Molecular structures of complex 1c and 6¢ with 50% thermal
ellipsoids. All hydrogen atoms and solvent molecule are omitted for
clarity.

We determined a power value on the concentration of
substrate 2a using time normalization analysis.*** A mixture of
2a (0.600, 0.800, and 1.00 M) and [Mn(acac)(OEt)(Phen)], (6c,
60.7 mg, 80 pmol, 40 mM) in n-butanol (2.00 mL) with dodecane
as an internal standard was refluxed at 145 °C and the time
course of the yield of 3a was determined by GC analysis. As
shown in Fig. 3, the concentration of 3a was plotted against
a normalized time scale, Y [2a]”4¢, and we adjusted the power
value, a, until all the corrected conversion curves overlay. As
a result, we determined that the value of a was 1 (Fig. 3c). We

This journal is © The Royal Society of Chemistry 2019
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also determined a power value on the concentration of the
catalyst [Mn(acac)(OEt)(Phen)], (6¢) by using a normalized time
scale analysis.**” A mixture of 2a (398.5 mg, 2.00 mmol, 2.00 M)
and 6c¢ (30 mM, 50 mM, and 70 mM) in n-butanol (1.00 mL) with
dodecane as an internal standard was refluxed at 145 °C. As
shown in Fig. 4, the concentration of 3a was plotted against
a normalized time scale, [6c]", and we determined that the
value of n was 1 (Fig. 4c). The first-order rate dependency of 6¢
suggested that the dinuclear manganese complex 6c¢ acted as
a catalytically active species, whose dinuclear function was
comparable to that found for an alkoxide-bridged cobalt dinu-
clear complex active for catalytic transesterification.*
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Fig.4 Time normalization analysis to determine the order in dinuclear
manganese complex 6¢; (a)a =10, (b)a=0.5(c)a=1 (d)a=2.
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Scheme 1 A plausible reaction mechanism for the catalytic esterifi-
cation of simple tertiary N,N-dimethylamides.

On the basis of these results, we propose a reaction mecha-
nism of the catalytic esterification of simple tertiary N,N-dime-
thylamides described in Scheme 1. The first step is the
coordination of amide 2 onto a manganese atom of complex 6c,
affording dinuclear complex A. The alkoxy group bound to the
manganese center in A attacks the carbonyl group of the amide
moiety to cleave a C-N bond via intermediate B, in which an
N~N-bidentate ligand with electron-donating groups at the
para-positions accelerated the nucleophilic attack. According to
the kinetics, the nucleophilic attack of the alkoxide on the
carbonyl group is the rate-determining step. The intermediate B
is transformed to C, forming a manganese complex D, where
the resulting ester coordinates to the manganese atom bearing
a dimethylamido moiety. Finally, protonolysis of the
manganese-amido moiety using alcohol produces dimethyl-
amine and the dinuclear Mn(u)-alkoxide complex together with
the release of ester 3.

Conclusions

In summary, we provide the first example of catalytic esterifi-
cation of simple tertiary N,N-dialkylamides under neutral
conditions using the catalyst system [Mn(acac)(OEt)(EtOH)],
(1c, 2 mol% based on Mn metal) and 4,7-bis(dimethylamino)-
1,10-phenanthroline (L1: Me,N-Phen, 2 mol%). Regarding the
reaction mechanism, we isolated the alkoxide-bridged manga-
nese dinuclear complex [Mn(acac)(OEt)(Phen)], (6¢) as the key
catalyst, and conducted kinetic studies in which the velocity
obeys k.ps[2a]'[6¢c]". It is notable that such a catalytic perfor-
mance of the dinuclear manganese complex 6¢ is related to the
mechanism of metalloenzymes that regulate the transformation
of carboxylic derivatives. Further mechanistic studies and
catalytic application of a Mn-based catalyst system are ongoing
in our laboratory.

Experimental section

All manipulations involving air- and moisture-sensitive organ-
ometallic compounds were carried out under argon using the

Chem. Sci,, 2019, 10, 2860-2868 | 2865
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standard Schlenk technique or an argon-filled glovebox. n-
Propanol, 2-propanol, n-butanol, 2-pentanol, 3-pentanol, 4-
heptanol, and diethyl carbonate were distilled under an argon
atmosphere from CaH,. 3-Methyl-1,3-butanediol was distilled
under an argon atmosphere by using Kugelrohr. 2,4-Pentadione
was distilled under an argon atmosphere from P,0;,. THF,
diethyl ether, hexane, and toluene were dried and deoxygenated
using a Grubbs column (Glass Contour Solvent Dispensing
System, Nikko Hansen & Co., Ltd.).** Ethanol and methanol
were distilled under an argon atmosphere from the corre-
sponding magnesium alkoxide. DMSO-d¢ was dried over MS4A
in a J-Young Schlenk under an argon atmosphere. Wako super
dehydrated DMF was degassed and kept in a J-Young Schlenk
with MS4A under an argon atmosphere. Lithium ethoxide was
prepared by treating metal lithium with ethanol in hexane
suspension. All other reagents were purchased from commer-
cial resources and used without further purification. NMR
spectra were recorded on a Bruker AV 400M spectrometer
operating at 400 MHz (‘"H NMR), at 100 MHz (**C{'H} NMR) and
at 376 MHz (*’F{"H} NMR) in 5 mm NMR tubes. All '"H NMR
chemical shifts were reported in ppm relative to the TMS at
0.00 ppm or residual solvent protons in DMSO-dg at 6 2.50. All
BC{"H} NMR chemical shifts were reported in ppm relative to
carbon resonance in chloroform-d; at 6 77.16 and DMSO-d, at
4 39.52. All F{"H} NMR chemical shifts were reported in ppm
relative to the external reference o,a,a-trifluorotoluene at
0 —63.9. Melting points were recorded using a BUCHI Melting
Point M-565 and YANACO MP-]J3. IR spectra were recorded on
a JASCO FT/IR 4000 spectrometer. Mass spectra (MS) and high
resolution mass spectra (HRMS) were recorded using a JEOL
JMS-700. ESI-mass spectrometric data were obtained using
a BRUKER microTOF-II spectrometer. GC analyses were recor-
ded on a Shimadzu GC-2014 gas chromatograph with J&W
Scientific DB-5 and Shimadzu SH-Rtx-50 columns. Flash
column chromatography was performed using silica gel 60
(0.040-0.063 mm, 230-400 mesh ASTM).

General procedure for catalytic esterification of N,N-dimethyl-
2-naphthamide (1.0 mol%)

The mixture of catalyst precursor (5.0 umol based on Mn
atoms), ligand (5.0 pmol), and N,N-dimethyl-2-naphthamide
(99.6 mg, 5.00 x 10" mmol) in n-butanol (2.50 x 10" mL)
was refluxed at 135 °C for 18 hours under an argon atmosphere
in a slim Schlenk (¢ 10 mm). After cooling to room temperature,
yields were determined using the following procedures.

(1) GC yield: metal salts were removed by filtration through
silica gel with ethyl acetate. The yield was determined by GC
analysis with dodecane as an internal standard.

(2) NMR yield: metal complexes were removed by filtration
through silica gel with CDCl; twice. The yield was determined
by '"H NMR analysis with phenanthrene as an internal standard.

General procedure for preparation of amides

Amides were synthesized by standard condensation reaction
using the corresponding acyl chlorides and amines. Products
were purified by silica gel flash column chromatography or

2866 | Chem. Sci, 2019, 10, 2860-2868

View Article Online

Edge Article

distillation under reduced pressure using Kugelrohr, and
characterized by 'H and "*C{'"H} NMR spectroscopies.

Preparation of ligands, substrate amides, and manganese
complexes

Synthesis of 1-benzoyl pyrrole (5f). Equivalents of substrates
were modified from the literature.’” Sodium hydride (60% oil
dispersion, 599.8 mg, 15.0 mmol) was washed with 2 mL of
dried and deoxygenated hexane three times under an argon
atmosphere, and dried in vacuo. After refilling argon, dried and
deoxygenated THF (20 mL) was added, and the suspension was
cooled to 0 °C in an ice bath. Pyrrole (0.690 mL, 10.0 mmol) was
slowly added to the reaction mixture and the mixture was stirred
at 0 °C for 90 minutes. Then benzoyl chloride (1.70 mL, 15.0
mmol) was slowly added to the mixture at 0 °C. After warming to
room temperature, the reaction mixture was stirred overnight.
Then, the reaction mixture was quenched by water, and the
water layer was extracted with 20 mL of EtOAc three times. The
combined organic layer was washed with 1 M HCl aq. twice, sat.
NaHCO; aq., and brine, and dried over Na,SO,. The crude
products were obtained by removal of solvent in vacuo, and
purified by flash column chromatography (silica gel, hex-
ane : EtOAc = 20: 1), and distillation using Kugelrohr (>0.05
mmHg, 125-135 °C) to give a colorless liquid (1.23 g, 7.18 mmol,
72% yield).

Synthesis of 4,7-bisdimethylamino-1,10-phenanthroline
(Me,N-Phen).*®* A suspension  of  4,7-dichloro-1,10-
phenanthroline (1.48 g, 5.94 mmol) in DMF (50 mL) was
refluxed for 30 h under an argon atmosphere. After cooling to
room temperature, all volatiles were removed in vacuo. Then the
residue was dissolved in 1 M NaOH aq. (50 mL) and THF (70
mL), and the solution was extracted with DCM (50 mL x 3). The
combined organic layer was washed with 1 M NaOH agq. twice
and brine, and dried over Na,SO,. Removal of volatiles in vacuo
gave the crude product as a brown solid, and the product was
purified by washing with EtOAc (3 mL X 3) to give a purple solid
(741.1 mg, 2.78 mmol, 47% yield). "H NMR (400 MHz, DMSO-dg,
30°C) 6 8.74 (d, J = 5.0 Hz, 2H), 7.96 (s, 2H), 7.11 (d, J = 5.0 Hz,
2H), 3.01 (s, 12H); "*C{'"H} NMR (100 MHz, DMSO-d,, 30 °C)
6 157.0, 149.4, 147.6, 121.4, 120.6, 109.6, 43.7.

Synthesis of [Mn(tmhd)(OMe)(MeOH)], (1a). [Mn(tmhd)-
(OMe)(MeOH)], was prepared according to the literature.**
MnCl, (629 mg, 5.00 mmol) and 2,2,6,6-tetramethylheptane-
dione (1.00 mL, 5.00 mmol, 1.0 equiv.) were dissolved in 10 mL
of methanol. In another flask, KOMe (701 mg, 10 mmol, 2.0
equiv.) was dissolved in methanol. The two solutions were
slowly mixed to form a yellow precipitate. The supernatant was
removed by using a cannula, and the residues were extracted
with toluene, and layered with methanol to induce recrystalli-
zation to give 1a as a yellow solid in 82% yield (1.23 g, 1.02
mmol).

Synthesis of [M(u)(tmhd)(OMe)(MeOH)], (M = Fe,**’Co,*
Cu®?). [M(u)(tmhd)(OMe)(MeOH)], was prepared according to
the literature. MCl, and 2,2,6,6-tetramethylheptanedione (1.0
equiv.) were dissolved in methanol. In another flask, KOMe (2.0
equiv.) was dissolved in methanol. The two solutions were

This journal is © The Royal Society of Chemistry 2019
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slowly mixed to form a precipitate, immediately. The superna-
tant was removed by using a cannula, and the residues were
extracted with toluene, and layered with methanol to induce
recrystallization. M = Fe: deep red solid, 1.09 g, 0.900 mmol,
80% yield, M = Co: burgundy solid, 152 mg, 0.124 mmol,
64% yield, M = Cu: deep blue solid, 22.2 mg, 20.0 umol, 11%

yield.
Synthesis of [Mn(dbm)(OMe)(MeOH)], (1b).*** MnCl,
(629 mg, 5.00 mmol) and dibenzoylmethane (1.12 g,

5.00 mmol, 1.0 equiv.) were dissolved in 10 mL of methanol. In
another flask, KOMe (10 mmol, 2.0 equiv.) was dissolved in
methanol. The two solutions were slowly mixed, and yellow
powder was immediately precipitated. The supernatant was
removed by using a cannula, and the residues were extracted
with toluene, and layered with methanol to induce recrystal-
lization to give 1b as an orange solid (258 mg, 0189 mmol, 15%
yield).

Synthesis of [Mn(acac)(OEt)(EtOH)], (1c). MnCl, (629 mg,
5.00 mmol) and acetylacetone (0.530 mL, 5.00 mmol, 1.0 equiv.)
were dissolved in 10 mL of ethanol. In another flask, LiOEt
(10 mmol, 2.0 equiv.) was dissolved in ethanol. The two solu-
tions were slowly mixed, and yellow powder was immediately
precipitated. The supernatant was removed by using a cannula,
and the residues were extracted with toluene, and layered with
ethanol to induce recrystallization to give 1c as a pale yellow
solid (1.00 g, 1.02 mmol, 82% yield). m.p. 282-290 °C (dec.),
anal. caled for C34H5,0,6Mny: C, 44.09; H, 7.40; found: C, 43.96;
H, 7.69.

Synthesis of Mn(u) alkoxide-bridged binuclear complex 6¢. A
solution of 1c (99.6 mg, 0.101 mmol) and 1,10-phenanthroline
(73.2 mg, 0.406 mmol, 4.00 equiv.) in toluene (10 mL) was
heated at 100 °C for 18 hours under an argon atmosphere. Then,
the residues were extracted with toluene (20 mL) at 100 °C, and
the solution was slowly cooled to —20 °C. The supernatant was
removed by using a cannula, and the resulting solid was dried
under reduced pressure to give a deep red solid (71.3 mg,
0.0940 mmol, 47% yield). m.p. 230-234 °C (dec.), anal. calcd for
C35H4oN,06Mn,: C, 60.16; H, 5.31; N, 7.39; found: C, 60.10; H,
5.27; N, 7.14.

X-ray crystallographic analyses. Crystals of 1c and 6¢ were
handled similarly. The crystal was mounted on a CryoLoop
(Hampton Research Corp.) with a layer of light mineral oil and
placed in a nitrogen stream at 113(1) K. Measurements were
made on a Rigaku XtaLAB P200 system with graphite-
monochromated Mo-Ko. (0.71075 A) radiation. The structures
of complexes 1c and 6¢c were solved using direct methods
(SIR92)* in the CrystalClear program.*® The structures were
refined on F* using the full-matrix least-squares method, using
SHELXL-2013.** H-atoms were included in the refinement on
calculated positions riding on their carrier atoms. The function
minimized was [ w(F,” — F.>)*] (w = 1/[0*(F,>) + (aP)> + bP]),
where P = (max(F,%,0) + 2F.%)/3 with ¢*(F,>) from counting
statistics. The functions R1 and wR2 were (Y| |Fo| — |Fe||)/>2 | Fol
and [ w(F,2 — FA)2/S (wF,M]'?, respectively. Crystal data and
structure refinement parameters are listed in Table S1.t The
ORTEP-3 program was used to draw the molecules.*?
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