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The first catalytic strategy to harness imidate radicals for C—H functionalization has been developed. This
iodine-catalyzed approach enables B C—H amination of alcohols by an imidate-mediated radical relay. In
contrast to our first-generation, (super)stoichiometric protocol, this catalytic method enables faster and
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tolerance, including alkenes, alkynes, alcohols, carbonyls, and heteroarenes. Mechanistic experiments

DO 10.1039/c85c05685d interrogating the electronic nature of the key 1,5 H-atom transfer event are included, as well as probes
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Introduction

At the frontier of organic synthesis, the selective replacement of
an unbiased C-H bond with a more valuable chemical motif
remains a vital challenge.® Specifically, incorporation of
a nitrogen atom by C-H amination is an especially important
goal in medicinal chemistry.>* Among recent advances toward
directed sp® C-H functionalization of abundant alcohol deriv-
atives,* there remain few methods to synthesize § amino alco-
hols (a privileged motif in medicine)® by C-H amination.® To
complement state-of-the-art, metal-catalyzed nitrenoid and C-H
insertion pathways for remote C-H amination,” we sought to
employ a radical-based approach that entails & selective,
hydrogen atom transfer (HAT).*® Despite recent advances in
8 C-H amination via HAT," there remain few catalytic examples
of this transformation. Having recently disclosed the first
method for directed B C-H amination of alcohols by a comple-
mentary imidate radical relay,"”>** we sought to develop an
improved, catalytic strategy (Fig. 1).

In our radical relay chaperone strategy, alcohols are readily
converted to imidates by addition to nitriles (Fig. 1a). Upon
combination with stoichiometric oxidant (Nal, PhI(OAc),; 3
equiv. each), a transient sp> N-centered radical'** is generated
that undergoes selective 1,5-HAT to afford a C-centered radical -
B to the imidate. Subsequent radical trapping and acidic
hydrolysis yields B amino alcohols in a rapid, selective, and
efficient fashion. With the hopes of expanding the synthetic
utility of this new strategy, we proposed development of a cata-
lytic variant (Fig. 1b). To complement our first-generation,
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for chemo-, regio-, and stereo-selectivity.

photo-mediated method, we hypothesized the key, radical-
generating iodine atom, which is not incorporated in the
product, could be continually recycled and ultimately employed
in a catalytic fashion.

In an alternate, thermally initiated sequence, we envisioned
a substoichiometric quantity of I, may undergo ligand substi-
tution with PhI(OAc), (1 equiv. only) to generate AcOI In the
presence of an alcohol-derived imidate (A), selective formation
of a weak N-I bond (B)'**” would enable thermal homolysis to
an N-centered radical (C). This transient species (typically
accessed by photolysis)*® should undergo regio-selective 1,5-
HAT to yield B radical (D). Rapid radical recombination (or
chain-propagation with AcOI or N-I) would yield P alkyl iodide
(E). In the presence of PhI(OAc), as a terminal oxidant, we
proposed oxazoline (F) formation may accompany regeneration
of the AcOI catalyst by one of two mechanisms: (1) iodide
displacement by the imidate, and re-oxidation of I" to I*,** or (2)
alkyl hypervalent iodane formation, and amination via an I(u)/
I(1) pathway.* Importantly, we proposed thermal initiation of
this catalytic cycle under low concentrations of I, (or AcOI) may
improve reaction efficiency and chemoselectivity by precluding
byproduct-forming pathways associated with photolysis of these
promiscuous oxidants.*

Results and discussion

In accord with our design, we were pleased to find the catalytic
B C-H amination of imidate 1 by HAT is indeed possible with
5 mol% I, and 1.2 equiv. PhI(OAc),, affording 2 in 95% yield
(Table 1). Crucially, this thermal protocol requires polar, aprotic
solvents (e.g. DMF, MeCN), whereas other solvents (e.g. CH,Cl,,
PhMe) afford inferior yields (entries 1-4). Although rigorous
degassing is not essential, an N, atmosphere was found to be
superior to an aerobic one (entry 5). Although alkali iodide salts
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A. Synthesis of § amino alcohols via radical relay chaperone strategy
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Fig. 1 Radical relay strategy for p C—H amination of alcohols: (a)
catalytic vs stoichiometric. (b) lodine-catalyzed mechanism.

(e.g Nal, CsI) are competent sources of iodine for this reaction,
they are less efficient than more soluble I, reagent (entries 6
and 7). Finally, photolysis (entry 8) or non-photolytic initiation
at room temperature (entry 9) afford reactivity, albeit with less
efficiency than standard thermal initiation at 50 °C.

Table 1 Development of a catalytic C—H amination of imidates

I (5 mol%) Ph
P“YN“ PhI(OAc), (1.2 equiv) >§N
0
0.
Ny DMF, 50°C npr
1 2
Entry Changes from standard conditions Yield (%)
1 None 95
2 CH,Cl, instead of DMF 31
3 PhMe instead of DMF 33
4 MeCN instead of DMF 94
5 Air atmosphere instead of N, 61
6 Nal instead of I, 67
7 CsI instead of I, 76
8 2 x 23 W CFL 50
9 Dark, room temperature 40
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Interestingly, we noted this catalytic reaction is completed at
a significantly faster rate than the first-generation, photo-
initiated conditions. As shown in Fig. 2, our previous condi-
tions, which are super-stoichiometric in Nal and PhI(OAc),,
required several hours for reaction completion (purple line).
Conversely, 80% yield is observed in 30 minutes with 5-10% I,
(red and blue lines) or even in as little as 10 minutes with 20% I,
(green line). Although a mere 1% I, provides full conversion in 6
hours, we found these longer reaction times to be less practical
than the 1-2 hours needed for 5% catalyst loading. Given that
less soluble sources of iodide (e.g. Nal, CsI) do not afford
product as rapidly or efficiently (likely due to slower, incomplete
generation of I,), we presume greater solubility of I, affords
a higher initial concentration of the active oxidant, AcOI. Taken
together, these data suggest the faster rates shown in Fig. 2 are
consistent with a higher initial concentration of reactive AcOlI,
as proposed in the mechanism shown in Fig. 1. Moreover, less
terminal oxidant, and thermal (vs. photolytic) initiation, may be
responsible for ensuring AcOlI-based, two-electron reactivity is
more selective for the desired reaction pathway.

Synthetic scope

In order to explore the synthetic utility of our new thermally
initiated, I,-catalyzed protocol, we subjected a series of imidates
to these B C-H amination conditions (5% I,, 1.2 equiv.
PhI(OAc),, DMF, 50 °C). Upon reaction completion, acidic
hydrolysis of the resulting oxazoline with aq. HCI yielded the
respective B amino alcohol. As shown in Fig. 3, a wide range of
imidates undergo the radical relay mechanism via these cata-
Iytic conditions. For trichloroacetimidates (derived from
combination of alcohols and CI;C-CN), a range of electronically
diverse 2-phenylethanol derivatives could be selectively ami-
nated at the B position. These benzylic C-H aminations (3-10)
are amenable to both electronically rich and deficient

I (5, 10, or 20 mol%)

Phi(OAc), (1.2 equiv) Ph
PhYNH DMF, 50°C ~N
0 v A
e Nal (3 equiv) "y
1 PhI(OAc), (3 equiv) 2

MeCN, visible light

Yield (%)
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Fig. 2 Comparison of the catalytic C—H amination of imidates with
the previous stoichiometric version.
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Fig. 3 Synthetic utility of iodine-catalyzed B C—H amination of imidates. Conditions: 0.4 mmol imidate, I, (5 mol%), PhI(OAc), (1.2 equiv.), DMF
(0.2 M), 50 °C. *H NMR yield of oxazoline determined vs. standard. Hydrolysis with HCL (2 M) affords amino alcohol (isolated yield, in parenthesis).
3lsolated yield of oxazoline. °Stoichiometric Nal (ref. 12). Ac* refers to trichloroacetamide. Functional group robustness: C—H amination yield, %
additive remaining.

substituents (OMe, Me, F, CF;) as well as ortho, meta, and
para substitution. Additionally, medicinally relevant hetero-
arenes (thiophene, pyridine, 11-12) are tolerated, as well as
the tertiary C-H of an ibuprofen analog (13). Secondary
alcohols are efficiently aminated with excellent diaster-
eoselectivity (up to >20 : 1 d.r.; 14-15). Finally, the allylic C-H
of a cholesterol analog is also efficiently and stereo-selectively

aminated (16). To promote the B amination of stronger,
aliphatic C-H bonds, we employed benzimidates (derived
from combination of alcohols with Ph-CN or with Ph(CN)
OCH,CF;). This catalytic protocol is also suitable for the
regioselective amination of primary, secondary, and tertiary
C-H bonds (17-21). Similarly, secondary alcohols are

This journal is © The Royal Society of Chemistry 2019 Chem. Sci, 2019, 10, 2693-2699 | 2695
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tolerated, although greater diastereoselectivity is observed
for cyclic versus acyclic cases (>20 : 1 d.r. vs. 1:1 d.r.).

As a testament to the synthetic utility provided by these mild,
catalytic conditions, several functional groups that were not
previously tolerated in our stoichiometric protocol can now be
aminated (22-26). Most interestingly, the reactive r-systems of
alkenes and alkynes, which are prone to deleterious reaction
with large amounts of oxidant, are now amenable as substrates.
For example, whereas alkene 25 was previously accessible in
only 43% yield under the stoichiometric, photochemical
protocol, these catalytic, thermal conditions provide amination
in 88% yield. Additionally, alkynes, which had previously not
been tolerated (0%), are now suitable substrates for this p C-H
amination (26, 63% yield).

To further probe this improved functional group tolerance,
we conducted an additive robustness screen® for both the
stoichiometric and catalytic protocols - employing synthetically
and medicinally relevant functionalities that appeared unlikely
to withstand strong oxidative conditions. As shown in Fig. 3,
this catalytic method is superior for the B C-H amination of
imidate 1 to 2 in the presence of various functional groups,
including alkenes, alcohols, ketones, aldehydes, thiophenes,
pyrroles, and halides (catalytic: 85-100%; stoichiometric:
0-82% yield). Illustrating the mildness of the new catalytic
protocol, these additives are recovered in up to 95% yield,
whereas they are frequently decomposed in the highly oxidative
environment of the stoichiometric conditions (0-43%) (see ESIT
for complete table of functional groups tolerated, including
those that are tolerated in both conditions).

Mechanistic investigations

To gain a deeper understanding of this reaction mechanism, we
conducted a series of competitive rate studies interrogating
various stereoelectronic effects. First, we probed the regiose-
lectivity of the imidate radical-mediated amination in the
presence of weaker C-H bonds. Although our reaction design is
based on the entropic and enthalpic favorability of 1,5-HAT,**
there are notable examples of 1,6-HAT mediated pathways that
are governed by substrate geometry®® or thermodynamics.> To
test the influence of the latter, the B selectivity of this C-H
amination was investigated for alcohols bearing a weaker y C-H
bond (Fig. 4). In each case, B selectivity (via 1,5-HAT) was
observed in preference to vy selectivity (via 1,6-HAT). When the vy
C-H bond is significantly weaker (benzylic: 90 vs. secondary:
98 kcal mol™"),% the B amine 27 is still preferentially formed
(2:1 B:vy selectivity). However, when y C-H bond is only
marginally weaker (3°: 96 vs. 2°: 98 keal mol ™), the p amine 28
is obtained exclusively (>20 : 1 B : v selectivity).

Next, we investigated the observed diastereoselectivity of the
f C-H amination by employing cis and ¢rans isomers of 2-
phenyl-cyclohexanol 29 as stereochemical probes in the
formation of B amino alcohol 30 (Fig. 5). Whereas the tri-
chloroacetimidate of cis-29 does not afford C-H amination
(likely because the imidate radical is conformationally con-
strained to the opposite side of the ring), trans-29 efficiently
undergoes HAT (since the imidate radical and B C-H are syn to
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Fig. 4 Regioselectivity probes of B selectivity via 1,5-HAT.

one another). Interestingly, these catalytic conditions afford
greater diastereoselectivity (5:1 d.r.) than the stoichiometric
protocol (2 : 1 d.r.). Moreover, B benzyl iodide intermediate 31
was observed for the first time, only in the catalytic case. Taken
together, these results suggest divergent mechanisms are
operative in the radical trapping steps of these two protocols. A
possible explanation is that the higher oxidant concentration of
the (super)stoichiometric method more rapidly oxidizes the
benzyl radical to a cation, which is unselectively cyclized to
afford the thermodynamically favored cis product in onlya 2 : 1
excess. On the other hand, a stepwise iodine trapping and
subsequent cyclization mechanism under the low oxidant
concentration of the catalytic conditions allow for greater 5: 1
diastereoselectivity. This likely occurs via slower conversion of
the observed alkyl iodide intermediate 31, which enables
greater, overall stereocontrol. Oxidation of benzyl iodide 31 to
its hypervalent iodane nucleofuge may also afford cyclization -
with either retention or inversion.*

60-80%
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.

trans-29

catalytic: 5:1 d.r.
stoichiometric: 2:1 d.r.

trans-30, minor

0-Z 0-Z o-Z

@.pH high [0] ol low [O] I
(j/ [ j/ —_— Ph
+le

-~
rapid trap of radical 31, iodide observed
cation affords intermediate only in catalytic reaction
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Fig. 5 Diastereoselectivity via divergent trapping mechanisms.
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Fig. 6 Hammett plot correlates to a cation-like transition state.

Finally, we examined the nature of the hydrogen atom
transfer mechanism via a Hammett study (Fig. 6). By varying
substituents of 2-arylethanol imidates, we determined a linear
free-energy relationship exists between initial reaction rates and
the electronics of the para-substituents. As shown in Fig. 6, we
observed reaction acceleration with p-OMe and p-Me groups,
whereas p-CF; and p-NO, substituents decrease product forma-
tion relative to the parent 2-Ph-ethanol. The resulting negative
slope (p) of the Hammett equation is consistent with other HAT-
mediated C-H functionalizations.”” In this case, we propose
intramolecular HAT (which we have shown to be rate-limiting,
with primary KIE values up to 8)" is enabled by an electro-
philic N-centered radical, gaining electron density in the transi-
tion state, as an N-H ¢ bond is formed. At the same time, the
carbon atom loses electron density in the transition state as the
ensuing C-centered radical is formed. Thus, electron-releasing
groups at the para-position stabilize this transition state by
electron donation, while electron-withdrawing groups have the
opposite effect. The resultant stabilization by donating groups
thus reasonably explain the observed reaction rate acceleration.

Conclusions

In summary, we have developed the first catalytic variant of our
radical chaperone strategy for converting alcohols into  amino
alcohols via HAT. This conversion of ubiquitous motifs into
privileged pharmacophores is a synthetically valuable method
enabled by a radical relay cascade. Through a new, I,-catalyzed
protocol, this B C-H amination sequence now has significantly
broadened synthetic utility. We expect additional mechanistic
insights provided herein (on reaction rates, as well as chemo-,
regio- and stereo-selectivity) will enable further applications of the
imidate-mediated HAT in regioselective C-H functionalizations.
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