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functionalized chiral secondary
benzylic boronic esters via catalytic asymmetric
hydroboration†

Suman Chakrabarty, a Hector Palencia, b Martha D. Morton, ac Ryan O. Carr a

and James M. Takacs *ac

Allylic and homoallylic phosphonates bearing an aryl or heteroaryl substituent at the g- or d-position undergo

rhodium-catalyzed asymmetric hydroboration by pinacolborane to give functionalized chiral secondary

benzylic boronic esters in yields up to 86% and enantiomer ratios up to 99 : 1. Compared to minimally-

functionalized terminal and 1,1-disubstituted vinyl arenes, there are relatively few reports of efficient

catalytic asymmetric hydroboration (CAHB) of more highly functionalized internal alkenes. Phosphonate

substrates bearing a variety of common heterocyclic ring systems, including furan, indole, pyrrole and

thiophene derivatives, as well as those bearing basic nitrogen substituents (e.g., morpholine and pyrazine)

are tolerated, although donor substituents positioned in close proximity of the alkene can influence the

course of the reaction. Stereoisomeric (E)- and (Z)-substrates afford the same major enantiomer of the

borated product. Deuterium-labelling studies reveal that rapid (Z)- to (E)-alkene isomerization accounts

for the observed (E/Z)-stereoconvergence during CAHB. The synthetic utility of the chiral boronic ester

products is illustrated by stereospecific C–B bond transformations including stereoretentive electrophile

promoted 1,2-B-to-C migrations, stereoinvertive SE2 reactions of boron-ate complexes with electrophiles,

and stereoretentive palladium- and rhodium-catalyzed cross-coupling protocols.
Introduction

Chiral alkyl boronic esters possess a unique blend of benchtop
stability and the potential to undergo a variety of C–B bond
transformations via stereospecic 1,2-migration from an in situ
generated boron “ate-complex” rendering them especially
versatile intermediates for asymmetric synthesis.1,2 Metal-
catalyzed asymmetric protoboration3 and hydroboration4,5 of
alkenes are among the most common approaches for the
preparation of chiral alkyl boronic esters. While catalytic
asymmetric hydroboration (CAHB) of minimally-functionalized
terminal and 1,1-disubstituted vinyl arenes (e.g. simple
substituted styrene derivatives) have been extensively investi-
gated,6 there are relatively few reports using more highly func-
tionalized di- or trisubstituted internal alkenes.7 The latter have
been a focus of our research into CAHB. Herein, we disclose that
1,2-disubstituted allyl phosphonates bearing an aryl substituent
f Nebraska-Lincoln, Lincoln, Nebraska

raska-Kearney, Kearney, Nebraska 68849,
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at the g-position are efficient substrates and provide facile
access to functionalized chiral, secondary benzylic and related
a-aryl boronic esters.8

We previously reported that methylidene substrates bearing
b-phenyl substitution undergo efficient rhodium-catalyzed
CAHB with pinacolborane (pinBH) to give chiral tertiary
boronic esters via regioselective b-boration. For example, 1
affords (R)-2 (81%) in a 97 : 3 enantiomer ratio (er); the b : g
regioisomer ratio (rr) is 4 : 1 or greater under the conditions
described in Fig. 1.5a Similarly, the trisubstituted alkene (E)-3,
bearing phenyl substituents at both the b- and g-positions,
undergoes preferential b-boration (3 : 1 rr) to afford the chiral,
tertiary boronic ester product (R)-4 (60%, 97 : 3 er).5a

We now report that 5a and related substrates bearing
a phenyl, aryl or heteroaryl substituent at the g-position
undergo preferential g-boration to afford new chiral, secondary
benzylic boronic esters. The benzylic regiochemistry presum-
ably arises from the favorable formation of a rhodium p-benzyl
complex of the substrate in the course of reaction.9 We were
surprised to nd that the alkene stereochemistry does not
impact the overall regio- or stereochemical course of the reac-
tion. Both (E)- and (Z)-5a afford the same g-borated product 6a
in greater than 20 : 1 rr using (R)-B1; C–B bond oxidation using
NaBO3$4H2O affords the known chiral alcohol10 shown (82%,
96 : 4 er).
This journal is © The Royal Society of Chemistry 2019
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Fig. 1 Directed-CAHB of allylic phosphonate-functionalized vinyl
arenes varying in substitution pattern. Standard CAHB conditions:
1 mol% Rh(nbd)2BF4 or 0.5 mol% [Rh(cod)Cl]2/1 mol% AgBF4, 1 mol%
(R,R)-T1 or (R)-B1, 1.1 eq. pinacolborane (pinBH), 3 h, rt. Oxidation
conditions: NaBO3$4H2O/H2O.
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Results and discussions

Two alternative rhodium catalyst precursors are used in this
study. A 1 : 1 combination of [Rh(nbd)2BF4/(R)-B1] can be
replaced by an in situ generated 1 : 1 [Rh(cod)BF4/(R)-B1] cata-
lyst formed by treating [Rh(cod)Cl]2 with AgBF4 and the chiral
ligand. The catalysts afford near identical results, but the latter
protocol is more economical. While pinBH is known to undergo
relatively facile rhodium-catalyzed degradation,11 thus oen
necessitating its use in excess, a stoichiometric amount of
pinBH is usually enough for complete CAHB of these allylic
phosphonates.

The choice of chiral ligand is, of course, critical to the
success of CAHB.12 As indicated in Fig. 1, rhodium catalyst
systems incorporating the TADDOL-derived chiral cyclic
monophosphite (R,R)-T1 give efficient enantioinduction for b-
aryl methylidene substrate 1 and the b,g-bisaryl trisubstituted
alkene (E)-3. Its use with 5a gives (S)-6a in good yield (81%, aer
oxidation), but with only a low level of enantioinduction (64 : 36
er). In contrast, the BINOL-derived phosphoramidite (R)-B1
affords high levels of regiocontrol and enantioselectivity.13
Scope of aryl and heteroaryl substrates

Fig. 2 summarizes results obtained for a series of substrates 5b–
t in which the nature of the aromatic ring appended at the g-
position varies. In addition to the major g-boration product 6
and the minor regioisomeric b-boration product 7, alkene
reduction (i.e., 8) typically comprises the remaining 5–15% of
the product mixture. The latter reaction mode arises from
a competing catalytic cycle and is the subject of ongoing
This journal is © The Royal Society of Chemistry 2019
studies;14 it will not be discussed further here. Herein, we focus
on the regio- and enantioselectivity of the rhodium-catalyzed
hydroboration mode.15

A range of donor and acceptor substituents are well-tolerated
with relatively minor uctuations in regio- and/or enantiose-
lectivity. For example, the 4-methylphenyl derivative 5b and the
4-triuoromethylphenyl derivative 5c undergo g-boration with
high regioselectivity (>20 : 1 rr) yielding 9b (84%, 97 : 3 er) and
9c (78%, 97 : 3 er) aer oxidation of the corresponding
secondary benzylic boronic esters (i.e., 6b and 6c). The 4-uo-
rophenyl (5d) and 4-methyoxyphenyl (5e) derivatives exhibit
somewhat lower levels of g : b regioselectivity (6d–e, 10–11 : 1
rr) and enantioselectivity affording 9d (71%, 94 : 6 er) and 9e
(77%, 94 : 6 er), respectively. In contrast, the 3-methoxyphenyl
derivative 5f and 3,4-methylenedioxyphenyl derivative 5g again
exhibit higher regioselectivity (6f–g: >20 : 1 rr) leading to 9f
(83%, 98 : 2 er) and 9g (70%, 94 : 6 er), aer oxidation. The 2-
methoxyphenyl derivative 5h exhibits reduced regioselectivity
(6h: 9 : 1 rr), but otherwise good conversion to yield 9h (72%,
94 : 6 er).16 The 4-dimethylamino, morpholine, and pyrazine
derivatives 5i–k demonstrate the viability of substrates bearing
basic nitrogen functionality; 9i–k are obtained in moderate to
good yields (55–68%) and up to 94 : 6 er.

In addition to demonstrating tolerance for basic nitrogen in
several of the substrates described in Fig. 2, it is pleasing to see
that substrates incorporating some heteroaromatic ring
systems also undergo efficient CAHB, albeit with some unusual
variation in regio- and/or enantioselectivity. For example, the
Boc-protected indole derivative 5l exhibits high g-regiose-
lectivity (6l, >20 : 1 rr) with good enantioinduction aer oxida-
tion to 9l (78%, 96 : 4 er). Similarly, the 3-substituted N-Boc-
protected pyrrole derivative 5m is both highly regioselective
(6m, >20 : 1 rr) and highly enantioselective; the er obtained for
9m (86%, 99 : 1 er) is the highest obtained among the
substrates tested. However, the results obtained for CAHB of the
2-substituted N-Boc-protected pyrrole derivative 5n differ
markedly. The regioselectivity of 6n (>20 : 1 rr) is excellent.
However, the level of enantioselectivity for 9n (85%, 80 : 20 er) is
not only much lower but results from hydroboration with the
opposite sense of p-facial selectivity compared to most other
substrates (vide infra); (R)-9n is the major product.

The 3- and 2-substituted thiophene substrates (i.e., 5o and
5p) exhibit high regioselectivity leading to 6o and 6p (>20 : 1 rr),
respectively. However, the 3-substituted thiophene 5o affords 9o
(83%, 85 : 15 er) with only modest levels of stereocontrol, while
the 2-substituted thiophene 5p gives 9p (80%, 95 : 5 er) with
good stereocontrol. The 2-substituted benzothiophene 5q gives
both lower levels of regiocontrol (6q, 5 : 1 rr) and enantiose-
lectivity for 9q (65%, 89 : 11 er). The corresponding furan
derivatives 5r–t give similar results.
Stereochemical assignments

The variable regio- and stereochemical results obtained with
heteroaryl derivatives illustrate a caveat for substrates bearing
multiple donor groups in proximity to the alkene or bear rela-
tively bulky aromatic ring systems. Using the Birman
Chem. Sci., 2019, 10, 4854–4861 | 4855

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8sc05613g


Fig. 2 Substrate scope for CAHB of g-aryl allylic phosphonates. Note: atwo equivalents of pinacolborane were used. bReaction carried out for 12
hours.
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benzotetramisole (BTM)17 chiral acylation catalyst, a kinetic
resolution (KR) strategy was employed to conrm the absolute
conguration assignments for several of the previously unre-
ported chiral secondary benzylic alcohols 9 prepared via CAHB.
As shown in Fig. 3A, the (S)-BTM-catalyzed acylation of
a racemic sample of (�)-9a with 0.5 equivalents of isobutyric
anhydride results in the rapid acylation of (S)-9a to (S)-10a and
recovery of the known (R)-9a unreacted alcohol.

Alcohol 9 and ester 10 are readily differentiated by 31P NMR
spectroscopy providing a convenient protocol for the rapid
determination of absolute conguration of these previously
unreported chemical entities (Fig. 3B). As demonstrated by the
31P NMR stack-plot, (S)-9a (96 : 4 er) is more rapidly acylated
using (S)-BTM than with (R)-BTM. Using this method, we
assigned the absolute congurations for the a-hydroxy hetero-
aryl products obtained via CAHB/oxidation (Fig. 3C). For
example, the 3-substituted pyrrole derivative 9m (99 : 1 er),
synthesized via CAHB/oxidation using (R)-B1, undergoes more
rapid (S)-BTM-catalyzed acylation to 10m (27% conversion in 12
h) compared to (R)-BTM-catalyzed acylation (2% conversion in
12 h). The relative rates are consistent with predominant (S)-
conguration of 9m. In contrast, the 2-pyrrole derivative 9n
4856 | Chem. Sci., 2019, 10, 4854–4861
(80 : 20 er), also prepared via CAHB/oxidation, undergoes rela-
tively sluggish (S)-BTM-catalyzed acylation to 10n compared to
(R)-BTM-catalyzed acylation. The results indicate that predom-
inantly (R)-9n is formed from the 2-substituted pyrrole by CAHB
with (R)-B1. We speculate that the N-Bocmoiety in the latter acts
as an alternative directing group in the rhodium-catalyzed
hydroboration thereby switching the sense of alkene p-facial
selectivity. Although one might reasonably expect that 2-sub-
situted thiophene and furan derivatives behave similarly, the
data summarized in Fig. 3c indicate that (S)-9o–p and (S)-9r–s
are the major stereoisomers produced via CAHB/oxidation.

In our prior studies of phosphonate-directed CAHB, we
illustrated the synthetic utility of chiral bifunctional tertiary
organoboron derivatives through thiophosphonate olena-
tion5b chemistry and a-oxophosphonate active ester5a chemistry
as well as through a number of stereospecic C–B bond trans-
formations. Here, we focus on the use of (S)-6a (96 : 4 er) in
stereoretentive and stereoinvertive C–B bond transformations
via intermediate boron-ate complexes (Fig. 4). Stereoretentive
cross-coupling with carbanions derived from electron rich vinyl
and aromatic derivatives via electrophile-promoted 1,2-B-to-C
migration of a boron–ate complex is generally facile under
This journal is © The Royal Society of Chemistry 2019
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Fig. 3 Stereochemical assignments based on kinetic resolution: (A)
General scheme for kinetic resolution via acylation using benzote-
tramisole (BTM); (B) 31P NMR analysis for assignment of absolute
configuration via KR; (C) absolute configuration assignments of benzyl
alcohol products containing heterocyclic ring systems via KR.

Fig. 4 Product utility illustrated by stereoretentive and stereoinvertive
C–B bond transformations. Reagents and conditions: (a) (i) excess
CH2]CHMgBr, THF, �78 �C to rt; (ii) I2/MeOH, �78 �C; (iii) NaOMe/
MeOH; (iv) Na2S2O3 (aq.); (b) (i) benzofuran-2-yllithium, THF, �78 �C;
(ii) NBS, THF, �78 �C; (iii) Na2S2SO3 (aq.); (c) 2-iodobenzofuran, Ag2O,
Pd2(dba)3/PPh3, THF, 60 �C; (d) 4-iodoanisole, Ag2O, Pd2(dba)3/PPh3,
THF, 60 �C; (e) (i) 4-nitrobenzaldehyde, [Rh(cod)Cl]2, KHF2, dioxane/
H2O; (ii) TEMPO, TCCA, CH2Cl2; (f) (3,5-bis(trifluoromethyl)phenyl)
lithium, THF, �78 �C to �40 �C; (ii) cycloheptatrienyl tetra-
fluoroborate, rt.; (iii) NaHCO3 (aq.). (g) (i) (3,5-bis(trifluoromethyl)
phenyl)lithium, THF, �78 �C to �40 �C; (ii) 4-Methox-
ybenzenediazonium tetrafluoroborate, 0 �C (iii) NaHCO3 (aq.).
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conditions reported by Aggarwal.2b,2e For example, treatment of
(S)-6a with excess vinyl magnesium bromide followed by I2 and
sodium methoxide affords the vinyl derivative (R)-11 (79%,
95 : 5 er) in high levels of stereoretention.2e Similarly, reaction
of (S)-6a with 2-lithiobenzofuran followed by NBS affords the
gem-bisaryl product (S)-12 (68%, 96 : 4 er) with essentially
complete enantiospecicity.2b

The palladium-catalyzed cross-coupling of chiral boronic
esters has attracted recent interest both due to its synthetic
utility and the interesting mechanistic issue of stereoretention18

or stereoinversion;19 the outcome is oen dependent upon
participation or non-participation of polar substituents in the
substrate.20,21 Benzylic boronic esters are rather unique in the
context of palladium-catalyzed cross-coupling. Only the
protocol recently introduced by Crudden22 is reportedly effec-
tive. Its efficiency varies, but in favorable constructs, the latter
proceeds with 84–94% stereoretention (sr). Thus, the outcome
This journal is © The Royal Society of Chemistry 2019
for the bifunctional substrate (S)-6a (96 : 4 er) was uncertain. In
our hands, cross-coupling with 2-iodobenzofuran under the
[Pd2(dba)3/PPh3/Ag2O] conditions reported by Crudden gives
(S)-12 (55%, 70 : 30 er, 73% sr); cross-coupling proceeds with
predominant stereoretention, albeit with signicant erosion of
enantiopurity. Using the same conditions, cross-coupling of (S)-
6a with 4-iodoanisole yields (S)-13 (60%, 77 : 23 er, 80% sr). The
latter is useful, since we were unable to prepare 13 via the 1,2-B-
to-C migration protocol. An alternative rhodium-catalyzed
cross-coupling procedure reported by Aggarwal23 effects the
stereoretentive addition of (S)-6a to 4-nitrobenzaldehyde to
afford aryl ketone (S)-14 (74%, 94 : 6 er) aer oxidation; the
latter cross-coupling proceeds with only slight erosion of
enantiopurity over two steps.

Aggarwal reported that ate-complexes of secondary boronic
esters react with strong electrophiles via a stereoinvertive SE2
mechanism.2f We nd that the intermediate boron–ate complex
formed by addition of (3,5-bis(triuoromethyl)phenyl) lithium
to (S)-6a (96 : 4 er) readily reacts with cycloheptatrienyl tetra-
uoroborate to effect the net C–B to C–C bond substitution to
give (S)-15 (95%, 95 : 5 er) in excellent yield. Similarly, the net
stereoinvertive C–B to C–N bond substitution is accomplished
by treating the in situ generated boron ate-complex with 4-
Chem. Sci., 2019, 10, 4854–4861 | 4857
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Fig. 5 The influence of other structural variations on the directed CAHB
of 1,2-disubstituted alkenes: (A) analogous amide substrate undergoes
efficient CAHB using B1; (B) one-carbon homologous substrates perform
with similar efficiency: Same major enantiomer obtained from (E)- and
(Z)-substrates. Note: Yield and er are determined after oxidation to the
corresponding alcohols. aZ : E ratio ¼ 4 : 1.
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methoxybenzenediazonium tetrauoroborate to give the diazo
compound (R)-16 (55%, 94 : 6 er).
Fig. 6 Mechanistic studies indicating the origin of (E/Z)-stereo-
convergent CAHB arising via Z to E isomerization under the reaction
conditions: (A) (Z)- to (E)-substrate isomerization is observed under
standard CAHB conditions; (B) different distributions of deuterated
products are obtained when isomeric (E)- or (Z)- substrates react with
pinBD under standard CAHB conditions.

Fig. 7 Current limitations of the methodology.
Additional substrate scope and some key mechanistic insights

The question naturally arises as to whether the phosphonate
directing group is unique in promoting g-boration with these
vinyl arene substrates. That appears not to be the case (Fig. 5A);
the corresponding benzylamide substrate (E)-17 undergoes
regioselective (7 : 1 rr) amide-directed CAHB using (R)-B1 to afford
the analogous g-borated benzylic ester (S)-18 (78%, 94 : 6 er).24

The one-carbon homolog of (E)-5a, that is, the g,d-unsatu-
rated phosphonate substrate (E)-19, reacts under the standard
conditions to afford predominantly (>20 : 1 rr) d-borated
benzylic boronic ester (S)-20 (79%, 94 : 6 er) aer oxidation
(Fig. 5B). Furthermore, as was noted for (E)- and (Z)-5a, the same
major enantiomer of 20 is formed independent of the substrate
alkene geometry; (Z)-19 also affords (S)-20 (81%, 94 : 6 er). The
ability to start with pure (E)-, pure (Z)- or an (E/Z)-mixture and
arrive at the same product is a practical advantage but raises
mechanistic questions. We previously reported that the amide-
directed CAHBs of (E)- and (Z)-trisubstituted alkenes proceed
with the same sense of p-facial selectivity and therefore lead to
diastereomers.5f Those results would have suggested that (E)-
and (Z)-19 (and similarly (E)- and (Z)-5a) should lead to enan-
tiomers not the same product.

The origin of (E/Z)-isomer stereoconvergence is resolved
based on the results of CAHB of (Z)-5a using a limiting amount
of pinBH (Fig. 6A) and deuterium labelling via CAHB of (E)- and
(Z)-5a with pinBD (Fig. 6B). With respect to the rst test,
a sample enriched in (Z)-isomer of 5a (90 : 10 Z : E) is subjected
to the otherwise standard CAHB conditions, but using
a limiting amount of pinBH (0.4 equiv.), leading to partial
boration and recovered alkene. The 1H NMR spectral windows
for the starting and recovered E/Z-mixtures of 5a shown in
4858 | Chem. Sci., 2019, 10, 4854–4861
Fig. 6A indicate that (Z)-5a is essentially completely converted to
the (E)-isomer under the reaction conditions, thus providing
a mechanism by which the two isomers lead to the same
product.

Fig. 6B shows the results of deuterium labelling. CAHB of (E)-
and (Z)-5a using pinBD affords different distributions of non-,
isomeric mono- and di-deuterated products. CAHB/oxidation of
This journal is © The Royal Society of Chemistry 2019
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(E)-5a using pinBD yields essentially a single monodeuterated
product 2-d-(2S,3S)-9a (83%) accompanied by the non-
deuterated (3S)-9a (17%) with no apparent di-deuteration as
determined by mass spectral analysis. In contrast, CAHB/
oxidation of (Z)-5a using pinBD affords: 30% of non-
deuterated (3S)-9a; 47% of a mixture of diastereomeric mono-
deuterated products 2-d-(2S,3S)-9a; and 2-d-(2R,3S)-9a and 21%
of the dideuterated product 2,2-d2-(3S)-9a. The dideuterated
product presumably arises by the reaction of 2-d-(E)-5a with
pinBD. The latter, when generated in situ via isomerization of
(Z)-5a as described above, also generates an equivalent amount
of pinBH that can react competitively to give the observed dia-
stereomeric monodeuterated product and an increased amount
of the non-deuterated product as is observed. See the ESI† for
more detailed mechanistic schemes.
Some current limitations

The attempted CAHB of several related phosphonates reveal
some current limitations of the [Rh(nbd)2BF4/B1] catalyst
system (Fig. 7). (i) The vinyl (i.e., a,b-unsaturated) phosphonate
(E)-21 is largely recovered unchanged when subjected to the
standard CAHB conditions. (ii) The trisubstituted variants (E)-
22 and (E)-23 react only sluggishly under the standard condi-
tions. (iii) In contrast to the vinylarene substrate (E)-5a, similar
internal alkenes bearing an alkyl rather than aryl/heteroaryl g-
substituent (e.g., (E)-24), undergo predominantly b-boration,
albeit with modest regio- and enantioselectivity with the stan-
dard catalyst system. (iv) The d,3-unsaturated vinyl arene (E)-25
affords the corresponding benzylic boronic ester upon CAHB
but again with only modest regioselectivity, yield, and enan-
tiopurity. It should be noted, however, that these results can
only be said to reect limitations of the [Rh(nbd)2BF4/B1]
catalyst system; systematic catalyst optimizations have not been
carried out for these substrates.
Conclusions

While the regioselective, CAHBs of minimally-functionalized
terminal and 1,1-disubstituted vinyl arenes (e.g. simple
substituted styrene derivatives) have been investigated rather
extensively and quite successfully, there are relatively few
reports using more highly functionalized di- or trisubstituted
internal alkenes. We nd that the rhodium-catalyzed CAHBs of
allylic and homoallylic phosphonates derived from internal
vinyl arenes give facile access to functionalized chiral secondary
benzylic boronic esters. A range of substrates including some
bearing heteroaromatic ring systems of interest in medicinal
chemistry, such as furan, indole, morpholine, pyrazine, pyrrole
and thiophene derivatives, can be accommodated. The absolute
congurations of selected chiral secondary benzylic boronic
ester products were conrmed or assigned via kinetic acylation
of the corresponding benzylic alcohols using the BTM acylation
catalyst highlighting the potential for other donor substituents
in proximity of the alkene to inuence the stereochemical
course of the reaction. Stereoretentive and stereoinvertive C–B
bond transformation protocols highlight the versatility of this
This journal is © The Royal Society of Chemistry 2019
methodology. We nd that palladium-catalyzed cross-coupling
under the conditions reported by Crudden proceeds mostly
with stereoretention. Diastereomeric substrates, for example,
(E)- and (Z)-5a and (E)- and (Z)-16, give the same borated product
stereochemistry. Mechanistic studies reveal that (Z)- to (E)-
alkene isomerization occurs rapidly under the reaction condi-
tions. This observation along with deuterium incorporation
data provides a reasonable explanation for the origin of (E/Z)-
stereoconvergence during CAHB.
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