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surement process in the
variational quantum eigensolver: is it possible to
reduce the number of separately measured
operators?†

Artur F. Izmaylov, *ab Tzu-Ching Yenab and Ilya G. Ryabinkin c

Current implementations of the Variational Quantum Eigensolver (VQE) technique for solving the electronic

structure problem involve splitting the system qubit Hamiltonian into parts whose elements commute within

their single qubit subspaces. The number of such parts rapidly grows with the size of the molecule. This

increases the computational cost and can increase uncertainty in the measurement of the energy

expectation value because elements from different parts need to be measured independently. To address

this problem we introduce a more efficient partitioning of the qubit Hamiltonian using fewer parts that

need to be measured separately. The new partitioning scheme is based on two ideas: (1) grouping terms

into parts whose eigenstates have a single-qubit product structure, and (2) devising multi-qubit unitary

transformations for the Hamiltonian or its parts to produce less entangled operators. The first condition

allows the new parts to be measured in the number of involved qubit consequential one-particle

measurements. Advantages of the new partitioning scheme resulting in severalfold reduction of

separately measured terms are illustrated with regard to the H2 and LiH problems.
1 Introduction

One of the most practical schemes for solving the electronic
structure problem of current and near-future universal
quantum computers is the variational quantum eigensolver
(VQE) method.1–5 This approach involves the following steps: (1)
reformulating the electronic Hamiltonian (Ĥe) in the second
quantized form, (2) transforming Ĥe to the qubit form (Ĥq) by
applying iso-spectral fermion-spin transformations such as
Jordan–Wigner (JW)6,7 or more resource-efficient Bravyi–Kitaev
(BK),8–12 (3) solving the eigenvalue problem for Ĥq by variational
optimization of unitary transformations for a qubit wave-
function. The last step uses a hybrid quantum-classical tech-
nique where a classical computer suggests a trial unitary
transformation U, and its quantum counterpart provides an
energy expectation value of EU ¼ hJ0|U

†ĤqU|J0i, here |J0i is
an initial qubit wavefunction (it is frequently taken as an
uncorrelated product of all spin-up states of individual qubits).
The two steps, on classical and quantum computers, are iter-
ated till convergence. The VQE was successfully implemented
ental Sciences, University of Toronto
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tion (ESI) available. See DOI:

5

on several quantum computers and used for few small mole-
cules up to BeH2.13

One of the big problems of the VQE is that to calculate EU, the
quantum computer measures parts of Hq rather than the whole
Hq on the U|J0i wavefunction. This stems from technological
restrictions of what can be currently measured on available
architectures. Dramatic consequences of this restriction can be
easily understood with the following simple example. Let us
assume that Ĥq ¼ Â + B̂, where Â and B̂ are measurable
components of Ĥq and [Â, B̂] s 0, otherwise they could be
measured at the same time at least in principle. The actual
hardware restrictions on measurable components are some-
what different and will be discussed later, for this illustration
these differences are not important. Even if one has an exact
eigenstate of Ĥq, U|J0i, measuring it on Â or B̂ would not give
a certain result because Â and B̂ do not commute with Ĥq. Thus,
one would not be able to distinguish the exact eigenstate from
other states by its zero variance. The origin of the discrepancy
between quantum uncertainty given by the variance (Var) of Ĥq

(true uncertainty) and by the sum of variances for Â and B̂ is
neglect of covariances (Cov)

Var(Ĥq) ¼ Var(Â) + Var(B̂) + Cov(Â, B̂) + Cov(B̂, Â), (1)

Var(Â) ¼ hÂ2i � hÂi2, (2)

Cov(Â, B̂) ¼ hÂB̂i � hÂihB̂i. (3)
This journal is © The Royal Society of Chemistry 2019
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Thus, even though the Ĥq average is equal to averages of Â
and B̂, the true quantum uncertainty of Ĥq is overestimated by
a sum of variances for Â and B̂. Moreover, the number of
measurements to sample Â and B̂ is twice as many as that for Ĥq

if the eigenstate nature of U|J0i is not known a priori.
The variance of any Hamiltonian depends only on the

Hamiltonian and the wavefunction, but if one approximates the
variance using only variances of Hamiltonian parts and neglects
covariances between the parts, the result of such an approxi-
mation will depend on the partitioning. Importantly, the sum of
variances for the Hamiltonian parts can either under- or over-
estimate the true Hamiltonian variance. To see how ignoring
covariances can erroneously make estimates of the uncertainty
arbitrarily small consider an articial example, where the
Hamiltonian variance is measured as n independent measure-
ments of its Ĥq/n identical parts. Due to the linear scaling of the
variance sum with n and the inverse quadratic scaling of vari-
ances of individual terms with n, the overall scaling of the
variance is inversely proportional to n and can be made arbi-
trarily small by choosing large enough n. This follows from
a wrong assumption that parts (Ĥq/n) are independent and
covariances between them are zero.

Generally, the number of non-commuting terms in Ĥq grows
with the size of the original molecular problem, and the total
uncertainty from the measurement of individual terms will
increase. This increase raises the standard deviation of the total
measurement process and leads to a large number of
measurements to reach convergence in the energy expectation
value. The question we would like to address is whether it is
possible to reduce the number of the Ĥq terms that needs to be
measured separately.

In this paper we introduce a new systematic approach to
decreasing uncertainty of the expectation energy measurement.
We substitute the conventional measurement partitioning of
the Hamiltonian with groups of qubit-wise commuting opera-
tors13,14 by partitioning to terms whose eigenstates can be found
exactly using themean-eld procedure. Owing to amore general
structure of such terms the Hamiltonian can be split into
a fewer number of them. Interestingly, the general operator
conditions on suchmean-eld terms have not been found in the
literature and have been derived in this work for the rst time.
To decrease the number of these terms even further, we
augment the mean-eld treatment with few-qubit unitary
transformations that allow us to measure few-qubit entangled
terms. Measurement of newly introduced terms requires the
scheme appearing in the cluster-state quantum computing,15,16

it is qubit-wise measurement with use of previous measurement
results to dene what single-qubit operators to measure next.

2 Theory
2.1 Qubit Hamiltonian

In order to formulate the electronic structure problem for
a quantum computer that operates with qubits (two-level
systems), the electronic Hamiltonian needs to be transformed
iso-spectrally to its qubit form. This is done in two steps. First,
the second quantized form of Ĥe is obtained
This journal is © The Royal Society of Chemistry 2019
Ĥe ¼
X
pq

hpqâ
†
pâq þ

1

2

X
pqrs

gpqrsâ
†
pâ

†
qâsâr; (4)

where â†p (âp) are fermionic creation (annihilation) operators,
hpq and gpqrs are one- and two-electron integrals in a spin-orbital
basis.17 This step has polynomial complexity and is carried out
on a classical computer. Then, using the JW6,7 or more resource-
efficient BK transformation,8–12 the electronic Hamiltonian is
converted iso-spectrally to a qubit form

Ĥq ¼
X
I

CI P̂I ; (5)

where CI are numerical coefficients, and P̂I are Pauli “words”,
products of Pauli operators of different qubits

P̂I ¼ /ŝ2
(I)ŝ1

(I), (6)

ŝi
(I) is one of the x̂, ŷ, ẑ Pauli operators for the ith qubit. The

number of qubits N is equal to the number of spin-orbitals used
in the second quantized form [eqn (4)]. Since every fermionic
operator is substituted by a product of Pauli operators in both
JW and BK transformations, the total number of Pauli words in
Ĥq scales as N4.

2.2 Conventional measurement

In the conventional VQE scheme the Ĥq is separated into sums
of qubit-wise commuting (QWC) terms,

Ĥq ¼
X
n

Ân; ½Ân; Âk�qws0; if nsk (7)

Ân ¼
X
I

CI
ðnÞP̂I

ðnÞ
;
h
P̂I

ðnÞ
; P̂J

ðnÞi
qw
¼ 0; cI & J: (8)

Here [P̂I
(n), P̂J

(n)]qw denotes a qubit-wise commutator of two
Pauli words, it is zero only if all one-qubit operators in P̂I

(n)

commute with their counterparts in P̂J
(n). Clearly, if [P̂I

(n), P̂J
(n)]qw

then the normal commutator is [P̂I
(n), P̂J

(n)] ¼ 0. The opposite is
not true, a simple example is [x̂1x̂2, ŷ1ŷ2] ¼ 0 but [x̂1x̂2, ŷ1ŷ2]qw s
0. We will not be using non-zero results of the qubit-wise
commutator and therefore their exact values are not impor-
tant, but it is assumed that [.,.]qw is bi-linear for both
operators.

Partitioning of the Hq in eqn (7) allows one to measure all
Pauli words within each Ân term in a single set of N one-qubit
measurements. For every qubit, it is known from the form of
Ân, what Pauli operator needs to be measured. The advantage of
this scheme is that it requires only single-qubit measurements,
which are technically easier than multi-qubit measurements.
The disadvantage of this scheme is that the Hamiltonian may
require measuring too many Ân terms separately.

A natural extension of partitioning in eqn (7) is to sum more
general terms

Ĥq ¼
X
n

Ĥ
ðMFÞ
n ; (9)

with the condition that Ĥ(MF)
n eigenstates can be presented in

a single-product form of single-qubit wavefunctions. In other
words, the eigenstates of the Ĥ(MF)

n fragments are unentangled
Chem. Sci., 2019, 10, 3746–3755 | 3747

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8sc05592k


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
Fe

br
ua

ry
 2

01
9.

 D
ow

nl
oa

de
d 

on
 7

/1
6/

20
24

 8
:5

9:
26

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
and can be obtained using a mean-eld procedure. This
condition would allow measurement of each Ĥ(MF)

n fragment
qubit aer a qubit. However, to perform the new splitting we
need an exact denition of the mean-eld (MF) Hamiltonian so
that we can recognize these new blocks within the total
Hamiltonian.
Fig. 1 Measurement where the second qubit is rotated by U2

depending on the result of the first qubit measurement.
2.3 Mean-eld Hamiltonians

What is the most general form of a qubit Hamiltonian whose
eigenstates can be presented as single factorized products of
one-qubit wavefunctions? Note that the well-known example of
such Hamiltonians, separable operators,

ĤSð1;.;NÞ ¼
XN
i¼1

ĥiðiÞ (10)

are a particular class that does not provide the most general
form. In other words, there are many more Hamiltonians that
are not separable but are still in the MF class, one simple
example is

ĤMF(1,2) ¼ x̂2 + ẑ1ŷ2, (11)

which does not follow the form of eqn (10) but whose eigen-
states, |+zi1|�x+yi2 and |�zi1|�x�yi2,‡ are unentangled
products.

We formulate the general criterion for a Hamiltonian
H(1,.N) to be in the MF class as follows. There should exist N
one-particle operators {Ôk(k)}

N
k ¼ 1§ that commute [Ôk, ĤN�k+1]¼

0 with the system of N Hamiltonians {ĤN�k+1}
N
k ¼ 1 constructed

in the following way that we will refer as a reductive chain:

1 : ĤN ¼ Ĥ;
2 : ĤN�1 ¼ hf1jĤN jf1i;
.
N : Ĥ1 ¼ hfN�1jĤ2jfN�1i;

(12)

where Ôk|fki ¼ lk|fki. The nal operator in this chain is a one-
particle operator that commutes with itself and denes ÔN ¼
Ĥ1. The proof of this criterion can be found in Appendix A. It is

easy to see that jJi ¼ QN
k¼1

jfki is an eigenfunction of Ĥ. Clearly,

separable Hamiltonians are in the MF class because for them,

Ôk's can be taken as ĥk(k) from eqn (10). However, note that

because the system of Ôk operators is required to commute not

with Ĥ but with the reduced set of Hamiltonians, the formu-
lated criterion goes beyond separable Hamiltonians.

A general procedure to determine whether a particular qubit
Hamiltonian Ĥ is in the MF class or not requires nding all N
one-particle operators Ôk. The procedure starts with a check
whether there is at least one qubit k for which

[Ĥ, (ax̂k + bŷk + cẑk)] ¼ 0 (13)

can be achieved by choosing a non-zero vector (a, b, c). Once the
rst operator Ô1(k) ¼ ax̂k + bŷk + cẑk is found its eigenstates can
be integrated out to generate ĤN�1, and the procedure can be
repeated to nd Ô2 that commutes with ĤN�1.
3748 | Chem. Sci., 2019, 10, 3746–3755
2.4 Measurement of mean-eld Hamiltonians

Measuring an N-qubit mean-eld Hamiltonian can be done by
performing a single set of sequential N one-qubit measure-
ments. Each qubit projective measurement in this set will
collapse the measured wavefunction to an eigenstate of the
corresponding single qubit operator. The single qubit operators
that need to be measured are Ôk's operators. The denition of
one particle operators may depend on the result of the previous
measurement. Let us consider the mean-eld Hamiltonian in
eqn (11): Ô1(1) ¼ ẑ1, and Ô2(2) ¼ x̂2 � ŷ2, where � is determined
by the eigenfunction chosen from the Ô1 spectrum to generate
the Ĥ1¼ hf1

�|ĤMF|f1
�i in the chain of eqn (12). This ambiguity

does not allow one to present ĤMF as an operator with all qubit-
wise commuting components. An attempt on this can be done
by inserting the projectors on the eigenstates of ẑ1 instead of the
operator:

ĤMF ¼ (x̂2 + ŷ2)|f1
+ihf1

+| + (x̂2 � ŷ2)|f1
�ihf1

�| (14)

ĤMF ¼ [(x̂2 + ŷ2)(1 + ẑ1) + (x̂2 � ŷ2)(1 � ẑ1)]/2, (15)

where ẑ1|f1
�i ¼ �|f1

�i, and even though the projectors onto
the |f1

�i eigenstates commute, the (x̂2 � ŷ2) parts do not.
Therefore, the scheme for measuring the ĤMF will be as

shown in Fig. 1. Note that no matter how entangled the initial
wavefunction is, measuring ĤMF does not require measuring x̂2
and ẑ1ŷ2 separately as was done in the regular VQE scheme.

In practice, qubit-wise measurements using previous
measurement results to dene what single-qubit operators to
measure next, or feedforward measurements, have been
implemented in quantum computers based on superconductor
and photonic qubit architectures.18,19 The essential feasibility
condition for the feedforward measurement is that the delay
introduced by measurements is much shorter than the qubit
coherence time. For superconducting (photonics) qubit archi-
tectures this condition has been achieved with typical time-
scales for a measurement and coherence as 2 ms (ref. 20) (150 ns
(ref. 19)) and 40 ms (ref. 21) (100 ms (ref. 22)), respectively.
2.5 Mean-eld partitioning

Even though regular molecular qubit Hamiltonians are not
guaranteed to be in the MF class, it is always possible to split
any N-qubit Hamiltonian into a sum of MF Hamiltonians. To
see this, we will present a heuristic partitioning scheme that
guarantees the MF partitioning.
This journal is © The Royal Society of Chemistry 2019
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Fig. 2 Possible geometrical arrangement of three multi-dimensional
vectors h�x,y,z (green, blue, and red arrows): (a) collinear arrangement
[l(k) ¼ 2], (b) planar arrangement [l(k) ¼ 1], (c) linearly independent case
[l(k) ¼ 0].
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Our scheme uses ranking of all qubits k ¼ 1,.,N based on
a geometrical characteristic l(k), which is dened as follows. For
an arbitrary qubit k, the total Hamiltonian can be written as

Ĥ ¼ ĥxx̂k + ĥyŷk + ĥzẑk + ĥe (16)

where ĥx,y,z,e are the residual operators that do not contain Pauli
matrices for the kth qubit. Assembling coefficients of Pauli
words in operators ĥx,y,z into vectors, �hx,y,z, we build matrix Ak ¼
[�hx�hy�hz] with dimensions M by 3, where M is the number of
different Pauli words in ĥx,y,z operators. To dene l(k), we eval-
uate matrix Sk ¼ A†kAk and assign l(k) ¼ dim(ker(Sk)). Evaluating
Sk is equivalent to obtaining the overlap between three vectors
�hx,y,z assuming the orthogonal basis, while the dimensionality
of its kernel is the number of its zero eigenvalues.

l(k) allows one to answer a question on whether there is
a transformation involving only the kth qubit that can present Ĥ
in one of the two forms:

Ĥ ¼ ĥÔk + ĥe, (17)

Ĥ ¼ ĥ
0
Ô

0
k þ ĥ

00
Ô

00
k þ ĥe; (18)

where Ôk; Ô
0
k; Ô

00
k are operators containing only the k

th qubit, and
ĥ, ĥ0, ĥ00 are the complementary operators that exclude the kth

qubit. The positive answers in the forms of eqn (17) and (18)
correspond to l(k) ¼ 2 and l(k) ¼ 1, respectively. l(k) ¼ 2 is
equivalent to the MF condition of eqn (13), with Ôk ¼ ax̂k + bŷk +
cẑk. For l(k)¼ 1, the MF treatment of the kth qubit is not possible
but using eqn (18) the kth qubit dependence in the Hamiltonian
can be somewhat compactied. Coefficients for Ôk; Ô

0
k; Ô

00
k and

ĥ, ĥ0, ĥ00 operators can be found from non-zero eigenvectors of Sk
(this process is detailed in Appendix B). The negative answer to
the question leaves Ĥ in the original form of eqn (16) and is
equivalent to l(k) ¼ 0.

The question about possible compactication of the kth

qubit dependence in the Hamiltonian has a simple geometric
interpretation in terms of arrangement of the three vectors
�hx,y,z. These multi-dimensional vectors can be linearly inde-
pendent (eqn (16)), located within some plane (eqn (18)), or
collinear to each other (eqn (17)), Fig. 2 illustrates all three
cases.

Using a set of l(k)'s for a given Hamiltonian one can decide
how many qubits can be treated using the MF procedure, these
will be all qubits with l(k)¼ 2. Once all of such qubits have been
considered, the MF partitioning of l(k) ¼ 1 qubits begins. For
l(k)¼ 1, the Hamiltonian can be split for any of such qubits into
two parts: Ĥ

ð1Þ ¼ ĥ0Ô
0
k and Ĥ

ð2Þ ¼ ĥ
00
Ô
00
k þ ĥe. In both parts the

kth qubit can be treated using the MF treatment, which allows
one to continue the consideration for ĥ0, ĥ00 and ĥe. Finally, if
only qubits with l(k) ¼ 0 are le, then Ĥ needs to be partitioned
to three Hamiltonians Ĥ(1) ¼ ĥxx̂k, Ĥ

(2) ¼ ĥyŷk, and Ĥ(3) ¼ ĥzẑk +
ĥe, where at least the kth qubit can be treated using MF. Aer
this separation one can apply the reduction chain to each of the
three operators. Fig. 3 illustrates the partitioning for a three
qubit case detailed in Appendix B. In the case when reducing
the kth qubit does not produce a Hamiltonian with reducible
qubits the partitioning needs to be repeated, as in Fig. 3 when
This journal is © The Royal Society of Chemistry 2019
transforming qubit 1 led to h(2,3) where none of the qubits can
be reduced.

Our scheme can be considered as an example of a greedy
algorithm because at every step it tries to nd locally the most
optimal reduction, a qubit with the highest l(k). The reduction is
only possible if there is linear dependency between comple-
mentary vectors~hx;y;z. The lower the dimensionality of the linear
space, where these vectors are located, the more probable such
linear dependence. Thus, treating qubits with the highest l(k)
rst is justied by the reduction of the space dimensionality
along the reductive scheme. In the example of Fig. 3 treatment
of qubits 2 and 3 in the beginning would require partitioning of
the Hamiltonian to two branches for each of them, while
leaving the 3rd qubit to the end did not generate any new terms
for it.

It is possible that more than one qubit will have the highest
l(k). To do more optimal selection in this case, one would need
to consider maxima of l(k) functions on qubits that enter
complementary Hamiltonians ĥ for different reduction candi-
dates. This consideration makes the partitioning computa-
tionally costly and was not performed in this work.

Applying the partitioning scheme guarantees to result in
a sum of MF Hamiltonians that can be measured in N-qubit
one-particle measurements. Since any linear combination of
QWC terms form a MF Hamiltonian, this partitioning scheme
Chem. Sci., 2019, 10, 3746–3755 | 3749
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Fig. 3 The MF partitioning scheme uses the l(k) function at each step to
split a three qubit Hamiltonian (detailed in Appendix B) into two frag-
ments. The MF partitioned form is Ĥð1; 2; 3Þ ¼ ĥ0ð3ÞÔ0

2Ô1 þ ĥ
00ð3ÞÔ00

2Ô1,
where all qubits in both fragments can be treated using the MF
procedure.
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cannot produce more terms than those used in the regular VQE
measuring scheme.
2.6 Unitary transformations generating mean-elds

Partitioning the non-MF blocks in the Hamiltonian to obtain
more MF terms leads to growth of the terms needed to be
measured. An alternative treatment of non-MF groups is to
search for multi-qubit operators that commute with them.
Finding such operators may lead to unitary transformations
that can transform non-MF Hamiltonians into Hamiltonians
where qubits shared with the commuting operator can be
treated using the mean-eld procedure. Similar search for
multi-qubit operators commuting with the system Hamiltonian
was used recently by Bravyi and coworkers to reduce the qubit
count in the conventional VQE scheme.23

Let us consider an example where an N-qubit non-MF
Hamiltonian Ĥ has a two-qubit operator Ô(2)(1,2) commuting
with it (without loss of generality we can assume that Ô(2) acts
on the rst two qubits). Then, under certain conditions detailed
in Appendix A, Ĥ allows for its eigenstates J to be written as
J(1,.N) ¼ F(1,2)j(3,.N), where F(1,2) is an eigenstate of Ô(2).
One can always write F(1,2) ¼ Û(1,2)f1(1)f2(2), where Û(1,2) is
an operator entangling the product state f1(1)f2(2) into F(1,2).
Using this unitary operator, one can obtain the Hamiltonian
Ĥ12 ¼ Û(1,2)†ĤÛ(1,2) that has an eigenstate J12(1,.N) ¼ f1(1)
f2(2)j(3,.N) where qubits 1 and 2 are unentangled. Therefore,
there should be one-particle operators of qubits 1 and 2 that
commute with Ĥ12 and its MF-reduced counterpart. Finding
these operators and their eigenfunctions f1(1) and f2(2) allows
us to integrate out qubits 1 and 2

ĤN�2 ¼ hf1f2|H12|f1f2i. (19)
3750 | Chem. Sci., 2019, 10, 3746–3755
Search for one- or multi-qubit operators commuting with
ĤN�2 can be continued. The procedure to nd commuting
operators with increasing number of qubits requires exponen-
tially increasing number of variables parametrizing such oper-
ators. Indeed, a k-qubit operator requires a 3k coefficient for all
Pauli words in commutation equations similar to eqn (13), also
the number of different k-qubit operators among N qubits is CN

k

� Nk. Potentially, such operators always exist (e.g., projectors on
eigenstates of the Hamiltonian) but the amount of resources
needed for their search can exceed what is available. Thus we
recommend interchanging this search with the partitioning
described above if the multi-qubit search requires going beyond
2-qubit operators.

To illustrate the complete scheme involving multi-qubit
transformations, let us assume that we can continue the
reduction chain for Ĥ ¼ ĤN by generating the set of Hamilto-
nians {ĤN, ĤN�2,.,Ĥk} using qubit unitary transformations
{U(1,2), U(3,4,5),.,U(N � k,.N)} and integrating out variables
from N to k. To take advantage of this reduction chain in
measuring an expectation value of an arbitrary wavefunction
c(1,.N) on Ĥ, such a measurement should be substituted by
the following set of conditional measurements:

Step 1: rst two qubits are measured using Ĥ12 and the
unitary transformed function |Û(1,2)†ci because

hcjĤ jci ¼ hcjÛð1; 2ÞĤ12Ûð1; 2Þ†jci
¼

D
Ûð1; 2Þ†c

���Ĥ12

���Ûð1; 2Þ†c
E
: (20)

Depending on the results of these measurements the oper-
ator ĤN�2 is formulated and its unitary transformation U(3,4,5)
is found. U(3,4,5) gives rise to the transformed Hamiltonian
Ĥ35 ¼ Û(3,4,5)†ĤN�2Û(3,4,5). The wavefunction aer measuring
qubits 1 and 2 is denoted as |c12i.

Step 2: qubits 3–5 are measured on Ĥ35 sequentially using
the transformed wavefunction Û(3,4,5)†|c12i. Results of these
measurements will dene the next reduction step and the
wavefunction that should be unitarily transformed for the next
measurement.

These steps can be continued until all qubits have been
measured. If resources allow for nding corresponding multi-
qubit unitary transformations, the Ĥ Hamiltonian can be
measured in N single-qubit measurements.
3 Numerical studies and discussion

To assess our developments we apply them to the Hamiltonians
of the H2 and LiH molecules obtained within the STO-3G basis
and used to illustrate the performance of quantum computing
techniques previously.13,24,25
3.1 H2 molecule

The BK-transformed qubit Hamiltonian contains the following
terms:
This journal is © The Royal Society of Chemistry 2019
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Table 1 Estimates of total variances (Var) for the H2 and LiHmolecules
with different partitioning approaches and wavefunctions (JQCC from
the qubit coupled cluster method,25 and JQMF from the qubit mean-
field approach26)a

Approach Number of terms Var (JQCC) Var (JQMF)

H2

QWC-partitioning 3 0.044 0.026
MF-partitioning 2p 1 0 0.053
hĤH2

2i � hĤH2
i2 1 0 0.053

LiH
QWC-partitioning 25 0.043 0.037
MF-partitioning 1p 13 0.029 0.036
MF-partitioning 2p 5 0.030 0.038
hĤLiH

2i � hĤLiHi2 1 5.6 � 10�4 0.027

a The number of terms corresponds to the number of separately
measured N-qubit terms. For all partitionings, covariances have not
been included in the Var estimates, which simulates practical
estimation of the total variance.

Table 2 Commutativity of two operators and their simultaneous
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ĤH2
¼ C0 + C1ẑ2 + C2ẑ3 + C3ẑ4 + C4ẑ1ẑ3 + C5ẑ2ẑ4

+ C6ẑ3ẑ4 + C7ẑ1ẑ2ẑ3 + C8(1 + ẑ1)ẑ2ẑ3ẑ4 + C9ẑ1ẑ2ẑ4
+ C10(1 + ẑ1)ŷ2ẑ3ŷ4 + C11(1 + ẑ1)x̂2ẑ3x̂4. (21)

where some of the Ci's are equal, but it is not going to be
important for us (the details of generating this Hamiltonian are
given in Appendix C). Clearly ĤH2

contains three groups of QWC
terms, the rst three lines form one group, and the two last
terms fall into two other groups. ĤH2

is not a MF Hamiltonian,
only qubits 1 and 3 have one-particle operators commuting with
the Hamiltonian, while aer their reduction the reduced
Hamiltonian does not commute with any one-particle operator

Ĥ24 ¼ D0 + D1ẑ2 + D2ẑ4 + D3ẑ2ẑ4 + D4x̂2x̂4 + D5ŷ2ŷ4, (22)

where Di's are constants. Partitioning of Ĥ24 to three terms
using qubit 2 or 4 would not be more efficient than partitioning
ĤH2

in 3 groups of QWC terms from the beginning. However,
there is the two-particle operator ẑ2ẑ4 that commutes with Ĥ24,
and it can be used to devise a unitary transformation bringing
Ĥ24 to the MF form. Note that even though ẑ2ẑ4 has a spectral
degeneracy, this degeneracy will not create problematic entan-
glement discussed in Appendix A, because there are no other
qubits besides 2 and 4 in Ĥ24. The sought unitary trans-
formation is U(2,4) ¼ exp[�i(3p/2)ẑ2x̂4], and the transformed
MF Hamiltonian is

U(2,4)†Ĥ24U(2,4) ¼ E0 + E1ẑ2 + E2ŷ2 + E3ŷ4
+ E4ŷ2ŷ4 + E5ẑ2ŷ4, (23)

where Ei's are some constants and the rst one-particle
commuting operator is Ô1

(4) ¼ ŷ4. Aer integrating out Ô1's
eigenfunction, Ô2

(2) is a linear combination of ẑ2 and ŷ2.
To illustrate the superiority of the scheme with the use of

U(2,4) and measurements of the MF Hamiltonian over the
regular approach with splitting ĤH2

to three groups of QWC
operators, Table 1 presents variances for the Hamiltonian
expectation value for two wavefunctions, the exact eigenfunc-
tion (JQCC) of and the mean-eld approximation (JQMF) to the
ground state of the H2 problem at R(H–H) ¼ 1.5 Å.25 The exact
solution measured in the new scheme (MF-partitioning 2p)
gives only one value with zero variance, while the regular
schemes give three distributions for each non-commuting term.

In the approximate wavefunction case, the true variance
obtained from the Hamiltonian is larger than that of the
conventional approach. This is a consequence of ignoring
covariances in the conventional approach. The MF partitioning
2p variance is equal to the exact one, since it is obtained from
measuring a single term (the MF Hamiltonian in eqn (23)) and
thus does not neglect any covariances.
single-qubit measurability (SQM)

Â B̂ [Â, B̂] SQM of (Â + B̂)

ẑ1ẑ2 ẑ2ẑ3 0 Yes
ẑ1ẑ2 x̂1x̂2 0 No
ẑ1ẑ3 x̂1ẑ2 s0 Yes
ẑ1ẑ2 x̂1ŷ2 s0 No
3.2 LiH molecule

We will consider the LiH molecule at R(Li–H) ¼ 3.2 Å, it has a 6-
qubit Hamiltonian containing 118 Pauli words (see Appendix C
for details). This qubit Hamiltonian has 3rd and 6th stationary
qubits, which allow one to replace the corresponding ẑ opera-
tors by their eigenvalues, �1, thus dening the different
This journal is © The Royal Society of Chemistry 2019
“sectors” of the original Hamiltonian. Each of these sectors is
characterized by its own 4-qubit effective Hamiltonian. The
ground state lies in the z3¼�1, z6¼ 1 sector; the corresponding
4-qubit effective Hamiltonian (ĤLiH) has 100 Pauli terms. Inte-
grating out 3rd and 6th qubits can be done in the MF framework.
The MF treatment of ĤLiH is not possible without its
partitioning.

Before discussing partitioning of ĤLiH it is worth noting that
there are two 2-qubit operators commuting with Ĥ(4) (we re-
enumerate qubits aer the reduction from 6 to 4 qubits in the
Hamiltonian)

Ô1
(2) ¼ �ẑ1 + ẑ2 � ẑ1ẑ2 (24)

Ô2
(2) ¼ �ẑ3 + ẑ4 + ẑ3ẑ4. (25)

Unfortunately, both operators have degenerate spectra with
a single non-degenerate eigenstate and three degenerate states.
Moreover, these degeneracies do not satisfy the factorability
condition introduced in Appendix A thus proving it impossible
to nd 2-qubit unitary transformation that would factorize
qubits 1 and 2 or 3 and 4.

Table 1 summarizes results of partitioning for ĤLiH and
variances calculated for different wavefunctions and partition-
ing schemes. The partitioning involving only one-qubit trans-
formations (MF-partitioning 1p) reduces the number of QWC
terms by half. Involving the two-qubit transformations at the
Chem. Sci., 2019, 10, 3746–3755 | 3751
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step before the last one in the MF partitioning reduces the
number of terms to only 5 (MF-partitioning 2p), which is
a vefold reduction compared to the conventional QWC form.
Alternative pathways in the MP partitioning scheme related to
different choices of partitioned qubits with the same value of
l(k) generated not more than 15 and 9 terms for MF partitioning
1p and 2p, respectively. As discussed previously, the qubit
mean-eld (JQMF) and qubit coupled cluster (JQCC) wave-
functions are considered, with the only difference that JQCC is
a very accurate but not exact ground state wavefunction for LiH
(thus there is a small but non-zero variance of the ĤLiH on
JQCC). Details on the generation of these functions can be
found in ref. 25. Variances across different partitionings do not
differ appreciably and the main advantage of the MF-
partitioning schemes is in the reduction of the number of
terms that need to be measured.

4 Conclusions

We have introduced and studied a new method for partitioning
of the qubit Hamiltonian in the VQE approach to the electronic
structure problem. The main idea of our approach is to nd
Hamiltonian fragments that have eigenstates consisting of
single products of one- and two-qubit wavefunctions. The most
general criterion for identifying such Hamiltonian fragments
was derived for the rst time. Once such fragments are found
the total wavefunction of the system can be measured on
a fragment Hamiltonian in a single pass of N single-qubit
measurements intertwined with one- and two-qubit rotations
that are dened on-the-y from results of previous qubit
measurements. The main gain from such a reformulation is
a decrease of separately measured Hamiltonian fragments.
Indeed, illustrations on simple molecular systems (H2 and LiH)
show three- and ve-fold reductions of the number of terms that
are needed to be measured with respect to the conventional
scheme.

In the process of deriving our partitioning procedure, we
discovered criteria for eigenstate factorability for an arbitrary
Hamiltonian acting on N distinguishable particles. Our criteria
involve search for few-body operators commuting with the
Hamiltonian of interest. Even though the criteria for factor-
ability are exact, realistic molecular Hamiltonians do not satisfy
them in general. Therefore, we needed to introduce a heuristic
partitioning procedure (greedy algorithm) that splits the system
Hamiltonian to fragments that have factorable eigenstates.
Even though the procedure does not guarantee the absolutely
optimal partitioning to the smallest number of terms, it does
not produce more terms than the number of qubit-wise
commuting sub-sets.

Interestingly, when one is restricted with single-qubit
measurements, the commutation property of two multi-qubit
operators Â and B̂ has nothing to do with the ability to
measure them together (see Table 2). This seeming contradic-
tion with the laws of quantum mechanics arises purely from
a hardware restriction that one can measure a single qubit at
a time. On the other hand, qubit-wise commutativity is still
a sufficient but not necessary condition for single-qubit
3752 | Chem. Sci., 2019, 10, 3746–3755
measurability. Removing the single-qubit measurement
restriction in the near future will not make our scheme obsolete
but rather would allow us to skip the single-particle level. For
example, if two-qubit measurements will be available, one can
look for two-qubit operators commuting with the Hamiltonian
and integrate out pairs of qubits to dene next measurable two-
qubit operators.

The current approach can address difficulties arising in the
exploration of the excited state via minimization of variance

EðuÞ ¼ min
q
hJðqÞj�Ĥ � u

�2jJðqÞi: (26)

One of the largest practical difficulties is in an increasing
number of terms that are required to be measured in eqn (26).
Combining some of these terms using the current methodology
can reduce the number of needed measurements.

A similar problem with a growing number of terms arises if
one would like to obtain the true quantum uncertainty of the
measurements for a partitioned Hamiltonian, it requires
measuring all covariances between all parts. Ignoring covari-
ances by assuming measurement independence can lead to
incorrect estimation of the true uncertainty, both under- and
over-estimation are possible.

From the hardware standpoint, the new scheme requires
modication of the single-qubit measurement protocol, where
measurement results for some qubits will dene unitary rota-
tions of other qubits before their measurement, so-called
feedforward measurement. This type of measurement has
already been implemented in quantum computers based on
superconducting27 and photonic19,28,29 qubit architectures in the
context of measurement-based quantum computing.15,16 Thus
we hope that the newmethod will become the method of choice
for quantum chemistry on a quantum computer in the near
future.
Appendix A: factorization conditions
for the Hamiltonian eigenstates

Here we prove that the condition given in the main text for a N-
qubit Hamiltonian to be in the MF class is actually a necessary
and sufficient condition, and hence is a criterion. We will split
the proof into two parts: (1) If the Hamiltonian has N one-
particle operators satisfying the reduction chain, its eigen-
functions can be written as products (sufficiency); (2) if all the
Hamiltonian eigenfunctions are in a product form then it will
have N commuting one-particle operators dened by the
reduction scheme (necessity).

(1) Proof of sufficiency: if there exist N one-particle operators
commuting with a set of reduced Hamiltonians it is straight-
forward to check that a product of eigenstates of these operators
is an eigenstate of the Hamiltonian. Note that any nontrivial
one-qubit operator has a non-degenerate spectrum, therefore,
there is no degree of freedom related to rotation within
a degenerate subspace. The choice of the rst eigenstate of the
rst operator (Ô1) can dene the form of next one-particle
operators and their eigenstates.
This journal is © The Royal Society of Chemistry 2019
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(2) Proof of necessity: for the N-particle eigenstate J(1,.N)
to have a product form it is necessary for the Hamiltonian to
have eigenstates of the f1(1)F(2,.N) form, where f1(1) and
F(2,.N) are some arbitrary functions from Hilbert spaces of
qubit 1 and N � 1 qubits. The latter form is an eigenstate of an
operator of the form Ô1 5 IN�1, where IN�1 is an identity
operator and Ô1 is an operator for which f1(1) is an eigen-
function. Then, if the Hamiltonian and Ô1 5 IN�1 share the
eigenstates they must commute. This commutation is equiva-
lent to [Ĥ, Ô1] ¼ 0. The same logic can be applied to F(2,.N)
because the next necessary condition for the total eigenfunction
of the Hamiltonian to be in a product form is that F(2,.N) ¼
f2(2)~F(3,.N), this gives rise to another commuting operator Ô2

whose eigenfunction is f2. It is important to note though that
Ô2 does not need to commute with Ĥ but only with its reduced
version HN�1 ¼ hf1|Ĥ|f1i. This chain can be continued until we
reach the end of the variable list.
Many-particle commuting operator extension

Similarly if we can nd an M-particle operator Ô commuting
with Ĥ then, because of the theorem on commuting operators,
there is a common set of eigenfunctions. With multi-qubit
operators one needs to be careful because they can have
a degenerate spectrum. In the case of the non-degenerate
spectrum of Ô the common eigenstates have the factorized
form J(1,.N) ¼ F(1,.M)c(M + 1,.N), which serves as a solid
ground for the discussion in the main text. In the degenerate
case, the most general form of a common eigenstate is
Jð1;.NÞ ¼ P

I
CIFIð1;.MÞcIðM þ 1;.NÞ, where ÔFI(1,.M)

¼ lFI(1,.M), I ¼ 1,.k. In this case, the important question
becomes whether the Hamiltonian allows for the eigenstates to
be single product states,

Jð1;.NÞ ¼
"X

I

CIFI ð1;.MÞ
#
cðM þ 1;.NÞ;

or not? To answer this question one needs to construct
a reduced matrix operator within the degenerate subspace
{FI(1,.M)}

ĤIJ
(N�M) ¼ hFI|Ĥ |FJi, (27)

where integration is done over the rst M variables. If there
exists FI for which ĤIJ

(N�M) ¼ 0 where J s I then J(1,.N) ¼
F(1,.M)c(M + 1,.N) will be an eigenfunction of the Hamilto-
nian. For allFI(1,.M) eigenfunctions to form product states, all
off-diagonal elements of ĤIJ

(N�M) must be zero. There is one
more possibility for the factorized eigenstates, if the reduced
matrix operator has the particular form

ĤIJ
(N�M) ¼ hIJĤ

(N�M), (28)

where hIJ are elements of a constant matrix and Ĥ(N�M) is
a single reduced operator acting on N � M variables. Note that
for doing this analysis one needs to be able to obtain only
eigenstates of Ô. This is presumably an easier procedure since
M < N.
This journal is © The Royal Society of Chemistry 2019
Thus, in the degenerate case, having a product form is not
guaranteed and therefore, one may be able to obtain the unitary
transformation unentangling qubits only in the described two
cases. Yet, nding the commuting operator Ô is a necessary
condition for the existence of an unentangling unitary
transformation.
Appendix B: illustration of the mean-
field partitioning procedure

To illustrate the MF partitioning procedure with a nontrivial
example let us consider the model Hamiltonian whose parti-
tioning gives rise to the scheme in Fig. 3

Ĥ ¼ 3x̂1x̂2x̂3 + x̂1x̂2ŷ3 + 5x̂1x̂2ẑ3 + 5x̂1ŷ2x̂3 + 7x̂1ŷ2ẑ3
+ 3x̂1ẑ2x̂3 + x̂1ẑ2ŷ3 + 5x̂1ẑ2ẑ3 + 6ŷ1x̂2x̂3 + 2ŷ1x̂2ŷ3
+ 10ŷ1x̂2ẑ3 + 10ŷ1ŷ2x̂3 + 14ŷ1ŷ2ẑ3 + 6ŷ1ẑ2x̂3 + 2ŷ1ẑ2ŷ3
+ 10ŷ1ẑ2ẑ3 + 3ẑ1x̂2x̂3 + ẑ1x̂2ŷ3 + 5ẑ1x̂2ẑ3 + 5ẑ1ŷ2x̂3
+ 7ẑ1ŷ2ẑ3 + 3ẑ1ẑ2x̂3 + ẑ1ẑ2ŷ3 + 5ẑ1ẑ2ẑ3 (29)

To assess whether the partitioning of Ĥ is possible based on
qubit k ¼ 1 we rewrite the Hamiltonian as

Ĥ ¼ x̂1ĥx + ŷ1ĥy + ẑ1ĥz, (30)

where

ĥx ¼ 3x̂2x̂3 + x̂2ŷ3 + 5x̂2ẑ3 + 5ŷ2x̂3 + 7ŷ2ẑ3 + 3ẑ2x̂3
+ ẑ2ŷ3 + 5ẑ2ẑ3 (31)

ĥy ¼ 6x̂2x̂3 + 2x̂2ŷ3 + 10x̂2ẑ3 + 10ŷ2x̂3 + 14ŷ2ẑ3
+ 6ẑ2x̂3 + 2ẑ2ŷ3 + 10ẑ2ẑ3 (32)

ĥz ¼ 3x̂2x̂3 + x̂2ŷ3 + 5x̂2ẑ3 + 5ŷ2x̂3 + 7ŷ2ẑ3 + 3ẑ2x̂3
+ ẑ2ŷ3 + 5ẑ2ẑ3 (33)

Each ĥx,y,z is transformed into a vector. For example

~hx ¼ ½ 3 1 5 5 7 3 1 5 �T (34)

in the basis {x̂2x̂3, x̂2ŷ3, x̂2ẑ3, ŷ2x̂3, ŷ2ẑ3, ẑ2x̂3, ẑ2ŷ3, ẑ2ẑ3}. S1 is
obtained as A†1A1, where A1 ¼ ½~hx ~hy ~hz�. Diagonalizing of S1
gives one non-zero eigenvalue d and a corresponding eigen-
vector~v. The dimensionality of the S1 kernel is 2, l(1) ¼ 2, and it
implies collinearity of~hx;y;z (Fig. 2a). Performing similar analysis
for S2 and S3, one can nd l(2) ¼ l(3) ¼ 1 (see Fig. 3). Therefore,
we rewrite the Hamiltonian as Ĥ ¼ ĥ(2,3)Ô1, where

Ô1 ¼ 0.408248x̂1 + 0.816497ŷ1 + 0.408248ẑ1 (35)

ĥ(2,3) ¼ 7.34847x̂2x̂3 + 2.44949x̂2ŷ3 + 12.2474x̂2ẑ3
+ 12.2474ŷ2x̂3 + 17.1464ŷ2ẑ3 + 7.34847ẑ2x̂3
+ 2.44949ẑ2ŷ3 + 12.2474ẑ2ẑ3 (36)

Ô1 and ĥ(2,3) were obtained through a linear combination
of {x̂1, ŷ1, ẑ1} and {ĥx, ĥy, ĥz} with coefficients from the eigen-
vector~v.

As the next step, we consider ĥ(2,3), it can be partitioned
based on either qubit k ¼ 2 or k ¼ 3. Both qubits have the same
Chem. Sci., 2019, 10, 3746–3755 | 3753
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values of l(k) ¼ 1 and~hx;y;z are in a single plane (Fig. 2b). Here,
we choose arbitrarily k ¼ 2, diagonalizing S2 leads to two non-
zero eigenvalues (d1,d2) and corresponding eigenvectors
ð~v1;~v2Þ. Following the procedure, ĥ(2,3) decomposes to

ĥð2; 3Þ ¼ ĥ
0ð3ÞÔ0

2 þ ĥ
00ð3ÞÔ00

2; (37)

where

Ô
0
2 ¼ 0:507019x̂2 � 0:697039ŷ2 þ 0:507019ẑ2 (38)

ĥ0(3)¼�1.08532x̂3 + 2.48388ŷ3 + 0.467647ẑ3 (39)

Ô
00
2 ¼ 0:492881x̂2 þ 0:717033ŷ2 þ 0:492881ẑ2 (40)

ĥ00(3) ¼ 16.0257x̂3 + 2.41461ŷ3 + 24.3676ẑ3. (41)

The single-qubit operators fÔ0
2; Ô

00
2g and their complements

{ĥ0, ĥ00} were obtained taking linear combinations of {x̂2, ŷ2, ẑ2}
and {ĥx, ĥy, ĥz} with coefficients from the eigenvectors ð~v1;~v2Þ,
respectively.

The complexity of a single step of the MF partitioning
procedure is polynomial with the number of qubits. In each step
we need to evaluate the l(k) function for each of the qubits
present. Evaluation of the l(k) function requires building the
corresponding overlap matrix Sk, which involves inner products
between columns of Ak matrices. Since the length of Ak columns
(�hx,y,z) scales as N4 at most (this is the scaling of the total
number of terms in the Hamiltonian), the construction of Sk
scales as N4 as well. Thus funding l(k) functions for all qubits in
general has O(N5) scaling.

Appendix C: Hamiltonian details
H2 molecule

One- and two-electron integrals in the canonical restricted
Hartree–Fock (RHF) molecular orbital basis for R(H–H) ¼ 1.5 Å
were used in the BK transformation to produce the corre-
sponding qubit Hamiltonian. Spin-orbitals were alternating in
the order a, b, a, .. The explicit expression for the BK qubit
Hamiltonian is given in the ESI.†

LiH molecule

A qubit Hamiltonian for R(Li–H)¼ 3.2 Å distance was generated
using the parity fermion-to-qubit transformation.30 Spin-
orbitals were arranged as “rst all alpha then all beta” in the
fermionic form; since there are 3 activemolecular orbitals in the
problem, this leads to a 6-qubit Hamiltonian. Further details on
the Hamiltonian are given in the ESI.†
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