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A quinone-mediated general synthetic platform for the construction of primary a-tertiary amines from
abundant primary a-branched amine starting materials is described. This procedure pivots on the

efficient in situ generation of reactive ketimine intermediates and subsequent reaction with carbon-

centered nucleophiles such as organomagnesium and organolithium reagents, and TMSCN, creating
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Accepted 3rd February 2019 quaternary centers. Furthermore, extension to reverse polarity photoredox catalysis enables reactivity
with electrophiles, via a nucleophilic a-amino radical intermediate. This efficient, broadly applicable and

DOI: 10.1039/c85c05164j scalable amine-to-amine synthetic platform was successfully applied to library and API synthesis and in
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Introduction

Through direct applications in the modification of biologically
relevant molecules, the construction of challenging building
blocks, and the synthesis of natural products, C(sp*)-H func-
tionalization has come to the forefront of modern synthetic
methodology development.' Along these lines, the persistent
need from drug discovery programmes for elaborate amine
containing architectures has led to pioneering developments in
the C(sp®)-H functionalization of amines.> Elegant use of tran-
sition metal catalysis, often in conjunction with a directing
group strategy, has enabled the selective B, v,* 8, and remote®
C(sp’)-H functionalization of amines through bespoke and
meticulously tailored catalyst and/or reaction systems
(Scheme 1A). To date, the a-functionalization of amines has
been widely achieved using primary,”® secondary® and tertiary™®
amines, including a quinone-mediated a-functionalization of
pyrrolidine derivatives developed by Qu and co-workers.**
However, despite these advances, there still remains no general
protocol to construct primary o-tertiary amines via C-H func-
tionalization of a-branched amines. Accordingly, we believed
that developing a practical method to readily access these
important primary o-tertiary amine scaffolds would find wide-
spread utility, owing to the abundance of a-branched amines as
feedstock chemicals, building blocks for library synthesis, and
branch-point intermediates in drug discovery programmes.
Pioneering studies by Klinman and Mure," and Sayre,"
among others' have elucidated the role and mechanism of
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the functionalization of drug molecules.

quinone co-factors in copper amine oxidases (CuAOs). CuAOs
are a family of metalloenzymes which selectively catalyze the
oxidation of primary amines into aldehydes (Scheme 1B, R*> =
H) using molecular oxygen through the combination of
a quinone-based co-factor and a Cu" species.'* The mechanism
involves the condensation of a quinone co-factor with the
primary amine substrate and a subsequent formal [1,5] H-shift
from the a-position of the amine to generate a reactive imine,
which is then hydrolyzed to afford the aldehyde product.
Despite elegant early work on quinone-mediated amine oxida-
tion by McCoy and Day,*” and Corey,' the elucidation of the
mechanism of this biotransformation has paved the way for
increasing applications in contemporary synthesis'” with
notable contributions from Stahl,'® Kobayashi,*® and Fleury*® in
amine oxidation, from Qu,’*** and Clift’* in amine functional-
ization, and from Lumb in heterocycle synthesis.**?**

Aligned to this enzymatic process and previous synthetic
reports we hypothesized that if the reactive imine formed by
quinone oxidation (Scheme 1B, R*> # H) could be intercepted by
appropriate nucleophiles for efficient carbon-carbon bond
formation, a new synthetic platform for the generation of a-fully
substituted primary amines could be realized. Herein we wish
to report our findings.

Results & discussion

We envisaged that the addition of a suitable quinone to an a,o-
disubstituted primary amine would afford the Schiff base
intermediate (Scheme 2A) which would undergo an in situ [1,5]
H-shift creating a reactive intermediary ketimine structure I It
has been widely reported previously that such imines exist in
equilibrium with the corresponding hemiaminal II.*”** Carbon-
carbon bond formation via nucleophilic addition and
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A Amine C(sps)-H functionalization in context

(i) B,y,8-functionalization of amine substrates: several approaches
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subsequent oxidation of III would allow hydrolytic removal of
the quinone releasing the high value primary o-tertiary amine.
From the outset we considered it important for the procedure to
have no inter-step manipulation or solvent exchange in order to
streamline this one-pot platform for primary «-C-H function-
alization of amines.

In order to assess feasibility, a selection of substituted
quinones was studied in the allylation of a-methyl-p-methox-
ybenzylamine as a model system (Scheme 2B). Toluene was
identified as the preferred reaction solvent and following
condensation of the quinone and amine, sequential addition of
excess allyl Grignard reagent was required for full conversion of
ketimine, which in turn aided product purification. A simple,
oxidative hydrolytic work-up using iodine and NaOH (1 M)** was
sufficient to detach the hydroxyarene from the desired o-ally-
lated 1°-amine product 1. Following this sequential procedure,
whereas quinones A & B led to complex product mixtures (for
full optimization details see ESIt), quinones C & D did indeed
provide access to the a-allylated product 1 in good yields over
the three-stage, one-pot sequence. Pleasingly, the inclusion of
TMEDA (1 eq.) in the nucleophilic alkylation step resulted in
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cleaner addition leading to a significant increase in the product
yield (81%).>* Quinones E & F were found to be ineffective in this
protocol due to their poor solubility in the reaction medium and
a solvent change provided no improvement in comparison to
quinone D.

With an efficient protocol in hand, we sought to establish the
scope with a variety of primary a-branched amine substrates.
Investigations began using the model allylation procedure
described above with a wide range of a-substituted benzylamine
structures (Scheme 3A, 1-14).>° Pleasingly, the use of o-meth-
ylbenzylamine (2) gave excellent yields of the a-allylated amine
product, and benzhydrylamine (3) also proceeded efficiently in
the reaction. The chemistry was tolerant of methoxy substitu-
ents in the ortho or meta positions (4, 5). Substrates possessing
alkyl (6), hydroxyl (7) and halogen (8-12) functionality present
on the aromatic ring all performed efficiently in the reaction
thereby demonstrating its tolerance to electronic variation.
Interestingly, when 2-amino-2-(4-fluorophenyl)acetonitrile was
employed as a substrate, it was observed that the allylated
amine intermediate (IIL, with respect to Scheme 2A) underwent
an in situ elimination of cyanide followed by a second addition

This journal is © The Royal Society of Chemistry 2019
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of the Grignard reagent, affording diallylated structure 11 after
oxidation. The biologically relevant 1-indanamine scaffold
(relevant to compounds for early onset Parkinson's treatment)*”
was shown to partake in this chemistry in good yield (15). The
transition from benzylic to aliphatic amines was achieved with
remarkable success, with excellent yields on branched amino-
heptane derivatives (16, 17). Cyclic systems were shown to be
effective substrates for the allylation platform (18-30), with
larger ring and heterocyclic systems achieving good to excellent
yields, and even challenging cyclobutane units affording o-
functionalized products (18). Pleasingly heteroaryl substituted
amine (31) granted access to the o-functionalized product
effectively. It should be noted that in this study the quinone can
be isolated and reused with no detriment to reaction efficiency.

Having established the scope with respect to the amine
component it was of interest to study the performance of diverse
organometallic reagents*® using 1-(4-methoxyphenyl)ethan-1-

This journal is © The Royal Society of Chemistry 2019
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(A) Proposed reaction design using quinone mediator. (B) Discovery and optimization of allylation of a-branched primary amines.

amine as a model a-branched amine (Scheme 3B). Initial
studies using aliphatic organomagnesium reagents were
disappointing (with and without TMEDA additive). Despite this,
a survey of organometallic alternatives identified simple
aliphatic organolithium reagents as effective coupling partners.
To this end, methyl (32), n-butyl (33), s-butyl (34), and #-butyl
(35) alkyl groups were installed using their corresponding
organolithium with good to excellent efficiency. The tert-butyl-
ation demonstrates that the steric profile of this methodology
can easily accommodate the construction of neighbouring
quaternary centres. We were pleased to find that the general
protocol was effectively applied to a range of aryllithiums with
varied electronic profiles (37, 39-47).

In addition to organometallic reagents we were keen to
identify other nucleophilic species that could intercept the
reactive ketimine intermediate. Due to the synthetic versatility
of nitrile substituents, we decided to investigate their
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Scheme 3 Substrate scope for primary amine a-functionalization. (A) Scope of a-branched amines. (B) Scope of organometallic reagents. 3 eq.
oxidant used. ® THF : PhMe (5 : 1) used as solvent for step (i). © 2-Amino-2-(4-fluorophenyllacetonitrile used as starting material and step (i) carried
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Isolated as HCl salt. @ Isolated as benzoylated product. " 2 eq. oxidant used. ' Pyrrolidine (1.2 eq.) added.’ 5 eq. oxidant used.

incorporation at the a position of primary a-branched amines.*
Pleasingly, we found that the use of TMSCN as a nucleophilic
source of cyanide and in MeOH as solvent in the initial ketimine
forming step, led to near quantitative addition to the imine
(Scheme 4). Despite this, the conditions for oxidative cleavage
used previously were ineffective (see ESIt for details), however
orthoperiodic acid (HsIO¢) was identified as an excellent
replacement. This modified protocol allowed, after a basic
work-up, the clean isolation of the a-aminonitrile product in
95% yield (48). We then expanded the scope of this

3404 | Chem. Sci., 2019, 10, 3401-3407

methodology to electron rich (49) and electron deficient (50)
arenes, as well as linear (51, 52) and cyclic (53-56) amines with
excellent yields for the one-pot multi-step process. Over the
course of establishing the scope, a-aminonitrile addition
intermediate was isolated and characterized via single crystal X-
ray analysis (57), thus confirming our proposed reaction
pathway.

Recently our group and others have demonstrated that
photoredox catalysis can reverse the polarity of an imine moiety
to enable new reactivity.** Proton coupled electron transfer

This journal is © The Royal Society of Chemistry 2019
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Scheme 5 Substrate scope for photocatalytic reverse polarity primary
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used as coupling partner.
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(PCET) reduction of an imine can generate a nucleophilic o-
amino radical which can be intercepted by electrophiles.** We
recognized that applying this umpolung concept to the
quinone-generated ketimine intermediate, could expand the
capability of the synthetic platform (Scheme 5). Indeed, when
the ketimine intermediate was treated with a photocatalyst
([Ir(dF(CFs)ppy).(dtbpy)]PFe, [Ir]), the commercial Hantzsch
ester (HE), an electrophilic radical acceptor (tert-butyl-2-
((phenylsulfonyl)methyl)acrylate) in DMSO and irradiated with
blue light, we were delighted to observe a-allylated product in
moderate to good yields for the overall process despite a chal-
lenging photocatalytic step (58-62). Interestingly, when the
ethyl ester derivative of the coupling partner was employed, an
in situ lactamization took place on addition of NaOH (63).

For the organometallic addition stage, at least three equiv-
alents of the organometallic reagent are required, as two
equivalents are necessarily consumed in sequestering the water
(produced in the first step) and then the intermediary phenol.
Despite this, addition of 6 equivalents of the organometallic was
found to be optimal and reliable throughout the scope.
However, using a modified protocol - where azeotropic removal

A Alternative protocol

- remove H0

via azeotrope
-add PhMe
- add 4A MS Oxidation /

NH,
NHy*HCI
Quinone
/\/MQBI'
(2.5 eq)
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Scheme 6 Concept application: (A) alternative protocol. (B) Gram-
scale synthesis. (C) Drug synthesis. (D) API functionalization. Unspec-
ified conditions are the same as Scheme 3 and 4 for organometallic
addition and cyanide addition respectively.

Chem. Sci,, 2019, 10, 3401-3407 | 3405


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8sc05164j

Open Access Article. Published on 08 February 2019. Downloaded on 1/16/2026 6:04:39 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

of water after the first step was carried out - 2.5 equivalents of
the nucleophile could be employed to achieve comparable
yields to the streamlined platform (Scheme 6A).

We also found that this methodology could be applied on
gram-scale, where the a-allylation of 30 mmol of 4-aminopyran
using four equivalents of allylmagnesium bromide (Scheme 6B)
was achieved.*” Pleasingly, the reaction proceeded smoothly
and afforded over 4 g of a-functionalized product 27.

Furthermore, the utility of this methodology was also high-
lighted in the one-step synthesis of the anorectic drug phen-
termine (64), where previous reports utilize Strecker and Henry
chemistry respectively and require multiple steps (Scheme
6C).** A prominent advantage of this mild protocol is the
potential application to derivatization of biologically relevant
molecules for inter alia drug discovery. To demonstrate this, we
were pleased to obtain o-allylated (65) and a-cyanated (66)
derivatives of rimantadine, an o-allylated derivative of mex-
iletine (67) and a-cyanated amphetamine analogue (68) in good
to excellent yields (Scheme 6D).

Conclusions

In conclusion, a new synthetic platform for the ready
construction of primary o-tertiary amines from primary o-
branched amine substrates has been realized. This quinone-
mediated chemistry has enabled a-allylation, a-alkylation, o-
arylation, a-cyanation and photocatalytic reverse polarity o-
allylation reactions to be carried out creating a fully substituted
carbon center in the o-position of various amine structures. The
new protocol is broad in scope, scalable and has been applied to
a one-step synthesis of phentermine and in the functionaliza-
tion of drug molecules. This new a-functionalization platform
of a-branched primary amines should find widespread future
applications ranging from complex amine diversification to
drug molecule synthesis.
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